首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Abstract  Three field experiments were conducted in stone fruit orchards in the Goulburn Valley, northern Victoria, Australia to identify a user-friendly trap for use in attract and kill stations for control of Carpophilus spp. (Coleoptera: Nitidulidae). A funnel trap design was compared with two types of delta trap in one experiment and two types of Lucitrap in another experiment. All traps were baited with synthetic co-attractant and synthetic pheromone. The funnel trap was the most effective type of trap tested. The funnel traps caught significantly more beetles than either the delta traps with bio-attractant or delta traps wrapped with insecticide impregnated banana wrap. No difference was observed between catches in either delta trap design. Lucitraps without covers caught significantly more beetles than Lucitraps with covers but funnel traps caught significantly more beetles than either type of Lucitrap. Beetle numbers caught in the funnel traps were three to five times higher than in Lucitrap. The use of funnel traps in attract and kill stations to protect stone fruit crops by suppressing the Carpophilus spp. population gave superior control to 'grower normal practice of spraying insecticides' both in terms of Carpophilus spp. numbers and in terms of reduction in percentage of fruit damaged.  相似文献   

2.
Lindgren funnel traps baited with aggregation pheromones are widely used to monitor and manage populations of economically important bark beetles (Coleoptera: Scolytidae). This study was designed to advance our understanding of how funnel trap catches assess bark beetle communities and relative abundance of individual species. In the second year (2005) of a 3-yr study of the bark beetle community structure in north-central Arizona pine (Pinus spp.) forests, we collected data on stand structure, site conditions, and local bark beetle-induced tree mortality at each trap site. We also collected samples of bark from infested (brood) trees near trap sites to identify and determine the population density of bark beetles that were attacking ponderosa pine, Pinus ponderosa Douglas ex Lawson, in the area surrounding the traps. Multiple regression models indicated that the number of Dendroctonus and Ips beetles captured in 2005 was inversely related to elevation of the trap site, and positively associated with the amount of ponderosa pine in the stand surrounding the site. Traps located closer to brood trees also captured more beetles. The relationship between trap catches and host tree mortality was weak and inconsistent in forest stands surrounding the funnel traps, suggesting that trap catches do not provide a good estimate of local beetle-induced tree mortality. However, pheromone-baited funnel trap data and data from gallery identification in bark samples produced statistically similar relative abundance profiles for the five species of bark beetles that we examined, indicating that funnel trap data provided a good assessment of species presence and relative abundance.  相似文献   

3.
Improved detection tools are needed for the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), an invasive forest insect from Asia that has killed millions of ash (Fraxinus spp.) trees in North America since its discovery in Michigan in 2002. We evaluated attraction of adult A. planipennis to artificial traps incorporating visual (e.g., height, color, silhouette) and olfactory cues (e.g., host volatiles) at field sites in Michigan. We developed a double-decker trap consisting of a 3-m-tall polyvinyl pipe with two purple prisms attached near the top. In 2006, we compared A. planipennis attraction to double-decker traps baited with various combinations of manuka oil (containing sesquiterpenes present in ash bark), a blend of four ash leaf volatiles (leaf blend), and a rough texture to simulate bark. Significantly more A. planipennis were captured per trap when traps without the rough texture were baited with the leaf blend and manuka oil lures than on traps with texture and manuka oil but no leaf blend. In 2007, we also tested single prism traps set 1.5 m above ground and tower traps, similar to double-decker traps but 6 m tall. Double-decker traps baited with the leaf blend and manuka oil, with or without the addition of ash leaf and bark extracts, captured significantly more A. planipennis than similarly baited single prism traps, tower traps, or unbaited double-decker traps. A baited double-decker trap captured A. planipennis at a field site that was not previously known to be infested, representing the first detection event using artificial traps and lures. In 2008, we compared purple or green double-decker traps, single prisms suspended 3-5 m above ground in the ash canopy (canopy traps), and large flat purple traps (billboard traps). Significantly more A. planipennis were captured in purple versus green traps, baited traps versus unbaited traps, and double-decker versus canopy traps, whereas billboard traps were intermediate. At sites with very low A. planipennis densities, more A. planipennis were captured on baited double-decker traps than on other traps and a higher percentage of the baited double-decker traps captured beetles than any other trap design. In all 3 yr, peak A. planipennis activity occurred during late June to mid-July, corresponding to 800-1200 growing degree-days base 10 degrees C (DD10). Nearly all (95%) beetles were captured by the end of July at approximately 1400 DD10.  相似文献   

