首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rotavirus is one of the leading agents of gastroenteritis worldwide. During infection, viral factories (viroplasms) are formed. The rotavirus nonstructural proteins NSP5 and NSP2 are the major building blocks of viroplasms; however, NSP5 function and organisation remain elusive. In this report, we present a structural characterisation of NSP5. Multi-angle laser light scattering, sedimentation velocity and equilibrium sedimentation experiments demonstrate that recombinant full-length NSP5 forms a decamer in solution. Far-Western, pull-down and multi-angle laser light scattering experiments show that NSP5 has two oligomerisation regions. The first region, residues 103-146, is involved in NSP5 dimerisation, whereas the second region, residues 189-198, is responsible for NSP5 decamerisation. Circular dichroism analyses of full-length and truncated forms of NSP5 reveal that the decamerisation region is helical, whereas the dimerisation region involves β-sheets. From these circular dichroism experiments, we also show that the NSP5 protomers contain two α-helices, a disordered N-terminal half and a C-terminal half that is primarily composed of β-sheet folds. This extensive structural characterisation of NSP5 led us to propose a model for its quaternary organisation. Finally, co-expression of NSP5 fragments and NSP2 in uninfected cells shows that the NSP5 decamerisation region is required for viroplasm-like structure formation. However, in vitro, the NSP5 decamerisation region partially inhibits the NSP2-NSP5 interaction. Our NSP5 model suggests that steric hindrance prevents NSP2 from binding to all NSP5 protomers. Some protomers may thus be free to interact with other NSP5 binding partners, such as viral RNAs and the viral polymerase VP1, to perform functions other than viroplasm organisation.  相似文献   

2.
Rotavirus replication and virus assembly take place in electrodense spherical structures known as viroplasms whose main components are the viral proteins NSP2 and NSP5. The viroplasms are produced since early times after infection and seem to grow by stepwise addition of viral proteins and by fusion, however, the mechanism of viropIasms formation is unknown. In this study we found that the viroplasms surface colocalized with microtubules, and seem to be caged by a microtubule network. Moreover inhibition of microtubule assembly with nocodazole interfered with viroplasms growth in rotavirus infected cells. We searched for a physical link between viroplasms and microtubules by co-immunoprecipitation assays, and we found that the proteins NSP2 and NSP5 were co-immunoprecipitated with anti-tubulin in rotavirus infected cells and also when they were transiently co-expressed or individually expressed. These results indicate that a functional microtubule network is needed for viroplasm growth presumably due to the association of viroplasms with microtubules via NSP2 and NSP5.  相似文献   

3.
Rotavirus is a nonenveloped virus with a three-layered capsid. The inner layer, made of VP2, encloses the genomic RNA and two minor proteins, VP1 and VP3, with which it forms the viral core. Core assembly is coupled with RNA viral replication and takes place in definite cellular structures termed viroplasms. Replication and encapsidation mechanisms are still not fully understood, and little information is available about the intermolecular interactions that may exist among the viroplasmic proteins. NSP2 and NSP5 are two nonstructural viroplasmic proteins that have been shown to interact with each other. They have also been found to be associated with precore replication intermediates that are precursors of the viral core. In this study, we show that NSP5 interacts with VP2 in infected cells. This interaction was demonstrated with recombinant proteins expressed from baculovirus recombinants or in bacterial systems. NSP5-VP2 interaction also affects the stability of VP6 bound to VP2 assemblies. The data presented showed evidence, for the first time, of an interaction between VP2 and a nonstructural rotavirus protein. Published data and the interaction demonstrated here suggest a possible role for NSP5 as an adapter between NSP2 and the replication complex VP2-VP1-VP3 in core assembly and RNA encapsidation, modulating the role of NSP2 as a molecular motor involved in the packaging of viral mRNA.  相似文献   

