首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The two-layered regular surface array of Aquaspirillum serpens MW5 was removed from cell envelopes and dissociated into subunits by treatment with 6 M urea. The surface components reassembled onto an outer membrane surface and self-assembled into planar sheets in vitro in the presence of Ca2+ or Sr2+. The two layers were removed sequentially from cell envelopes by a two-step extraction procedure involving initial treatment with a high-pH buffer to remove the outermost surface layer and subsequent treatment with 6 M urea to remove the innermost layer. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the outer and inner layers of the array were composed of two proteins with molecular weights of 125,000 and 150,000, respectively. The two layers assembled sequentially; the 150,000-molecular-weight protein formed an array on an outer membrane surface, and the 125,000-molecular-weight protein required that array as a template for its in vitro assembly.  相似文献   

2.
Homogeneous fragments of exosporium were isolated and purified from mature spores of a highly sporogenic mutant derived from Clostridium botulinum type A strain 190L. The exosporium was composed of three lamellae and showed a hexagonal array when negatively stained. The hexagonal array of isolated exosporium was resistant to sodium dodecyl sulfate, urea, dithiothreitol, and proteolytic enzymes such as trypsin, pronase, and nagarse, except for pepsin. The hexagonal array was partially disintegrated with 5 M guanidine-HCl and almost completely disrupted with 8 M urea in combination with 1% mercaptoethanol under alkaline conditions. The purified exosporium fraction was composed mainly of protein (69.1%) and lipids (13.8%). A small amount of amino sugars (2.5%) was present, but neutral sugars could not be detected. The exosporium protein had a predominantly acidic amino acid composition accompanied by low levels of cystine, methionine, and histidine.  相似文献   

3.
The cell surface reactivity of the cyanobacterium Calothrix sp. strain KC97, an isolate from the Krisuvik hot spring, Iceland, was investigated in terms of its proton binding behavior and charge characteristics by using acid-base titrations, electrophoretic mobility analysis, and transmission electron microscopy. Analysis of titration data with the linear programming optimization method showed that intact filaments were dominated by surface proton binding sites inferred to be carboxyl groups (acid dissociation constants [pK(a)] between 5.0 and 6.2) and amine groups (mean pK(a) of 8.9). Sheath material isolated by using lysozyme and sodium dodecyl sulfate generated pK(a) spectra similarly dominated by carboxyls (pK(a) of 4.6 to 6.1) and amines (pK(a) of 8.1 to 9.2). In both intact filaments and isolated sheath material, the lower ligand concentrations at mid-pK(a) values were ascribed to phosphoryl groups. Whole filaments and isolated sheath material displayed total reactive-site densities of 80.3 x 10(-5) and 12.3 x 10(-5) mol/g (dry mass) of cyanobacteria, respectively, implying that much of the surface reactivity of this microorganism is located on the cell wall and not the sheath. This is corroborated by electrophoretic mobility measurements that showed that the sheath has a net neutral charge at mid-pHs. In contrast, unsheathed cells exhibited a stronger negative-charge characteristic. Additionally, transmission electron microscopy analysis of ultrathin sections stained with heavy metals further demonstrated that most of the reactive binding sites are located upon the cell wall. Thus, the cell surface reactivity of Calothrix sp. strain KC97 can be described as a dual layer composed of a highly reactive cell wall enclosed within a poorly reactive sheath.  相似文献   

