首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salah H  Tardieu F 《Plant physiology》1997,114(3):893-900
We have analyzed the possibility that chemical signaling does not entirely account for the effect of water deficit on the maize (Zea mays L.) leaf elongation rate (LER) under high evaporative demand. We followed time courses of LER (0.2-h interval) and spatial distribution of elongation rate in leaves of either water-deficient or abscisic acid (ABA)-fed plants subjected to varying transpiration rates in the field, in the greenhouse, and in the growth chamber. At low transpiration rates the effect of the soil water status on LER was related to the concentration of ABA in the xylem sap and could be mimicked by feeding artificial ABA. Transpiring plants experienced a further reduction in LER, directly linked to the transpiration rate or leaf water status. Leaf zones located at more than 20 mm from the ligule stopped expanding during the day and renewed expansion during the night. Neither ABA concentration in the xylem sap, which did not appreciably vary during the day, nor ABA flux into shoots could account for the effect of evaporative demand. In particular, maximum LER was observed simultaneously with a minimum ABA flux in the droughted plants, but with a maximum ABA flux in ABA-fed plants. All data were interpreted as the superposition of two additive effects: the first involved ABA signaling and was observed during the night and in ABA-fed plants, and the second involved the transpiration rate and was observed even in well-watered plants. We suggest that a hydraulic signal is the most likely candidate for this second effect.  相似文献   

2.
A model of maize stomatal behaviour has been developed, in which stomatal conductance is linked to the concentration of abscisic acid ([ABA]) in the xylem sap, with a sensitivity dependent upon the leaf water potential (Ψ1). It was tested against two alternative hypotheses, namely that stomatal sensitivity to xylem [ABA] would be linked to the leaf-to-air vapour pressure difference (VPD), or to the flux of ABA into the leaf. Stomatal conductance (gs) was studied: (1) in field-grown plants whose xylem [ABA] and Ψ1 depended on soil water status and evaporative demand; (2) in field-grown plants fed with ABA solutions such that xylem [ABA] was artificially raised, thereby decreasing gs and increasing Ψ1 and leaf-to-air VPD; and (3) in ABA-fed detached leaves exposed to varying evaporative demands, but with a constant and high Ψ1. The same relationships between gs, xylem [ABA] and Ψ1, showing lower stomatal sensitivity to [ABA] at high Ψ1, applied whether variations in xylem [ABA] were due to natural increase or to feeding, and whether variations in Ψ1, were due to changes in evaporative demand or to the increased Ψ1 observed in ABA-fed plants. Conversely, neither the leaf-to-air VPD nor the ABA flux into the leaf accounted for the observed changes in stomatal sensitivity to xylem [ABA]. The model, using parameters calculated from previous field data and the detached-leaf data, was tested against the observations of both ABA-fed and droughted plants in the field. It accounted with reasonable accuracy for changes in gs (r2 ranging from 0.77 to 0.81). These results support the view that modelling of stomatal behaviour requires consideration of both chemical and hydraulic aspects of root-to-shoot communication.  相似文献   

3.
Abscisic acid concentrations and fluxes in droughted conifer saplings   总被引:7,自引:1,他引:6  
We present the first study of abscisic acid (ABA) concentrations and fluxes in the xylem sap of conifers during a drought cycle. In both Pinus sylvestris and Picea sitchensis the concentration of ABA in the sap rose 11-fold as the drought progressed. There were clear diurnal trends in this concentration, which reached its maximum (6–8.ininol ABA m?3) near the middle of the day. The fluxes of ABA were calculated by multiplying the xylem ABA concentration by the sap flow rate. The ABA fluxes in the droughted plants in the middle of the day were usually no higher than those of the controls, as a result of the very low sap flow in the droughted plants at that time. However, the ABA flux in the droughted plants was higher than in the controls in the morning, and we postulate that the stomata are responding to these ‘morning doses’ Stomatal conductance, gs, could not be related statistically to leaf turgor or to the ABA flux. However, £s did display a negative exponential relationship with ABA concentration in the xylem. Pinus displayed more acclimation to drought than Picea, Its ABA concentration rose and its stomatal conductance fell at day 6 of the drought, as opposed to day 17 for Picea, and its osmotic potential fell during the drought treatment.  相似文献   