4.
Rotavirus (RV) replication occurs in cytoplasmic inclusions called viroplasms whose formation requires the interactions of RV proteins NSP2 and NSP5; however, the specific role(s) of NSP2 in viroplasm assembly remains largely unknown. To study viroplasm formation in the context of infection, we characterized two new monoclonal antibodies (MAbs) specific for NSP2. These MAbs show high-affinity binding to NSP2 and differentially recognize distinct pools of NSP2 in RV-infected cells; a previously unrecognized cytoplasmically dispersed NSP2 (dNSP2) is detected by an N-terminal binding MAb, and previously known viroplasmic NSP2 (vNSP2) is detected by a C-terminal binding MAb. Kinetic experiments in RV-infected cells demonstrate that dNSP2 is associated with NSP5 in nascent viroplasms that lack vNSP2. As viroplasms mature, dNSP2 remains in viroplasms, and the amount of diffuse cytoplasmic dNSP2 increases. vNSP2 is detected in increasing amounts later in infection in the maturing viroplasm, suggesting a conversion of dNSP2 into vNSP2. Immunoprecipitation experiments and reciprocal Western blot analysis confirm that there are two different forms of NSP2 that assemble in complexes with NSP5, VP1, VP2, and tubulin. dNSP2 associates with hypophosphorylated NSP5 and acetylated tubulin, which is correlated with stabilized microtubules, while vNSP2 associates with hyperphosphorylated NSP5. Mass spectroscopy analysis of NSP2 complexes immunoprecipitated from RV-infected cell lysates show both forms of NSP2 are phosphorylated, with a greater proportion of vNSP2 being phosphorylated compared to dNSP2. Together, these data suggest that dNSP2 interacts with viral proteins, including hypophosphorylated NSP5, to initiate viroplasm formation, while viroplasm maturation includes phosphorylation of NSP5 and vNSP2.  相似文献   

5.
The P9-1 protein of Rice black streaked dwarf virus accumulates in viroplasm inclusions, which are structures that appear to play an important role in viral morphogenesis and are commonly found in viruses in the family Reoviridae. Crystallographic analysis of P9-1 revealed structural features that allow the protein to form dimers via hydrophobic interactions. Each dimer has carboxy-terminal regions, resembling arms, that extend to neighboring dimers, thereby uniting sets of four dimers via lateral hydrophobic interactions, to yield cylindrical octamers. The importance of these regions for the formation of viroplasm-like inclusions was confirmed by the absence of such inclusions when P9-1 was expressed without its carboxy-terminal arm. The octamers are vertically elongated cylinders resembling the structures formed by NSP2 of rotavirus, even though there are no significant similarities between the respective primary and secondary structures of the two proteins. Our results suggest that an octameric structure with an internal pore might be important for the functioning of the respective proteins in the events that occur in the viroplasm, which might include viral morphogenesis.  相似文献   

6.
The NSP5 protein is required for viroplasm formation during rotavirus infection and is hyperphosphorylated into 32- to 35-kDa isoforms. Earlier studies reported that NSP5 is not hyperphosphorylated without NSP2 coexpression or deleting the NSP5 N terminus and that serine 67 is essential for NSP5 hyperphosphorylation. In this report, we show that full-length NSP5 is hyperphosphorylated in the absence of NSP2 or serine 67 and demonstrate that hyperphosphorylated NSP5 is predominantly present in previously unrecognized cellular fractions that are insoluble in 0.2% sodium dodecyl sulfate. The last 68 residues of NSP5 are sufficient to direct green fluorescent protein into insoluble fractions and cause green fluorescent protein localization into viroplasm-like structures; however, NSP5 insolubility was intrinsic and did not require NSP5 hyperphosphorylation. When we mutated serine 67 to alanine we found that the NSP5 mutant was both hyperphosphorylated and insoluble, identical to unmodified NSP5, and as a result serine 67 is not required for NSP5 phosphorylation. Interestingly, treating cells with the phosphatase inhibitor calyculin A permitted the accumulation of soluble hyperphosphorylated NSP5 isoforms. This suggests that soluble NSP5 is constitutively dephosphorylated by cellular phosphatases and demonstrates that hyperphosphorylation does not direct NSP5 insolubility. Collectively these findings indicate that NSP5 hyperphosphorylation and insolubility are completely independent parameters and that analyzing insoluble NSP5 is essential for studies assessing NSP5 phosphorylation. Our results also demonstrate the involvement of cellular phosphatases in regulating NSP5 phosphorylation and indicate that in the absence of other rotavirus proteins, domains on soluble and insoluble NSP5 recruit cellular kinases and phosphatases that coordinate NSP5 hyperphosphorylation.  相似文献   