4.
The effectiveness of two lures for trapping the small hive beetle, Aethina tumida, by means of in-hive traps was tested by field trials in apiaries located in Florida, Delaware, and Pennsylvania during 2003-2005. Both lures included a mixture (pollen dough) consisting of bee pollen and commercial pollen substitute formulated with or without glycerol and honey. Before it was used in the traps, the dough was conditioned either by the feeding of adult small hive beetles or by inoculation with the yeast Kodamaea ohmeri (NRRL Y-30722). Traps baited with conditioned dough captured significantly more beetles than unbaited traps, and traps positioned under the bottom board of a hive captured significantly more beetles than traps located at the top of a hive. In fact, baited in-hive bottom board traps nearly eliminated the beetles from colonies at a pollination site in Florida. However, when these honey bee colonies were moved to an apiary, trap catch increased markedly over time, indicating a resurgence of the beetle population produced by immigration of beetles from nearby hives or emerging from the soil. In tests at three Florida apiaries during 2006, yeast-inoculated dough baited bottom board traps captured significantly more beetles than unbaited traps, showing the effectiveness of yeast-inoculated dough as a lure and its potential as a tool in managing the small hive beetle.  相似文献   

5.
Fluon PTFE is a fluoropolymer dispersion applied as a surface conditioner to cross-vane panel traps to enhance trap efficiency for cerambycid beetles. We describe the results of three experiments to further optimize cerambycid traps of different designs and to test the effect of Fluon over time. We tested Fluon with Lindgren funnel and panel traps fitted with either wet or dry collection cups on catches of cerambycid beetles and how the effect of Fluon on panel traps persisted. Fluon-treated funnel traps with wet collection cups captured approximately 6x more beetles than the untreated funnel traps with wet collection cups. Untreated funnel traps with dry collection cups did not capture any beetles; however, Fluon-treated funnel traps with dry collection cups captured an average of four beetles per trap. Fluon-treated panel traps with wet collection cups captured approximately 9x more beetles than untreated panel traps with wet collection cups. Fluon-treated panel traps with dry collection cups captured approximately 11x more beetles than untreated panel traps with dry collection cups. The effect of Fluon on capturing cerambycid beetles did not decline after use in one or two field seasons. There was no significant difference in the number of beetles captured in freshly treated panel traps compared with traps that had been used for 1 or 2 yr. Fluon-treated traps captured nine species that were not captured in untreated traps. Conditioning both Lindgren funnel and panel traps with Fluon enhances the efficacy and sensitivity of traps deployed to detect exotic cerambycid species, or for monitoring threatened species at low population densities.  相似文献   

6.
1 Various kinds of traps have been employed to monitor and forecast population trends of the southern pine beetle (Dendroctonus frontalis Zimmermann; Coleoptera: Scolytidae), but their accuracy in assessing pine‐beetle abundance and sex ratio in the field has not been evaluated directly. 2 In this study, we used fluorescent powder to mark pine beetles emerging from six isolated infestations. We then compared estimates of total abundances and proportions of males emerging from within each infestation to the estimates from three types of traps: passive sticky traps (2, 5, 10 and 20 m away from the source of beetles), multi‐funnel traps baited with pine beetle attractants (100 m away) and pine trees baited with attractants (also 100 m away). 3 We found that the proportion of males captured in traps was significantly affected by the type of trap used. 4 Within an infestation, equal proportions of males and females were marked (0.53 ± 0.02 males; mean ± SE), but the proportions captured in trap trees and passive traps were more female biased (0.42 ± 0.03 and 0.46 ± 0.01 males, respectively). On the other hand, funnel traps provided an estimate of the proportion of males that was nearly identical to the proportion from within infestations (0.51 ± 0.03). 5 Numbers of marked beetles captured in traps were uncorrelated with the numbers of marked beetles emerging from the focal infestations. This suggests that traps positioned around an infestation may not be effective at estimating relative abundances of beetles within the infestation.  相似文献   