4.
Chlamydomonas monoica Strehlow is being developed as a model for genetic analysis of zygospore morphogenesis, and many relevant mutant strains are available. To provide the basis for interpreting the ultrastructural phenotypes of zygospore mutants, an analysis of wall morphogenesis in wildtype zygospores of C. monoica was undertaken. Following synthesis of a thick, fibrous, primary zygote wall, granular material accumulated between the plasma membrane and the primary zygote wall and aggregated into a repetitive array of electron-opaque fibrous stripes. A new wall layer, the outer layer of the secondary zygospore wall, first appeared as segments with a fibrous outer surface overlying a well-defined band of electron-translucent material. These segments gave rise to an intact sheath adjacent to the plasma membrane. Beneath this sheath, electron-opaque material (forming the inner layer of the secondary zygospore wall) accumulated unevenly and forced the surface sheath to undulate, creating a pattern of peaks and valleys that was exposed to the external environment 4 rupture and release of the primary zygote wall. The zygospore wall included material resistant to degradation by potassium hydroxide, 2-aminoethanol, and acetolysis, but it was destroyed by exposure to chromic acid. These characteristics, in combination with the autofluorescence of untreated zygospore walls and their failure to stain with phloroglucinol, suggest that sporopollenin may be responsible for many of the resistant properties associated with the mature zygospore of Chlamydomonas.  相似文献   

5.
Chemical analysis of stalk components of Dictostelium discoideum   总被引:1,自引:0,他引:1  
Structural components of the stalks of mature fruiting bodies of Dictyostelium discoideum have been isolated and characterized after solubilizing non-structural components with urea and sodium dodecyl sulfate. The urea/sodium dodecyl sulfate-insoluble stalks are composed of about 52% cellulose, 15% protein and 3% of a non-cellulosic heteropolymer in a covalently bound matrix. Non-covalently bound fatty acid containing material was also found. The composition and structural interrelationships of these components are essentially identical to that of the urea/sodium dodecyl sulfate-insoluble surface sheath which is produced earlier in development before culmination. These results suggest that the same components are involved in making structural elements which differ substantially in their functional role in the developmental sequence as well as in their spatial and temporal localization and morphological appearance.  相似文献   

6.
The fibrous sheath from rat epididymal sperm was isolated by sequential extraction, first with Triton X-100 and dithiothreitol, and then with 6 M urea and dithiothreitol. The latter extraction procedure solubilized most of the sperm components, leaving the head and the fibrous sheath as the only intact structures. This material was purified by sucrose gradient centrifugation. Electron microscopy confirmed the purity of the isolated material and revealed the characteristic structural features of the fibrous sheath. Polyacrylamide gel electrophoresis (in the presence of sodium dodecyl sulfate) of the fibrillar material, showed a complex polypeptide composition. The polypeptides with molecular weights of 80,000, 24,000, and 11,500 accounted for about 65% of the total protein of the fibrous sheath. Peptide map analyses indicated that the components of molecular weights of 80,000 and 24,000 are unrelated to the polypeptides of similar size of the outer dense fibers. On the other hand, it appears that the fibrous sheath and the outer dense fibers share the polypeptide of 11,500 daltons. The component of 80,000 daltons contains on the average about 3 mol of phosphoserine per mol of polypeptide, indicating that the most abundant polypeptide of the fibrous sheath is a phosphoprotein.  相似文献   

7.
The outer sheath carrying a polygonal array was isolated from an oral treponeme, Treponema sp. strain E-21, by disruption of cells by means of repeated freeze-thawing and by removal of flagella under acidic conditions followed by linear sucrose density gradient centrifugation. Electron microscopy revealed that the outer sheath was isolated as a triple-layered vesicle having a polygonal array, free of flagella and wall membrane complex. Using optical diffraction, negatively stained preparations of the outer sheath fragments showed that the polygonal array appeared to be composed of a hexagonal pattern with a predominant spacing of about 16.3 nm. The isolated outer sheath contained 49.7% protein, 30.8% total lipid, and 11.0% carbohydrate. Phospholipid comprised about 95% of the total lipid. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the outer sheath was composed primarily of one major protein with an apparent molecular weight of about 62,000. The material from the isolated outer sheath solubilized with 1% sodium deoxycholate was reassembled into vesicles having a roughly polygonal array upon removal of the detergent by dialysis against 10 mM Tris-hydrochloride buffer with or without Mg2+.  相似文献   