7.
Viral inclusion bodies, or viroplasms, that form in rotavirus-infected cells direct replication and packaging of the segmented double-stranded RNA (dsRNA) genome. NSP2, one of two rotavirus proteins needed for viroplasm assembly, possesses NTPase, RNA-binding, and helix-unwinding activities. NSP2 of the rotavirus group causing endemic infantile diarrhea (group A) was shown to self-assemble into large doughnut-shaped octamers with circumferential grooves and deep clefts containing nucleotide-binding histidine triad (HIT)-like motifs. Here, we demonstrate that NSP2 of group C rotavirus, a group that fails to reassort with group A viruses, retains the unique architecture of the group A octamer but differs in surface charge distribution. By using an NSP2-dependent complementation system, we show that the HIT-dependent NTPase activity of NSP2 is necessary for dsRNA synthesis, but not for viroplasm formation. The complementation system also showed that despite the retention of the octamer structure and the HIT-like fold, group C NSP2 failed to rescue replication and viroplasm formation in NSP2-deficient cells infected with group A rotavirus. The distinct differences in the surface charges on the Bristol and SA11 NSP2 octamers suggest that charge complementarity of the viroplasm-forming proteins guides the specificity of viroplasm formation and, possibly, reassortment restriction between rotavirus groups.  相似文献   

8.
Rotaviruses are a major cause of acute gastroenteritis in children worldwide. Early stages of rotavirus assembly in infected cells occur in viroplasms. Confocal microscopy demonstrated that viroplasms associate with lipids and proteins (perilipin A, ADRP) characteristic of lipid droplets (LDs). LD-associated proteins were also found to colocalize with viroplasms containing a rotaviral NSP5-enhanced green fluorescent protein (EGFP) fusion protein and with viroplasm-like structures in uninfected cells coexpressing viral NSP2 and NSP5. Close spatial proximity of NSP5-EGFP and cellular perilipin A was confirmed by fluorescence resonance energy transfer. Viroplasms appear to recruit LD components during the time course of rotavirus infection. NSP5-specific siRNA blocked association of perilipin A with NSP5 in viroplasms. Viral double-stranded RNA (dsRNA), NSP5, and perilipin A cosedimented in low-density gradient fractions of rotavirus-infected cell extracts. Chemical compounds interfering with LD formation (isoproterenol plus isobutylmethylxanthine; triacsin C) decreased the number of viroplasms and inhibited dsRNA replication and the production of infectious progeny virus; this effect correlated with significant protection of cells from virus-associated cytopathicity. Rotaviruses represent a genus of another virus family utilizing LD components for replication, pointing at novel therapeutic targets for these pathogens.Rotaviruses are a major cause of acute gastroenteritis in infants and young children, producing a high burden of disease worldwide and over 600,000 deaths per annum, mainly in developing countries (43). Recently, two live attenuated rotavirus vaccines (49, 58) have been licensed in various countries, and their widespread use in universal mass vaccination programs is being implemented (55).Rotaviruses form a genus of the Reoviridae family. They contain a genome of 11 segments of double-stranded RNA (dsRNA) encoding six structural proteins (VP1, VP2, VP3, VP4, VP6, and VP7) and six nonstructural proteins (NSP1 to NSP6). After entry into the host cell the outer layer of the triple-layered particles (TLPs; infectious virions) is removed in endocytic vesicles, and the resulting double-layered particles (DLPs) actively transcribe mRNAs from the 11 RNA segments and release them into the cytoplasm. The mRNAs are translated into proteins but also act as templates for dsRNA synthesis (RNA replication). The early stages of viral morphogenesis and viral RNA replication occur in cytoplasmic inclusion bodies termed “viroplasms.” Partially assembled DLPs are released from viroplasms and receive their outer layer in the rough endoplasmic reticulum (RER), forming TLPs (for details, see Estes and Kapikian [20]).The rotavirus nonstructural proteins NSP2 and NSP5 are major components of viroplasms (20, 47). These two proteins alone are sufficient to induce the formation of viroplasm-like structures (VLS) (21). Blocking of either NSP2 or NSP5 in rotavirus-infected cells significantly reduces viroplasm formation and the production of infectious viral progeny (11, 54, 57). Until now, host cell proteins involved in viroplasm formation have not been identified.Morphological similarities between viroplasms and lipid droplets (LDs) prompted us to investigate their relationship. Both structures have phosphoproteins (NSP5 and perilipin A, respectively) inserted on their surface in ringlike shapes (16, 34). LDs are intracellular organelles involved in lipid and carbohydrate metabolism. They consist of a neutral lipid core surrounded by a phospholipid monolayer containing LD-associated proteins; those include proteins of the PAT family consisting of perilipin, adipophilin (adipose differentiation-related protein [ADRP]), and TIP-47 (9, 37). Lipolysis from LDs is regulated by hormones such as catecholamines, which trigger the phosphorylation of hormone-sensitive lipase (HSL) and perilipin A and induce LD fragmentation. Incubating adipocytes with the β-adrenergic agonist isoproterenol and the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) activates this pathway (27, 34). LD formation can also be blocked by triacsin C, a specific inhibitor of long chain acyl coenzyme A synthetases (30, 39).We demonstrate here that rotavirus viroplasms colocalize with the LD-associated proteins perilipin A and ADRP and also with the lipids of LDs. These interactions appear to be required for the formation of functional viroplasms and the production of infectious viral progeny, since compounds dispersing LDs or blocking LD formation significantly decrease the number and size of viroplasms and the amount of infectious progeny. Taken together, these findings strongly suggest a critical role of LDs in rotavirus replication.  相似文献   