7.
In 2004, we evaluated the relative performance of 8-unit Lindgren multiple-funnel (funnel), Intercept panel (panel), and Colossus pipe (pipe) traps, baited with ethanol and ac-pinene lures, in catching saproxylic beetles (Coleoptera) in pine stands in northern Florida and western South Carolina. Panel traps were as good as, if not better than, funnel and pipe traps for catching Cerambycidae. In particular, more Monochamus titillator (F.) were captured in panel traps than in pipe and funnel traps. Of three species of Buprestidae captured in our study, most Buprestis lineata F. were caught in panel traps, whereas most Acmaeodera tubulus (F.) were caught in funnel traps. Catches of Chalcophora virginiensis Drury and the root-feeding weevils Hylobius pales Herbst an dPachylobius picivorus LeConte (Curculionidae) were unaffected by trap type. Among bark beetles (Curculionidae: Scolytinae), catches of Ips grandicollis (Eichhoff) were unaffected by trap type, whereas most Dendroctonus terebrans (Olivier) were caught in panel traps, most Hylastes salebrosus Eichhoff were caught in panel and pipe traps, and most Hylastes tenuis Eichhoff were caught in funnel traps. Among ambrosia beetles (Curculionidae: Scolytinae), panel traps caught the most Xyleborinus saxesenii (Ratzeburg), whereas pipe traps caught the most Xyleborus Eichhoff spp. More Xylosandrus crassiusculus (Motschulsky) and Dryoxylon onoharaensis (Murayama) were caught in panel and funnel traps than in pipe traps. Among bark beetle predators, more Platysoma Leach spp. (Histeridae) were caught in pipe and panel traps than in funnel traps, whereas most Lasconotus Erichson spp. (Zopheridae) were caught in funnel traps. Variation among trap performance for various species suggests that managers should consider more than one type of trap in their detection programs.  相似文献   

8.
Field trapping experiments investigated the response of the pollen beetle Astylus atromaculatus to visual and olfactory cues during a 3-year period, 1999–2001. The visual preference of the pollen beetle was determined using yellow, white, blue, green and red water traps. The yellow trap was most attractive, capturing 56% of the total beetles trapped, with 30% caught by the blue and white traps, while 14% was caught by the red and green traps. The response of the beetle to olfactory cues was then evaluated by using the yellow water trap with three antennally active components identified in the volatiles of sorghum panicles by coupled gas chromatography (GC)–electroantennographic detection and GC–mass spectrometry. These components were 2-phenylethanol, benzyl alcohol and linalool. There were no significant colour × chemical compound interactions and traps baited with 2-phenylethanol captured significantly more beetles than unbaited traps, irrespective of trap colour, demonstrating the effectiveness of olfactory cues in trapping the pollen beetle. Traps baited with 2-phenylethanol were more attractive than and caught more beetles than traps baited with linalool. 2-Phenylethanol had the greatest effect on the relatively unattractive blue trap, confirming the importance of olfactory cues mediating A. atromaculatus attraction .  相似文献   

9.
Our research used a combination of passive traps, funnel traps with lures, baited trees, and surveys of long-term thinning plots to assess the impacts of different levels of stand basal area (BA) on bark beetle tree attack and on trap captures of Ips spp., Dendroctonus spp., and their predators. The study occurred at two sites in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests, from 2004 to 2007 during low bark beetle populations. Residual stand BA ranged from 9.0 to 37.0 m2/ha. More predators and bark beetles were collected in passive traps in stands of lower BA than in stands of higher BA; however, significance varied by species and site, and total number of beetles collected was low. Height of the clear panel passive traps affected trap catches for some species at some sites and years. When pheromone lures were used with funnel traps [Ips pini (Say) lure: lanierone, +03/-97 ipsdienol], we found no significant difference in trap catches among basal area treatments for bark beetles and their predators. Similarly, when trees were baited (Dendroctonus brevicomis LeConte lure: myrcene, exo-brevicomin and frontalin), we found no significant difference for days to first bark beetle attack. Surveys of long-term thinning treatments found evidence of bark beetle attacks only in unthinned plots (approximately 37 m2/ha basal area). We discuss our results in terms of management implications for bark beetle trapping and control.  相似文献   