4.
Most studies on the role of ABA in the stomatal response of the whole plant to drought rely on a good estimate of ABA concentration in xylem sap. In this report, varying volumes of sap (V(sap)) were collected by pressurizing leaves cut from several lines of N. plumbaginifolia with modified capacities to synthesize ABA. Leaves were fed with solutions of known ABA concentration ([ABA](solution) from 0-500 micromol m(-3)) for 2-3 h before sap collection. ABA concentration in extruded sap ([ABA](sap)) was compared with [ABA](solution). In low-volume extracts (less than 0.35 mm(3) cm(-2) leaf area) collected from leaves of well-watered plants, [ABA](sap) was close to [ABA](solution). For all lines, [ABA](sap) decreased with increasing V(sap). The same dilution effect was observed for leaves pressurized just after sampling on droughted plants, suggesting, as for detached leaves fed with ABA, that [ABA](sap) in low-volume extracts approximated well with the concentration of ABA entering leaves still attached on droughted plants. However, ABA-fed leaves sampled from droughted plants yielded higher [ABA](sap) than ABA-fed leaves sampled from well-watered plants. [ABA](sap) was also increased, although very slightly, when leaves were preincubated in highly enriched ABA solution. This indicates that some leaf ABA contributed to the ABA concentration returned in the extruded sap. Consistently, [ABA](sap) in medium-volume extracts (0.35-0.65 mm(3) cm(-2) leaf area) was lower for leaves sampled on under-producing lines than on the wild type. Despite these distortions between [ABA](solution) and [ABA](sap) in medium-volume extracts, stomatal conductance of ABA-fed leaves closely correlated with [ABA](sap) with a similar relationship in all cases, whilst relationships with [ABA](solution) were more scattered.  相似文献   

5.
The stomatal conductance of several anisohydric plant species, including field-grown sunflower, frequently correlates with leaf water potential (φ1), suggesting that chemical messages travelling from roots to shoots may not play an important role in stomatal control. We have performed a series of experiments in which evaporative demand, soil water status and ABA origin (endogenous or artificial) were varied in order to analyse stomatal control. Sunflower plants were subjected to a range of soil water potentials under contrasting air vapour pressure deficits (VPD, from 0.5 to 2.5 kPa) in the field, in the glasshouse or in a humid chamber. Sunflower plants were also fed through the xylem with varying concentrations of artificial ABA, in the glasshouse and in the field. Finally, detached leaves were fed directly with varying concentrations of ABA under three contrasting VPDs. A unique relationship between stomatal conductance (gs) and the concentration of ABA in the xylem sap (xylem [ABA]) was observed in all cases. In contrast, the relationship between φ1 and gs varied substantially among experiments. Its slope was positive for droughted plants and negative for ABA-fed whole plants or detached leaves, and also varied appreciably with air VPD. All observed relationships could be modelled on the basis of the assumption that φ1 had no controlling effect on gs. We conclude that stomatal control depended only on the concentration of ABA in the xylem sap, and that φ1 was controlled by water flux through the plant (itself controlled by stomatal conductance). The possibility is also raised that differences in stomatal ‘strategy’ between isohydric plants (such as maize, where daytime φ1 does not vary appreciably with soil water status) and anisohydric plants (such as sunflower) may be accounted for by the degree of influence of φ1 on stomatal control, for a given level of xylem [ABA]. We propose that statistical relationships between φ1 and gs are only observed when φ1 has no controlling action on stomatal behaviour.  相似文献   

6.
The consequences of manipulating abscisic acid (ABA) biosynthesis rates on stomatal response to drought were analysed in wild‐type, a full‐deficient mutant and four under‐producing transgenic lines of N. plumbaginifolia. The roles of ABA, xylem sap pH and leaf water potential were investigated under four experimental conditions: feeding detached leaves with varying ABA concentration; injecting exogenous ABA into well‐watered plants; and withholding irrigation on pot‐grown plants, either intact or grafted onto tobacco. Changes in ABA synthesis abilities among lines did not affect stomatal sensitivity to ABA concentration in the leaf xylem sap ([ABA]xyl), as evidenced with exogenous ABA supplies and natural increases of [ABA]xyl in grafted plants subjected to drought. The ABA‐deficient mutant, which is uncultivable under normal evaporative demand, was grafted onto tobacco stock and then presented the same stomatal response to [ABA]xyl as wild‐type and other lines. This reinforces the dominant role of ABA in controlling stomatal response to drought in N. plumbaginifolia whereas roles of leaf water potential and xylem sap pH were excluded under all studied conditions. However, when plants were submitted to soil drying onto their own roots, stomatal response to [ABA]xyl slightly differed among lines. It is suggested, consistently with all the results, that an additional root signal of soil drying modulates stomatal response to [ABA]xyl.  相似文献   