9.
Rotaviruses, nonenveloped viruses presenting a distinctive triple-layered particle architecture enclosing a segmented double-stranded RNA genome, exhibit a unique morphogenetic pathway requiring the formation of cytoplasmic inclusion bodies called viroplasms in a process involving the nonstructural viral proteins NSP5 and NSP2. In these structures the concerted packaging and replication of the 11 positive-polarity single-stranded RNAs take place to generate the viral double-stranded RNA (dsRNA) genomic segments. Rotavirus infection is a leading cause of gastroenteritis-associated severe morbidity and mortality in young children, but no effective antiviral therapy exists. Herein we investigate the antirotaviral activity of the thiazolide anti-infective nitazoxanide and reveal a novel mechanism by which thiazolides act against rotaviruses. Nitazoxanide and its active circulating metabolite, tizoxanide, inhibit simian A/SA11-G3P[2] and human Wa-G1P[8] rotavirus replication in different types of cells with 50% effective concentrations (EC50s) ranging from 0.3 to 2 μg/ml and 50% cytotoxic concentrations (CC50s) higher than 50 μg/ml. Thiazolides do not affect virus infectivity, binding, or entry into target cells and do not cause a general inhibition of viral protein expression, whereas they reduce the size and alter the architecture of viroplasms, decreasing rotavirus dsRNA formation. As revealed by protein/protein interaction analysis, confocal immunofluorescence microscopy, and viroplasm-like structure formation analysis, thiazolides act by hindering the interaction between the nonstructural proteins NSP5 and NSP2. Altogether the results indicate that thiazolides inhibit rotavirus replication by interfering with viral morphogenesis and may represent a novel class of antiviral drugs effective against rotavirus gastroenteritis.  相似文献   

10.
Rotavirus morphogenesis starts in intracellular inclusion bodies called viroplasms. RNA replication and packaging are mediated by several viral proteins, of which VP1, the RNA-dependent RNA polymerase, and VP2, the core scaffolding protein, were shown to be sufficient to provide replicase activity in vitro. In vivo, however, viral replication complexes also contain the nonstructural proteins NSP2 and NSP5, which were shown to be essential for replication, to interact with each other, and to form viroplasm-like structures (VLS) when coexpressed in uninfected cells. In order to gain a better understanding of the intermediates formed during viral replication, this work focused on the interactions of NSP5 with VP1, VP2, and NSP2. We demonstrated a strong interaction of VP1 with NSP5 but only a weak one with NSP2 in cotransfected cells in the absence of other viral proteins or viral RNA. By contrast, we failed to coimmunoprecipitate VP2 with anti-NSP5 antibodies or NSP5 with anti-VP2 antibodies. We constructed a tagged form of VP1, which was found to colocalize in viroplasms and in VLS formed by NSP5 and NSP2. The tagged VP1 was able to replace VP1 structurally by being incorporated into progeny viral particles. When applying anti-tag-VP1 or anti-NSP5 antibodies, coimmunoprecipitation of tagged VP1 with NSP5 was found. Using deletion mutants of NSP5 or different fragments of NSP5 fused to enhanced green fluorescent protein, we identified the 48 C-terminal amino acids as the region essential for interaction with VP1.  相似文献   