10.
Surveillance of medically important mosquitoes is critical to determine the risk of mosquito‐borne disease transmission. The purpose of this research was to test self‐supporting, exposure‐free bednet traps to survey mosquitoes. In the laboratory we tested human‐baited and unbaited CDC light trap/cot bednet (CDCBN) combinations against three types of traps: the Mbita Trap (MIBITA), a Tent Trap (TENT), and a modified Townes style Malaise trap (TSM). In the laboratory, 16 runs comparing MBITA, TSM, and TENT to the CDCBN were conducted for a total of 48 runs of the experiment using 13,600 mosquitoes. The TENT trap collected significantly more mosquitoes than the CDCBN. The CDCBN collected significantly more than the MBITA and there was no difference between the TSM and the CDCBN. Two field trials were conducted in Cibuntu, Sukabumi, West Java, Indonesia. The first test compared human‐baited and unbaited CDCBN, TENT, and TSM traps during six nights over two consecutive weeks per month from January, 2007 to September, 2007 for a total of 54 trapnights. A total of 8,474 mosquitoes representing 33 species were collected using the six trapping methods. The TENT‐baited trap collected significantly more mosquitoes than both the CDCBN and the TSM. The second field trial was a comparison of the baited and unbaited TENT and CDCBN traps and Human Landing Collections (HLCs). The trial was carried out from January, 2008 to May, 2008 for a total of 30 trap nights. A total of 11,923 mosquitoes were collected representing 24 species. Human Landing Collections captured significantly more mosquitoes than either the TENT or the CDCBN. The baited and unbaited TENT collected significantly more mosquitoes than the CDCBN. The TENT trap was found to be an effective, light‐weight substitute for the CDC light‐trap, bednet combination in the field and should be considered for use in surveys of mosquito‐borne diseases such as malaria, arboviruses, and filariasis.  相似文献   

11.
The exotic redbay ambrosia beetle, Xyleborus glabratus Eichhoff (Coleoptera: Curculionidae: Scolytinae), and its fungal symbiont Raffaellea lauricola Harrington, Fraedrich, and Aghayeva are responsible for widespread redbay, Persea borbonia (L.) Spreng., mortality in the southern United States. Effective traps and lures are needed to monitor spread of the beetle and for early detection at ports-of-entry, so we conducted a series of experiments to find the best trap design, color, lure, and trap position for detection of X. glabratus. The best trap and lure combination was then tested at seven sites varying in beetle abundance and at one site throughout the year to see how season and beetle population affected performance. Manuka oil proved to be the most effective lure tested, particularly when considering cost and availability. Traps baited with manuka oil lures releasing 5 mg/d caught as many beetles as those baited with lures releasing 200 mg/d. Distributing manuka oil lures from the top to the bottom of eight-unit funnel traps resulted in similar numbers of X. glabratus as a single lure in the middle. Trap color had little effect on captures in sticky traps or cross-vane traps. Funnel traps caught twice as many beetles as cross-vane traps and three times as many as sticky traps but mean catch per trap was not significantly different. When comparing height, traps 1.5 m above the ground captured 85% of the beetles collected but a few were caught at each height up to 15 m. Funnel trap captures exhibited a strong linear relationship (r2 = 0.79) with X. glabratus attack density and they performed well throughout the year. Catching beetles at low densities is important to port of entry monitoring programs where early detection of infestations is essential. Our trials show that multiple funnel traps baited with a single manuka oil lure were effective for capturing X. glabratus even when no infested trees were visible in the area.  相似文献   