7.
To determine whether root-to-shoot signalling of soil moisture heterogeneity depended on root distribution, wild-type (WT) and abscisic acid (ABA)-deficient (Az34) barley (Hordeum vulgare) plants were grown in split pots into which different numbers of seminal roots were inserted. After establishment, all plants received the same irrigation volumes, with one pot watered (w) and the other allowed to dry the soil (d), imposing three treatments (1 d: 3 w, 2 d: 2 w, 3 d: 1 w) that differed in the number of seminal roots exposed to drying soil. Root distribution did not affect leaf water relations and had no sustained effect on plant evapotranspiration (ET). In both genotypes, leaf elongation was less and leaf ABA concentrations were higher in plants with more roots in drying soil, with leaf ABA concentrations and water potentials 30% and 0.2 MPa higher, respectively, in WT plants. Whole-pot soil drying increased xylem ABA concentrations, but maximum values obtained when leaf growth had virtually ceased (100 nm in Az34, 330 nm in WT) had minimal effects (<40% leaf growth inhibition) when xylem supplied to detached shoots. Although ABA may not regulate leaf growth in vivo, genetic variation in foliar ABA concentration in the field may indicate different root distributions between upper (drier) and lower (wetter) soil layers.  相似文献   

8.
Leaf growth responses to ABA are temperature dependent   总被引:3,自引:1,他引:2  
The robustness of a leaf elongation bioassay was evaluated byconducting trials with detached shoots of wheat at several differenttemperatures. Leaf elongation rate (LER) was monitored for shootsfed either an artificial xylem solution or xylem solution plus10–3mol m–3 abscisic acid (ABA). Consistent resultswere obtained when periodic ruler measurements of many shootswere made and compared with simultaneous measurements on a singleshoot made with a linearly variable displacement transducer(LVDT). ABA treatment consistently inhibited leaf growth; however,the magnitude of the inhibition was dependent on the temperatureat which the assay was conducted. Interpretation of resultsfrom such bioas-says in terms of ABA concentration suppliedto the detached shoots is complicated by this observation sincethere is no unique relationship between leaf growth inhibitionand ABA concentration. The results are discussed in terms ofchemical signalling affecting the growth rate of plants in dryingsoil. Key words: ABA, leaf growth, temperature, leaf elongation bioassay  相似文献   

9.
The osmotic and ion-specific components of salt-induced inhibition of leaf expansion growth were investigated in beans grown from 12 h to several days in either NaCl-containing solution cultures, an isosmotic concentrated macronutrient solution, or a vermiculite–compost mixture with low Na+ but high Cl availability. Inhibition of leaf expansion and leaf ABA increase was more intense in the NaCl than in the isosmotic macronutrient treatment. Root Na+ was highly correlated to inhibition of leaf expansion and leaf or xylem sap ABA. When Na+ was sequestered in soil, salinized plants showed no reduction in leaf expansion or ABA increase, regardless of the presence of high leaf Cl concentrations. Stomatal conductance exhibited an exponential relationship with the reciprocal value of xylem sap ABA. Our results indicate that an ion-specific effect caused by Na+ in roots may account for an ABA-mediated reponse of both stomatal closure and leaf expansion inhibition.  相似文献   

10.
Soil water deficits applied at different rates and for different durations can decrease both stomatal conductance (gs) and leaf water potential (Ψleaf). Understanding the physiological mechanisms regulating these responses is important in sustainable irrigation scheduling. Glasshouse‐grown, containerized Pelargonium × hortorum BullsEye plants were irrigated either daily at various fractions of plant evapotranspiration (100, 75 and 50% ET) for 20 days or irrigation was withheld for 4 days. Xylem sap was collected and gs and Ψleaf were measured on days 15 and 20, and on days 16–19 for the respective treatments. Xylem sap pH and NO3? and Ca2+ concentrations did not differ between irrigation treatments. Xylem abscisic acid (ABA) concentrations ([ABA]xyl) increased within 24 h of irrigation being withheld whilst gs and Ψleaf decreased. Supplying irrigation at a fraction of daily ET produced a similar relationship between [ABA]xyl and gs, but did not change Ψleaf. Treatment differences occurred independently of whether Ψleaf was measured in whole leaves with a pressure chamber, or in the lamina with a thermocouple psychrometer. Plants that were irrigated daily showed lower [ABA]xyl than plants from which irrigation was withheld, even at comparable soil moisture content. This implies that regular re‐watering attenuates ABA signaling due to maintenance of soil moisture in the upper soil levels. Crucially, detached leaves supplied with synthetic ABA showed a similar relationship between [ABA]xyl and gs as intact plants, suggesting that stomatal closure of P. hortorum in response to soil water deficit is primarily an ABA‐induced response, independent of changes in Ψleaf.  相似文献   