11.
Rotavirus plus-strand RNAs not only direct protein synthesis but also serve as templates for the synthesis of the segmented double-stranded RNA (dsRNA) genome. In this study, we identified short-interfering RNAs (siRNAs) for viral genes 5, 8, and 9 that suppressed the expression of NSP1, a nonessential protein; NSP2, a component of viral replication factories (viroplasms); and VP7, an outer capsid protein, respectively. The loss of NSP2 expression inhibited viroplasm formation, genome replication, virion assembly, and synthesis of the other viral proteins. In contrast, the loss of VP7 expression had no effect on genome replication; instead, it inhibited only outer-capsid morphogenesis. Similarly, neither genome replication nor any other event of the viral life cycle was affected by the loss of NSP1. The data indicate that plus-strand RNAs templating dsRNA synthesis within viroplasms are not susceptible to siRNA-induced RNase degradation. In contrast, plus-strand RNAs templating protein synthesis in the cytosol are susceptible to degradation and thus are not the likely source of plus-strand RNAs for dsRNA synthesis in viroplasms. Indeed, immunofluorescence analysis of bromouridine (BrU)-labeled RNA made in infected cells provided evidence that plus-strand RNAs are synthesized within viroplasms. Furthermore, transfection of BrU-labeled viral plus-strand RNA into infected cells suggested that plus-strand RNAs introduced into the cytosol do not localize to viroplasms. From these results, we propose that plus-strand RNAs synthesized within viroplasms are the primary source of templates for genome replication and that trafficking pathways do not exist within the cytosol that transport plus-strand RNAs to viroplasms. The lack of such pathways confounds the development of reverse genetics systems for rotavirus.  相似文献   

12.
Octamers formed by the nonstructural protein NSP2 of rotavirus are proposed to function as molecular motors in the packaging of the segmented double-stranded RNA genome. The octamers have RNA binding, helix unwinding, and Mg(2+)-dependent NTPase activities and play a crucial role in assembly of viral replication factories (viroplasms). Comparison of x-ray structures has revealed significant structural homology between NSP2 and the histidine triad (HIT) family of nucleotidyl hydrolases, which in turn has suggested the location of the active site for NTP hydrolysis in NSP2. Consistent with the structural predictions, we show here using site-specific mutagenesis and ATP docking simulations that the active site for NTP hydrolysis is localized to residues within a 25-A-deep cleft between the C- and N-terminal domains of the NSP2 monomer. Although lacking the precise signature HIT motif (H?H?H?? where ? is a hydrophobic residue), our analyses demonstrate that histidines (His(221) and His(225)) represent critical residues of the active site. Similar to events occurring during nucleotide hydrolysis by HIT proteins, NTP hydrolysis by NSP2 was found to produce a short lived phosphorylated intermediate. Evaluation of the biological importance of the NTPase activity of NSP2 by transient expression in mammalian cells showed that such activity has no impact on the ability of NSP2 to induce the hyperphosphorylation of NSP5 or to interact with NSP5 to form viroplasm-like structures. Hence the NTPase activity of NSP2 probably has a role subsequent to the formation of viroplasms, consistent with its suspected involvement in RNA packaging and/or replication.  相似文献   

13.
Early during the infection process, rotavirus causes the shutoff of cell protein synthesis, with the nonstructural viral protein NSP3 playing a vital role in the phenomenon. In this work, we have found that the translation initiation factor 2α (eIF2α) in infected cells becomes phosphorylated early after virus infection and remains in this state throughout the virus replication cycle, leading to a further inhibition of cell protein synthesis. Under these restrictive conditions, however, the viral proteins and some cellular proteins are efficiently translated. The phosphorylation of eIF2α was shown to depend on the synthesis of three viral proteins, VP2, NSP2, and NSP5, since in cells in which the expression of any of these three proteins was knocked down by RNA interference, the translation factor was not phosphorylated. The modification of this factor is, however, not needed for the replication of the virus, since mutant cells that produce a nonphosphorylatable eIF2α sustained virus replication as efficiently as wild-type cells. In uninfected cells, the phosphorylation of eIF2α induces the formation of stress granules, aggregates of stalled translation complexes that prevent the translation of mRNAs. In rotavirus-infected cells, even though eIF2α is phosphorylated these granules are not formed, suggesting that the virus prevents the assembly of these structures to allow the translation of its mRNAs. Under these conditions, some of the cellular proteins that form part of these structures were found to change their intracellular localization, with some of them having dramatic changes, like the poly(A) binding protein, which relocates from the cytoplasm to the nucleus in infected cells, a relocation that depends on the viral protein NSP3.  相似文献   