12.
Field trapping assays were conducted in 2009 and 2010 throughout western Michigan, to evaluate lures for adult emerald ash borer, A. planipennis Fairmaire (Coleoptera: Buprestidae). Several ash tree volatiles were tested on purple prism traps in 2009, and a dark green prism trap in 2010. In 2009, six bark oil distillate lure treatments were tested against manuka oil lures (used in 2008 by USDA APHIS PPQ emerald ash borer cooperative program). Purple traps baited with 80/20 (manuka/phoebe oil) significantly increased beetle catch compared with traps baited with manuka oil alone. In 2010 we monitored emerald ash borer attraction to dark green traps baited with six lure combinations of 80/20 (manuka/phoebe), manuka oil, and (3Z)-hexenol. Traps baited with manuka oil and (3Z)-hexenol caught significantly more male and total count insects than traps baited with manuka oil alone. Traps baited with manuka oil and (3Z)-hexenol did not catch more beetles when compared with traps baited with (3Z)-hexenol alone. When compared with unbaited green traps our results show that (3Z)-hexenol improved male catch significantly in only one of three field experiments using dark green traps. Dark green traps caught a high number of A. planipennis when unbaited while (3Z)-hexenol was seen to have a minimal (nonsignificant) trap catch effect at several different release rates. We hypothesize that the previously reported kairomonal attractancy of (3Z)-hexenol (for males) on light green traps is not as obvious here because of improved male attractancy to the darker green trap.  相似文献   

13.
We evaluated responses of plum curculio, Conotrachelus nenuphar (Herbst), to four trap types in commercial and unsprayed apple and peach orchards. Trap types included black pyramid and clear Plexiglas panel traps deployed outside the orchard 2 m from the border row, and branch-mimicking cylinder and trunk-mounted screen traps attached to trees in the border row. Bait treatments evaluated in conjunction with each trap type included the synthetic fruit volatile benzaldehyde, the aggregation pheromone grandisoic acid (GA), benzaldehyde in combination with GA, and an unbaited control treatment. In commercial apple orchards, significantly more plum curculio were captured in traps baited with benzaldehyde + GA compared with traps baited with other treatments. Furthermore, significantly more plum curculio were captured by screen traps baited with benzaldehyde + GA compared with unbaited control traps. Significantly more plum curculio were captured by screen traps compared with other trap types in an unsprayed apple orchard. Very few captures were recorded in commercial peach orchards. Dissections of trapped females indicate that bivoltine populations are present in the mid-Atlantic. In general, correlations between timing and amount of trap captures and timing and amount of fruit injury inflicted concurrently or 1 wk after trap captures were very weak for all trap types and bait combinations. Our results agree with previous studies in the northeastern United States in which trap captures are increased by presence of semiochemical baits but fail to serve as reliable tools to determine need for and timing of insecticide application against plum curculio.  相似文献   

14.
We compared naturally baited trapping systems to synthetically baited funnel traps and fallen trap trees for suppressing preoutbreak spruce beetle, Dendroctonus rufipennis Kirby, populations. Lures for the traps were fresh spruce (Picea spp.) bolts or bark sections, augmented by adding female spruce beetles to create secondary attraction. In 2003, we compared a naturally baited system ("bolt trap") with fallen trap trees and with synthetically baited funnel traps. Trap performance was evaluated by comparing total beetle captures and spillover of attacks into nearby host trees. Overall, the trap systems did not significantly differ in spruce beetle captures, although bolt traps caught 6 to 7 times more beetles than funnel traps during the first 4 wk of testing. Funnel traps with synthetic lures had significantly more spillover than either trap trees or bolt traps. The study was repeated in 2004 with modifications including an enhanced blend synthetic lure. Again, trap captures were generally similar among naturally and synthetically baited traps, but naturally baited traps had significantly less spillover. Although relatively labor-intensive, the bolt trap could be used to suppress preoutbreak beetle populations, especially when spillover is undesirable. Our work provides additional avenues for management of spruce beetles and suggests that currently used synthetic lures can be improved.  相似文献   

15.
1 Subsequent to the diversity of saproxylic beetles being proposed as a management tool in forestry, more explicit knowledge about the efficiency and selective properties of beetle sampling methods is needed.
2 We compared saproxylic beetle assemblages caught by alcohol-baited or unbaited window traps in different forest contexts. Considering that trap attractiveness depends on kairomone concentrations, we appraised whether the trap efficiency was influenced by trap environment (openness and local supply of fresh dead wood).
3 Saproxylic beetles were sampled using 48 cross-vane window flight traps, arranged in paired designs (alcohol-baited/unbaited), in eight ancient and eight recent gaps (open stands), and eight closed-canopy control stands in an upland beech forest in the French Pyrenees.
4 Baited traps were more efficient than unbaited traps in terms of abundance and richness in our deciduous forests. The ethanol lure did not have any repellent effect on the individual response of saproxylic taxa.
5 The influence of local environmental conditions on trap attractiveness was observed. Openness had a significant moderate effect on species richness. Trap attractiveness was slightly reduced in the alcohol-saturated environment of recent gaps probably due to a disruption by local fresh dead-wood concentrations of the kairomonal response of saproxylic beetles to baited traps ('alcohol disruption').
6 Because the ethanol lure enhanced the probability of species detection, it may be useful in early-warning surveillance, monitoring and control of wood borers, despite slight influences of local conditions on baited trap efficiency.  相似文献   