8.
The fine structure of Spirochaeta stenostrepta strain Z1, a free-living anaerobic spirochete, was studied by electron microscopy. The organism possessed a coiled protoplasmic cylinder, an axial filament inserted subterminally, and a loosely fitting sheath which enclosed both the protoplasmic cylinder and the axial filament. The axial filament consisted of two fibrils partially overlapping in a 1-2-1 arrangement. The axial fibrils appeared to possess a sheath surrounding an inner core. Both inner core and sheath were apparently enclosed in a cross-striated tubular structure, which was itself surrounded by an outer sheath. The axial filament exhibited a basal hook. A disc- or mushroom-shaped structure, possibly consisting in part of cytoplasmic membrane, was observed at the insertion end of isolated filaments. The protoplasmic cylinder had a distinctive surface structure consisting of an array of tightly packed, longitudinally arranged helices measuring 2.0 to 2.5 nm in diameter. This layer of helices lay below the outer cell sheath and the axial filament. Ballistic disintegration loosened the helical array, causing individual helices or segments of helices to become separated from the cell. The function of this layer of helices is still obscure.  相似文献   

9.
Virus inactivation by a number of protein denaturants commonly used in gel affinity chromatography for protein elution and gel recycling has been investigated. The enveloped viruses Sindbis, herpes simplex-1 and vaccinia, and the non-enveloped virus polio-1 were effectively inactivated by 0.5 M sodium hydroxide, 6 M guanidinium thiocyanate, 8 M urea and 70% ethanol. However, pH 2.6, 3 M sodium thiocyanate, 6 M guanidinium chloride and 20% ethanol, while effectively inactivating the enveloped viruses, did not inactivate polio-1. These studies demonstrate that protein denaturants are generally effective for virus inactivation but with the limitation that only some may inactivate non-enveloped viruses. The use of protein denaturants, together with virus reduction steps in the manufacturing process should ensure that viral cross contamination between manufacturing batches of therapeutic biological products is prevented and the safety of the product ensured.  相似文献   

10.
The stability of cell surface protein to surfactants and denaturants   总被引:2,自引:0,他引:2  
The effects of several denaturants and detergents on the structure and stability of cell surface protein have been evaluated by circular dichroism and fluorescence measurements. Cell surface protein undergoes a single broad transition in both urea and guanidinium chloride. Although guanidinium chloride is twice as effective as urea on a molar basis, both appear to eliminate all of the organized structure present in the native molecule. Nonionic surfactants and lysolecithin have little effect on cell surface protein. However, sodium dodecyl sulfate increases the alpha helical content and cetyltrimethylammonium bromide increases the beta structure of cell surface protein. The reorganization of the polypeptide backbone requires the loss of certain restraints imposed by tertiary interactions as evidenced by a decrease in ellipticity in the far ultraviolet and in the polarization of tryptophanyl fluorescence. These results along with the data of a previous paper (Alexander, S. S., Jr., Colonna, G., Yamada, K. M., Pastan, I., and Edelhoch, H. (1978) J. Biol. Chem. 253, 5820--5824) suggest the presence of structural domains distributed along the flexible polypeptide chain of cell surface protein.  相似文献   

11.
The rodlet layer of the microconidial wall of Trichophyton mentagrophytes was isolated and partially characterized. The purified microconidial walls were first extracted with urea (8M), mercaptoethanol (1%), and sodium dodecyl sulfate (1%) followed by enzymatic digestion with glusulase (snail intestinal enzymes) and purified (1 leads to 3)-beta-D-glucanase and chitinase. The purified rodlet layer was 15 to 30 nm thick and accounted for approximately 10% of the original wall weight. The pattern of rodlet patches, as revealed by electron microscopy of freeze-etched preparations of the isolated layer, was essentially the same as that observed on the intact microconidial wall. The rodlet layer was found to be resistant to most of the common organic solvents, cell wall lytic enzymes, mild acid treatments, and surface-active agents, but was solubilized in boiling 1 N NaOH with concomitant disorientation of the rodlet patterns. A melanin or melanin-like pigment appeared to be intimately associated with this rodlet layer and was solubilized during a hot-alkali treatment. Protein (80 to 85%) and glucomannan (7 to 10%) were the major components of the rodlet layer. The rodlet layer did not contain any appreciable amounts of lipid or phosphorus.  相似文献   