14.
Rotavirus replication and virulence are strongly influenced by virus strain and host species. The rotavirus proteins VP3, VP4, VP7, NSP1, and NSP4 have all been implicated in strain and species restriction of replication; however, the mechanisms have not been fully determined. Simian (RRV) and bovine (UK) rotaviruses have distinctive replication capacities in mouse extraintestinal organs such as the biliary tract. Using reassortants between UK and RRV, we previously demonstrated that the differential replication of these viruses in mouse embryonic fibroblasts is determined by the respective NSP1 proteins, which differ substantially in their abilities to degrade interferon (IFN) regulatory factor 3 (IRF3) and suppress the type I IFN response. In this study, we used an in vivo model of rotavirus infection of mouse gallbladder with UK × RRV reassortants to study the genetic and mechanistic basis of systemic rotavirus replication. We found that the low-replication phenotype of UK in biliary tissues was conferred by UK VP4 and that the high-replication phenotype of RRV was conferred by RRV VP4 and NSP1. Viruses with RRV VP4 entered cultured mouse cholangiocytes more efficiently than did those with UK VP4. Reassortants with RRV VP4 and UK NSP1 genes induced high levels of expression of IRF3-dependent p54 in biliary tissues, and their replication was increased 3-fold in IFN-α/β and -γ receptor or STAT1 knockout (KO) mice compared to wild-type mice. Our data indicate that systemic rotavirus strain-specific replication in the murine biliary tract is determined by both viral entry mediated by VP4 and viral antagonism of the host innate immune response mediated by NSP1.  相似文献   

15.
Rotavirus (RV) diarrhoea causes huge number deaths in children less than 5 years of age. In spite of available vaccines, it has been difficult to combat RV due to large number of antigenically distinct genotypes, high mutation rates, generation of reassortant viruses due to segmented genome. RV is an eukaryotic virus which utilizes host cell machinery for its propagation. Since RV only encodes 12 proteins, post-translational modification (PTM) is important mechanism for modification, which consequently alters their function. A single protein exhibiting different functions in different locations or in different subcellular sites, are known to be 'moonlighting'. So there is a possibility that viral proteins moonlight in separate location and in different time to exhibit diverse cellular effects. Based on the primary sequence, the putative behaviour of proteins in cellular environment can be predicted, which helps to classify them into different functional families with high reliability score. In this study, sites for phosphorylation, glycosylation and SUMOylation of the six RV structural proteins (VP1, VP2, VP3, VP4, VP6 & VP7) & five non-structural proteins (NSP1, NSP2,NSP3,NSP4 & NSP5) and the functional families were predicted. As NSP6 is a very small protein and not required for virus growth & replication, it was not included in the study. Classification of RV proteins revealed multiple putative functions of each structural protein and varied number of PTM sites, indicating that RV proteins may also moonlight depending on requirements during viral life cycle. Targeting the crucial PTM sites on RV structural proteins may have implications in developing future anti-rotaviral strategies.  相似文献   

16.
Sen A  Sen N  Mackow ER 《Journal of virology》2007,81(21):11758-11767
The rotavirus NSP5 protein directs the formation of viroplasm-like structures (VLS) and is required for viroplasm formation within infected cells. In this report, we have defined signals within the C-terminal 21 amino acids of NSP5 that are required for VLS formation and that direct the insolubility and hyperphosphorylation of NSP5. Deleting C-terminal residues of NSP5 dramatically increased the solubility of N-terminally tagged NSP5 and prevented NSP5 hyperphosphorylation. Computer modeling and analysis of the NSP5 C terminus revealed the presence of an amphipathic alpha-helix spanning 21 C-terminal residues that is conserved among rotaviruses. Proline-scanning mutagenesis of the predicted helix revealed that single-amino-acid substitutions abolish NSP5 insolubility and hyperphosphorylation. Helix-disrupting NSP5 mutations also abolished localization of green fluorescent protein (GFP)-NSP5 fusions into VLS and directly correlate VLS formation with NSP5 insolubility. All mutations introduced into the hydrophobic face of the predicted NSP5 alpha-helix disrupted VLS formation, NSP5 insolubility, and the accumulation of hyperphosphorylated NSP5 isoforms. Some NSP5 mutants were highly soluble but still were hyperphosphorylated, indicating that NSP5 insolubility was not required for hyperphosphorylation. Expression of GFP containing the last 68 residues of NSP5 at its C terminus resulted in the formation of punctate VLS within cells. Interestingly, GFP-NSP5-C68 was diffusely dispersed in the cytoplasm when calcium was depleted from the medium, and after calcium resupplementation GFP-NSP5-C68 rapidly accumulated into punctate VLS. A potential calcium switch, formed by two tandem pseudo-EF-hand motifs (DxDxD), is present just upstream of the predicted alpha-helix. Mutagenesis of either DxDxD motif abolished the regulatory effect of calcium on VLS formation and resulted in the constitutive assembly of GFP-NSP5-C68 into punctate VLS. These results reveal specific residues within the NSP5 C-terminal domain that direct NSP5 hyperphosphorylation, insolubility, and VLS formation in addition to defining residues that constitute a calcium-dependent trigger of VLS formation. These studies identify functional determinants within the C terminus of NSP5 that regulate VLS formation and provide a target for inhibiting NSP5-directed VLS functions during rotavirus replication.  相似文献   