11.
The essentiality of roots to the short-term responses of leaf elongation to salinity was tested by removing the roots of maize (Zea mays L.) from the shoots and comparing the initial short-term response of leaf elongation to that with intact plants. Eightday-old seedlings growing in solution culture were treated with 80 millimolar NaCl and their leaf elongation rate (LER) was monitored with a linear variable differential transformer connected to a computerized data aquisition system. Initially, LER of intact plants was sharply reduced by salinity, then rose rapidly to reach a new steady-state rate about 1.5 hours after salinization. The new steady-state rate of salinized intact plants was about 80% of the control rate. When the roots of nonsalinized plants were excised under the surface of the nutrient solution, excision did not disturb the steady-state LER. When these shoots were salinized, they responded in a manner nearly identical to that of intact plants, indicating that roots are not essential for the modulation of short-term LER of salt-stressed plants.  相似文献   

12.
Munns R  King RW 《Plant physiology》1988,88(3):703-708
Xylem sap was collected from the transpiration stream of wheat (Triticum aestivum L.) plants and assayed for the presence of an inhibitor of transpiration using leaves detached from well-watered plants. Transpiration of detached leaves was reduced by nearly 60% by sap collected from plants in drying soil, and to a lesser extent (about 25%) by sap from plants in well-watered soil. As the soil dried the abscisic acid (ABA) concentration in the sap increased by about 50 times to 5 × 10−8 molar. However, the ABA in the sap did not cause its inhibitory activity. Synthetic ABA of one hundred times this concentration was needed to reduce transpiration rates of detached leaves to the same extent. Furthermore, inhibitory activity of the sap was retained after its passage through an immunoaffinity column to remove ABA. Xylem sap was also collected by applying pressure to the roots of plants whose leaf water status was kept high as the soil dried. Sap collected from these plants reduced transpiration to a lesser extent than sap from nonpressurised plants. This suggests that the inhibitory activity was triggered partly by leaf water deficit and partly by root water deficit.  相似文献   

13.
The mechanism of gibberellin (GA)-induced leaf sheath growth was examined using a dwarf mutant of rice (Oryza sativa L. cv. Tan-ginbozu) treated in advance with an inhibitor of GA biosynthesis. Gibberellic acid (GA3) enhanced the growth of the second leaf sheath, but auxins did not. Measurement of the mitotic index and cell size revealed that cell elongation rather than cell division is promoted by GA3. Gibberellic acid increased the extensibility of cell walls in the elongation zone of the leaf sheath. It also increased the total amount of osmotic solutes including sugars in the leaf sheath, but did not increase the osmotic concentration of the cell sap, due to an accompanying increase in cell volume by water absorption. In the later stage of GA3-induced growth, starch granules completely disappeared from leaf sheath cells, whereas dense granules remained in control plants. These findings indicate that GA enhances cell elongation by increasing wall extensibility, osmotic concentration being kept unchanged by starch degradation. Received: 28 August 1997 / Accepted: 16 October 1997  相似文献   

14.
Cramer  Grant R. 《Plant and Soil》2003,253(1):233-244
This study focuses on the inhibitory effect of salinity on the leaf extension of three different grass species: Hordeum jubatum L., Hordeum vulgare L. and Zea mays L. Leaf elongation rates (LER) were measured on the third leaf of the plants. NaCl was added to the hydroponic solution (0, 40, 80 and 120 mM) and changes in LER were measured over time with a displacement transducer. Salinity inhibited LER immediately in all three species, and a new, but lower steady-state LER was reached within 5 h. The decrease in LER was proportional to the salinity level. Differences in salt tolerance (% of control LER) were evident between genotypes within 5 h after salinization, but the relative salt tolerance of the plant at this stage was not necessarily indicative of the long-term salt tolerance of the species. In general, H. jubatum was more tolerant than maize, which was more tolerant than barley to these short-term salinity stresses. In contrast, barley is more salt tolerant than maize over the long term. The mechanisms of inhibition of LER by salinity, as tested by the applied-tension technique, varied with the species examined, affecting either the apparent yield threshold, the hydraulic conductance of the whole plant or both. The cell wall extensibility was not significantly affected by salinity in the three species tested in this study.  相似文献   