12.
The cell surface reactivity of the cyanobacterium Calothrix sp. strain KC97, an isolate from the Krisuvik hot spring, Iceland, was investigated in terms of its proton binding behavior and charge characteristics by using acid-base titrations, electrophoretic mobility analysis, and transmission electron microscopy. Analysis of titration data with the linear programming optimization method showed that intact filaments were dominated by surface proton binding sites inferred to be carboxyl groups (acid dissociation constants [pKa] between 5.0 and 6.2) and amine groups (mean pKa of 8.9). Sheath material isolated by using lysozyme and sodium dodecyl sulfate generated pKa spectra similarly dominated by carboxyls (pKa of 4.6 to 6.1) and amines (pKa of 8.1 to 9.2). In both intact filaments and isolated sheath material, the lower ligand concentrations at mid-pKa values were ascribed to phosphoryl groups. Whole filaments and isolated sheath material displayed total reactive-site densities of 80.3 × 10−5 and 12.3 × 10−5 mol/g (dry mass) of cyanobacteria, respectively, implying that much of the surface reactivity of this microorganism is located on the cell wall and not the sheath. This is corroborated by electrophoretic mobility measurements that showed that the sheath has a net neutral charge at mid-pHs. In contrast, unsheathed cells exhibited a stronger negative-charge characteristic. Additionally, transmission electron microscopy analysis of ultrathin sections stained with heavy metals further demonstrated that most of the reactive binding sites are located upon the cell wall. Thus, the cell surface reactivity of Calothrix sp. strain KC97 can be described as a dual layer composed of a highly reactive cell wall enclosed within a poorly reactive sheath.  相似文献   

13.
Summary The fine structure of the radiation-resistant bacterium, Micrococcus radiodurans, isolated by Anderson, was studied by electron microscopy of intact and disrupted cells using thin sectioning and negative staining techniques. The cytoplasm and nuclear structures are normal, but the cell wall and sheath are more complex than any so far described for a bacterium. The surface consists of four distinct layers, each having a characteristic fine structure, one of which has been tentatively identified as that responsible for maintaining the rigidity of the cells. Striations with a periodicity of 175 to 200 Å are visible in thin sections of this layer, and a pseudo-hexagonal array of dark holes is seen in surface view of negatively-stained fragments. It is concluded that this layer is the main structural element of the cell wall of M. radiodurans. The other three layers of the surface have not been clearly located in thin sections; one of these layers has a well-defined pattern of hexagonally arranged units similar to that observed in Spirillum serpens by Murray but with different dimensions.Sir Halley Stewart Research Fellow.  相似文献   

14.
The cell wall of Clostridium difficile GAI 4131 was revealed by electron microscopy to have an outer layer composed of a nearly square array and contained the two major proteins with molecular weights of 38 kDa and 42 kDa. The properties and reassembly of the two major proteins into the regular array were investigated. When the isolated cell walls were treated with hydrophobic bond-disrupting agents or a chelating agent specific for Ca2+, the two major proteins were effectively removed and the regularly arranged outer layer disappeared. The amino acid composition of the two major proteins differed from each other. The two major proteins also gave different peptide maps from each other upon proteolysis with Staphylococcus aureus V8 protease. The major proteins solubilized from the isolated cell walls with 8 M urea or 4 M guanidine hydrochloride could be reassembled into open-ended cylinders possessing the native regular pattern by dialysis against neutral buffer containing 5 mM CaCl2. The reassembled cylinders purified by centrifugation on a Percoll density gradient were composed of almost equal amounts of the 38 kDa and 42 kDa proteins and freed from the other proteins. These results suggest that the regular array in the outer cell wall layer is constructed from the two major cell wall proteins and requires Ca2+ for its assembly.  相似文献   