17.
Jia D  Chen H  Zheng A  Chen Q  Liu Q  Xie L  Wu Z  Wei T 《Journal of virology》2012,86(10):5800-5807
An in vitro culture system of primary cells from white-backed planthopper, an insect vector of Southern rice black-streaked dwarf virus (SRBSDV), a fijivirus, was established to study replication of the virus. Viroplasms, putative sites of viral replication, contained the nonstructural viral protein P9-1, viral RNA, outer-capsid proteins, and viral particles in virus-infected cultured insect vector cells, as revealed by transmission electron and confocal microscopy. Formation of viroplasm-like structures in non-host insect cells upon expression of P9-1 suggested that the matrix of viroplasms observed in virus-infected cells was composed basically of P9-1. In cultured insect vector cells, knockdown of P9-1 expression due to RNA interference (RNAi) induced by synthesized double-stranded RNA (dsRNA) from the P9-1 gene strongly inhibited viroplasm formation and viral infection. RNAi induced by ingestion of dsRNA strongly abolished viroplasm formation, preventing efficient viral spread in the body of intact vector insects. All these results demonstrated that P9-1 was essential for viroplasm formation and viral replication. This system, combining insect vector cell culture and RNA interference, can further advance our understanding of the biological activities of fijivirus replication proteins.  相似文献   