15.
There is now substantial evidence that chemical regulation ofshoot physiology occurs in droughted plants in the field. Theevidence that ABA may play a role in such regulation is considered,and topics of relevance to the worker interested in determiningthe ABA relations of plants in the field; such as the methodsused for ABA quantification, the relevance of quantifying ABAin various plant tissues, methods of xylem sap collection andtiming of sap collection are reviewed. A possible role of tissuesensitivity to ABA in controlling the diurnal changes in stomatalconductance and leaf growth rate seen in the field is also considered. Key words: ABA, drought, stomatal conductance, leaf growth, hormonal sensitivity, xylem sap  相似文献   

16.
Abscisic acid (ABA), cytokinins and gibberellin-like substances (GAs) were extracted from the roots and shoots of 17-day-old sunflower seedlings which had been droughted or were unstressed. Plants were grown in an aeroponic chamber which allowed for good control over degree of water stress and easy access to roots. Following methanolic extraction of lyophilized material, cytokinins were separated from the acidic growth-regulators on a cellulose PO4 cationic exchange column. The cytokinins were analysed by paper chromatography and HPLC and the soybean hypocotyl section assay. Semipurified acidic regulators were chromatographed on SiO2 columns and HPLC and aliquots assayed with the dwarf rice cv. Tan-ginbozu bioassay for GAs. Fractions known to contain ABA were purified by sequential reverse-phase HPLC of the acid and then of the methyl ester forms followed by quantitation as Me-ABA on GLC-EC. ABA losses were measured by using an internal standard [3H]-ABA). Ethylene production was also monitored in stressed and unstressed seedlings.The effect of drought on GAs and ethylene was minimal. The ABA levels were markedly higher in droughted plants. Stressed roots had 32 times more ABA than controls. The levels of cytokinins in the shoots of droughted plants were about half those in unstressed shoots, and qualitative differences occurred in the roots. Under stress a large peak of activity was present similar to zeatin glucoside which was not present in the unstressed condition. The results are discussed in relation to drought-effects on metabolism.  相似文献   

17.
The possibility that increased soil resistance to root growth may mediate the dwarfing response associated with root-restriction stress (RRS), via an abscisic acid (ABA) transduction mechanism, was investigated by characterizing the responses of tomato plants (Lycopersicon esculentum Mill cv. Red Dwarf) and changes within the soil environment at three rooting volumes (RV) (200, 400 and 800 cm3). Plant dry weight, leaf area and stomatal conductance decreased with RRS, although leaf water potential was unaffected by RRS. The concentration of ABA within the root system ([ABA]rt) and xylem sap ([ABA]xy) increased with RRS. Increased bulk density caused soil resistance to root growth to increase with increasing RRS. Changes in the soil environment, other than bulk density, which may have induced this variation in concentrations of ABA, were either eliminated or shown not to limit plant growth. The proportional relationships between RRS and soil resistance, [ABA]rt and [ABA]xy, and the inverse relationship between RRS and plant growth, are possibly indicative of the restricted root system experiencing increased resistance to root growth, with the subsequent initiation of a cascade of growth inhibiting responses.  相似文献   