16.
We conducted two trapping experiments in green ash plantations in Ontario, Canada to compare the response of the emerald ash borer (EAB), Agrilus planipennis, to (Z)‐3‐hexenol (Z3‐6:OH) and manuka oil. In the first experiment, Z3‐6:OH (7.6 mg/day) in purple prism traps hung 1.5 m above ground caught significantly more EAB than the unbaited controls, with male catches significantly greater than female catches at two locations. Manuka oil (50 mg/day) attracted equal numbers of males and females but they were significantly greater than the controls at only one location. Adding (Z)‐3‐hexenal or (Z)‐3‐hexenyl acetate in binary or ternary combinations with Z3‐6:OH did not enhance trap catch. In the second experiment, Z3‐6:OH released at two rates (7.6 or 80 mg/day) in light green prism traps placed in the ash canopy also caught significantly more males than females and more males than the unbaited controls or manuka oil‐baited traps. Manuka oil had no significant effect on catches relative to the controls. Combining Z3‐6:OH with manuka oil did not enhance catches of EAB. We conclude that there was a strong male‐biased EAB response to Z3‐6:OH lures, whereas manuka oil, when effective, attracted both sexes equally. Z3‐6:OH in light green prism traps in the canopy is an effective lure for EAB, particularly for males.  相似文献   

17.
The exotic ambrosia beetles Xylosandrus crassiusculus (Motschulsky) and Xylosandrus germanus (Blandford) (Coleoptera: Curculionidae: Scolytinae) are serious pests in ornamental tree nurseries. To optimize bottle-traps as a monitoring system for X. crassiusculus and X. germanus in nurseries, we tested whether increasing the rate of commercial ethanol lures improved captures or early detection of these species. Experiments were conducted in Ohio (2008 and 2009) and Virginia (2008), two states that have experienced significant damage from X. crassiusculus, X. germanus, or both. There were four treatments: no-lure (unbaited control), 1-ethanol lure, 2-ethanol lures and 1 + 1-ethanol lures (one lure in the trap and one suspended 0.5 m above the trap). Captures of X. crassiusculus and X. germanus were higher in all ethanol treatments than unbaited controls, and were generally higher in treatments with two lures versus one. There was no difference in beetle captures between the 2-lure and 1 + 1-lure treatments. First detection of X. crassiusculus and X. germanus occurred more consistently in the treatments with two lures than one lure. Xyleborinus saxesenii (Ratzeburg), Anisandrus sayi Hopkins, Hypothenemus dissimilis Zimmermann, and Hypothenemus eruditus Westwood were also more attracted to traps baited with ethanol than unbaited controls. X. saxesenii was captured in higher numbers in the treatments with two lures than one in Virginia but not in Ohio. There was no difference in captures of the other species among ethanol treatments. The current research shows that ethanol release rates influence sensitivity of traps for detecting emergence of overwintered ambrosia beetles.  相似文献   