18.
19.
Microtubules, components of the cell cytoskeleton, play a central role in cellular trafficking. Here we show that rotavirus infection leads to a remodeling of the microtubule network together with the formation of tubulin granules. While most microtubules surrounding the nucleus depolymerize, others appear packed at the cell periphery. In microtubule depolymerization areas, tubulin granules are observed; they colocalize with viroplasms, viral compartments formed by interactions between rotavirus proteins NSP2 and NSP5. With purified proteins, we show that tubulin directly interacts in vitro with NSP2 but not with NSP5. The binding of NSP2 to tubulin is independent of its phosphatase activity. The comparison of three-dimensional (3-D) reconstructions of NSP2 octamers alone or associated with tubulin reveals electron densities in the positively charged grooves of NSP2 that we attribute to tubulin. Site-directed mutagenesis of NSP2 and competition assays between RNA and tubulin for NSP2 binding confirm that tubulin binds to these charged grooves of NSP2. Although the tubulin position within NSP2 grooves cannot be precisely determined, the tubulin C-terminal H12 α-helix could be involved in the interaction. NSP2 overexpression and rotavirus infection produce similar effects on the microtubule network. NSP2 depolymerizes microtubules and leads to tubulin granule formation. Our results demonstrate that tubulin is a viroplasm component and reveal an original mechanism. Tubulin sequestration by NSP2 induces microtubule depolymerization. This depolymerization probably reroutes the cell machinery by inhibiting trafficking and functions potentially involved in defenses to viral infections.Microtubules (MTs) are components of the cell cytoskeleton and play a major role in cellular trafficking. Molecular motors (dynein and kinesins) use MTs as tracks to address organelles to precise loci. Viruses are irreplaceable tools to study cellular processes; for example, many of them hijack cellular transport to reach the perinuclear region (for reviews, see references 27, 35, 39, and 40). Some viruses also modify the cell compartmentation and create viral inclusions where viral replication and virion assembly are performed (for a review, see reference 30). Both aspects are sometimes related; electron and fluorescence microscopy observations of reovirus-infected cells have shown that viral inclusions form an electron-dense coat surrounding the MTs (15, 32, 41). In the case of rotavirus, another member of the Reoviridae family, interactions between viral proteins and MTs remain unclear; some studies report an interaction between MTs and either NSP4 or VP4, whereas others did not detect these interactions (4, 19, 29, 51). Rotavirus is the leading agent of gastroenteritis in young children worldwide (31); studying its interactions with its host cell is thus of particular interest to identify new potential therapeutical targets.The rotavirus genome is composed of 11 double-stranded RNAs (dsRNA) surrounded by a triple-layer capsid. During rotavirus infection, punctuate cytoplasmic structures, named “viroplasms,” are formed; they are the sites of viral genome replication and virion assembly. These structures are made of several viral proteins and of viral mRNAs that serve as templates for genome replication. Two viral nonstructural proteins, NSP2 and NSP5, are crucial for viroplasm formation (10, 24, 38). Their coexpression in uninfected cells leads to the formation of punctuate cytoplasmic structures termed viroplasm-like structures (VLS) (18). NSP2 forms a doughnut-shaped octamer by tail-to-tail interaction of two tetramers; four positively charged grooves crossing the two tetramers have been identified (21). Structural and biochemical studies have revealed a histidine-triad (HIT)-like motif responsible for the nucleoside triphosphatase (NTPase), RNA triphosphatase (RTPase), and nucleoside diphosphate (NDP) kinase-like activities of NSP2 (21, 23, 42, 46). These catalytic activities are required for dsRNA synthesis but not for viroplasm formation (11, 43). NSP2 binds single-stranded RNA nonspecifically, has helix destabilizing activity (44), and undertakes conformational changes upon nucleotide binding (37). NSP2 might thus function as a molecular motor involved in genome replication and packaging. NSP5 is a dimeric O-linked glyco- and phosphoprotein, which exists as variously phosphorylated isoforms (1, 36, 48). A cryoelectron microscopy study pointed out that RNA and NSP5 compete for binding to the grooves of the NSP2 octamer (22). The function of NSP5 in rotavirus replication and the role of its phosphorylation remain unknown. No cellular partner of these two nonstructural proteins was known, until a possible association of both proteins with tubulin was reported (9).In the present report, we studied the interaction of rotavirus with tubulin and MTs. We focused on the cellular effects and the structural characterization of the interaction between tubulin and NSP2. Our results highlight that infection by the rotavirus RF strain disorganizes and depolymerizes the MT network of MA104 cells and that viroplasms colocalize with tubulin granules. Electron microscopy and biochemical experiments demonstrate that tubulin directly binds to the positively charged grooves of NSP2. Moreover, NSP2 overexpression induces MT depolymerization and tubulin granule formation. We thus propose that NSP2 sequesters tubulin in viroplasms during rotavirus infection. This sequestration induces the MT depolymerization observed during rotavirus infection and most probably modifies cellular trafficking.  相似文献   

20.
Post-translational modification of proteins by members of the small ubiquitin-like modifier (SUMO) is involved in diverse cellular functions. Many viral proteins are SUMO targets and also interact with the cellular SUMOylation system. During human cytomegalovirus (HCMV) infection, the immediate-early (IE) proteins IE1 and IE2 are covalently modified by SUMO. IE2 SUMOylation promotes its transactivation activity, whereas the role of IE1 SUMOylation is not clear. We performed in silico, genome-wide analysis to identify possible SUMOylation sites in HCMV-encoded proteins and evaluated their modification using the E. coli SUMOylation system and in vitro assays. We found that only IE1 and IE2 are substantially modified by SUMO in E. coli, although US34A was also identified as a possible SUMO target in vitro. We also found that SUMOylation of IE1 and IE2 is temporally regulated during viral infection. Levels of SUMO-modified form of IE1 were increased during the early phase of infection, but decreased in the late phase when IE2 and its SUMO-modified forms were expressed at high levels. IE2 expression inhibited IE1 SUMOylation in cotransfection assays. As in IE2 SUMOylation, PIAS1, a SUMO E3 ligase, interacted with IE1 and enhanced IE1 SUMOylation. In in vitro assays, an IE2 fragment that lacked covalent and non-covalent SUMO attachment sites, but was sufficient for PIAS1 binding, effectively inhibited PIAS1-mediated SUMOylation of IE1, indicating that IE2 expression negatively regulates IE1 SUMOylation. We also found that the IE2-mediated downregulation of IE1 SUMOylation correlates with the IE1 activity to repress the promoter containing the interferon stimulated response elements. Taken together, our data demonstrate that IE1 and IE2 are the main viral SUMO targets in HCMV infection and that temporal regulation of their SUMOylation may be important in the progression of this infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号