18.
Seasonal leaf water relations characteristics were studied in fully irrigated spring barley (Hordeum distichum L. cv. Gunnar) fertilized at low (50 kg K ha−1) or high (200 kg K ha−1) levels of potassium applied as KCl. The investigation was undertaken from about 14 days before anthesis until the milk ripe stage in leaves of different position and age. Additionally, the effects of severe water stress on leaf water relations were studied in the middle of the grain filling period in spring barley (cv. Alis). The leaf water relations characteristics were determined by the pressure volume (PV) technique. Water relations of fully irrigated plants were compared in leaf No 7 with the water relations of slowly droughted plants (cv. Alis). Leaf osmotic potential at full turgor (ψ π 100 ) decreased 0.1 to 0.3 MPa in droughted leaves indicating a limited osmotic adjustment due to solute accumulation. The leaf osmotic potential at zero turgor (ψ π 0 ) was about −2.2 MPa in fully irrigated plants and −2.6 MPa in droughted plants. The relative water content at zero turgor (R0) decreased 0.1 unit in severely droughted leaves. The ratio of turgid leaf weight to dry weight (TW/DW) tended to be increased by drought. The tissue modulus of elasticity (ε) decreased in droughted plants and together with osmotic adjustment mediated turgor maintenance during drought. A similar response to drought was found in low and high K plants except that the R0 and ε values tended to be higher in the high K plants. Conclusively, during drought limited osmotic adjustment and increase in elasticity of the leaf tissue mediated turgor maintenance. These effects were only slightly modified by high potassium application. The seasonal analysis in fully irrigated plants (cv. Gunnar) showed that within about 14 days from leaf emergence ψ π 100 decreased from about −0.9 to −1.6 MPa in leaf No 7 (counting the first leaf to emerge as number one) and from about −1.1 to −1.9 MPa in leaf No 8 (the flag leaf) due to solute accumulation. A similar decrease took place in ψ π 0 except that the level of ψ π 0 was displaced to a lower level of about 0.2 to 0.3 MPa. Both ψ π 100 and ψ π 0 tended to be 0.05 to 0.10 MPa lower in high K than in low K plants. R0 was about 0.8 to 0.9 and was independent of leaf position and age, but tended to be highest in high K plants. The TW/DW ratio decreased from about 5.5 in leaf No 6 to 4.5 in leaf No 7 and 3.8 in leaf No 8. The TW/DW ratio was 4 to 10% higher in high K than in low K plants indicating larger leaf cell size in the former. The apoplastic water content (Va) at full turgor constituted about 15% in leaf No 7. ε was maximum at full turgor and varied from about 11 to 34 MPa. ε tended to be higher in high K plants. Conclusively, in fully watered plants an ontogenetically determined accumulation of solutes (probably organic as discussed) occurred in the leaves independent of K application. The main effect of high K application on water relations was an increase in leaf water content and a slight decrease in leaf ψπ. The effect of K status on growth and drought resistance is discussed.  相似文献   

19.
Differences in maximum leaf conductance in grapevine plants growing in soils with contrasting water availabilities during mid-summer in Portugal could be accounted for by differences in the concentration of ABA in xylem sap. This conclusion is reinforced by the observation that the relationship between leaf conductance and endogenous ABA concentration can be mimicked by the application of exogenous ABA to leaves detached from irrigated plants. During the day, leaf conductance decreased after a morning peak, even when the leaves remained in a constant environment at a moderate temperature and leaf-to-air vapour pressure difference. This decline in leaf conductance was not a consequence of an increase in the xylem ABA concentration or the rate of delivery of this compound by the transpiratory stream. The afternoon depression in leaf conductance was associated with an apparent limitation in stomatal opening potential, which persisted even when detached leaves were fed with water and rehydrated. The reason for this inhibition has still to be identified.  相似文献   

20.
We studied the possible involvement of ABA in the control of water relations under conditions of increased evaporative demand. Warming the air by 3°C increased stomatal conductance and raised transpiration rates of hydroponically grown Triticum durum plants while bringing about a temporary loss of relative water content (RWC) and immediate cessation of leaf extension. However, both RWC and extension growth recovered within 30 min although transpiration remained high. The restoration of leaf hydration and growth were enabled by increased root hydraulic conductivity after increasing the air temperature. The use of mercuric chloride (an inhibitor of water channels) to interfere with the rise on root hydraulic conductivity hindered the restoration of extension growth. Air warming increased ABA content in roots and decreased it in shoots. We propose this redistribution of ABA in favour of the roots which increased the root hydraulic conductivity sufficiently to permit rapid recovery of shoot hydration and leaf elongation rates without the involvement of stomatal closure. This proposal is based on known ability of ABA to increase hydraulic conductivity confirmed in these experiments by measuring the effect of exogenous ABA on osmotically driven flow of xylem sap from the roots. Accumulation of root ABA was mainly the outcome of increased export from the shoots. When phloem transport in air-warmed plants was inhibited by cooling the shoot base this prevented ABA enrichment of the roots and favoured an accumulation of ABA in the shoot. As a consequence, stomata closed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号