18.
Eucalyptus spp. plantations represent >60% of the reforested area in Brazil. Although ambrosia beetle attacks on live trees were at first nonexistent, they have begun to appear with greater frequency. Monitoring for pest insects is a key factor in integrated pest management, and baited traps are one of the most widely used methods for insect population detection and survey. We compared the efficiency of the most widely used trap in Brazil to survey for ambrosia beetles and other Scolytidae, the ESALQ-84 type, with other traditionally employed traps: the multiple funnel (Lindgren trap); drainpipe; and slot (Theyson) traps, in a Eucalyptus grandis Hill ex Maiden stand in Brazil. The ESALQ-84 trap was the most efficient in trapping Hypothenemus eruditus Westwood and Hypothenemus obscurus (F.); the multiple funnel trap caught significantly more Cryptocarenus diadematus Eggers; whereas the slot trap caught more Premnobius cavipennis Eichhoff and Xyleborus affinis Eichhoff than the other traps. The drainpipe trap was the least effective trap overall. When corrected for number of beetles caught per trap surface area, catches were significantly higher on the ESALQ-84 trap for the majority of the species analyzed, probably because of a smaller trap surface area. The slot trap was recommended for it caught overall more beetles of the three most economically important scolytid species in eucalypt plantations in Brazil, P. cavipennis, X. affinis, and X. ferrugineus.  相似文献   

19.
Response of overwintered plum curculios, Conotrachelus nenuphar (Herbst), to odor-baited traps was evaluated from the beginning until nearly the end of emigration from overwintering sites in woods. We evaluated clear sticky Plexiglas panels and black pyramid traps placed close to woods adjacent to apple trees in an unsprayed section of an orchard. Traps were baited with aggregation pheromone (grandisoic acid) alone or in combination with one of six synthetic fruit volatiles (benzaldehvde, decyl aldehyde, E-2-hexenal, ethyl isovalerate, hexyl acetate, or limonene). Unbaited traps served as a control treatment. Plum curculio emigration from woods was divided into early-, mid-, and late-season periods based primarily on phenological stage of apple bud and fruit development (tight cluster to bloom, petal fall, and fruit set, respectively). During both early- and late season, panel and pyramid traps baited with benzaldehyde plus pheromone were significantly more attractive than any other traps (baited or unbaited), except panel traps baited with ethyl isovalerate plus pheromone in early season, which likewise captured significantly more adults than unbaited panel traps. During midseason, no lures were significantly attractive, possibly due to prevailing cool weather, unfavorable for adult activity. Over the entire season, panel or pyramid traps baited with benzaldehyde plus pheromone captured nearly six times as many plum curculios as unbaited traps of each type, whereas traps baited with pheromone alone captured about twice as many as unbaited traps of each type. We provide information on sex ratio, female maturity stage, and mating status, and several weather parameters associated with trap captures. We conclude that panel or pyramid traps, or a combination, baited with benzaldehyde plus pheromone placed at borders of plum curculio overwintering sites can be a valuable tool for monitoring the beginning, peak, and end of adult immigration into apple orchards.  相似文献   

20.
Two field experiments examined the distance over which an attractant odour of a volatile chemical could influence thrips capture in proximal traps that were without the odour. In each experiment a star‐shaped array of water traps consisted of a centre trap with or without an odour surrounded by odourless traps at 0.5, 1, 2, 5, and 10 m in eight equally spaced radial arms 45° apart. Experiments ran for 47 h (centre trap: ethyl nicotinate) or 7 h (centre trap: ethyl isonicotinate). Each had four replicates. With ethyl nicotinate, more thrips were trapped in the centre‐baited traps than in the unbaited centre traps (63×, 7×, 98× and 200× for total thrips, Thrips tabaci Lindeman ♀, and Thrips obscuratus Crawford ♀and ♂, respectively) (Thysanoptera: Thripidae). More total thrips and T. tabaci♀ were trapped in the centre traps baited with ethyl isonicotinate than in unbaited centre traps (21× for both). For ethyl nicotinate, numbers of T. obscuratus in unbaited traps downwind from the baited centre trap declined by 50% within 0.4 m (♀) and 2 m (♂) and by 95% within 3 m (both ♀ and ♂) based on model predictions. For ethyl isonicotinate, numbers of T. tabaci in unbaited traps downwind from the baited centre trap declined by 50% within 1.3 m and by 95% within 10 m based on model predictions. Wind direction was an important factor in the degree and direction of thrips capture with the highest thrips capture downwind from the centre trap with odour. There was no increase in numbers of T. tabaci in any traps without odour in the ethyl nicotinate‐centred array. Differences in trapping patterns between thrips species and odours indicated that there were thrips species–odour specific interactions. Experiments examining differences between traps with and without a thrips attractant odour need to be designed very carefully to ensure meaningful results especially in enclosed and/or low‐wind indoor situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号