15.
Clostridum thermosaccharolyticum and Clostridium thermohydrosulfuricum possess as outermost cell wall layer a tetragonal or hexagonal ordered array of macromolecules. The subunits of the surface layer can be detached from isolated cell walls with urea (8M) or guanidine-HCl (4 to 5 M). Triton X-100, dithiothreitol, ethylenediaminetetracetate, and KCl (3 M) had no visible effect on the regular arrays. Sodium dodecyl sulfate-polyacrylamide electrophroesis showed that, in both organisms, the surface layer is composed of glycoprotein of molecular weight 140,000. The glycoprotein from both microorganisms has a predominantly acidic amino acid composition and an acidic isoelectric point after isoelectric focusing on polyacrylamide gels. The glycocomponent is composed of glucose, galactose, mannose, and rhamnose.  相似文献   

16.
The interactions of myoglobin with urea, methyl-, N,N'-dimethyl- and ethylurea were studied by means of calorimetry and circular dichroism (CD). The enthalpies of transfer from water to aqueous denaturant solutions are positive for the alkylureas and negative for urea. The difference is due to the presence of hydrophobic groups in the alkylureas. Gibbs free energies of transfer for urea solutions were obtained from preferential binding data determined previously. An attempt is made to interpret the values of the thermodynamic quantities in terms of various interactions between protein and denaturant. Analysis of the far-ultraviolet CD spectra reveals some differences in the denaturing activity of urea and the alkylureas, the latter being stronger denaturants than urea. Myoglobin displays relatively high stability towards these denaturants since concentrations above 5 M are needed for achieving major conformational changes.  相似文献   

17.
The Bacillus thuringiensis subsp. israelensis mosquito larvicidal toxin is not a sulfhydryl-activated toxin. The protein disulfide bonds were cleaved and blocked without loss of toxicity. In contrast, modification of the lysine side chains eliminated toxicity. Additionally, the toxin was resistant to high concentrations of salt (8 M NaBr), organic solvents (40% methanol), denaturants (4 M urea), and neutral detergents (10% Triton X-100). However, it was inactivated by both positively and negatively charged detergents and by guanidine hydrochloride.  相似文献   

18.
The stability of calf skin collagen (CSC) type I during thermal and chemical denaturation in the presence of glycerol was investigated. Thermal denaturation of type I collagen was performed in the presence of glycerol or in combination with urea and sodium chloride. The denaturation curves obtained in the presence of urea or sodium chloride retained their original shape without glycerol. These curves were shifted upward proportionally to the glycerol concentration in the reaction medium. This means that glycerol and the denaturants act independently. The explanation is based on the difference in the mechanism of their action on the collagen molecule.  相似文献   

19.
The Bacillus thuringiensis subsp. israelensis mosquito larvicidal toxin is not a sulfhydryl-activated toxin. The protein disulfide bonds were cleaved and blocked without loss of toxicity. In contrast, modification of the lysine side chains eliminated toxicity. Additionally, the toxin was resistant to high concentrations of salt (8 M NaBr), organic solvents (40% methanol), denaturants (4 M urea), and neutral detergents (10% Triton X-100). However, it was inactivated by both positively and negatively charged detergents and by guanidine hydrochloride.  相似文献   

20.
Bacillus sphaericus strain P-1 has previously been shown to have a tetragonally arrayed (T layer) protein which forms the outer layer of the cell wall. The T layer was quantitatively extracted from whole cells by 6 M urea, and the T layer subunits were purified by electrophoresis of the extracts on acrylamide gels containing 0.1% sodium dodecyl sulfate or 6 M urea. Using ethylene diacrylate cross-linked gels, the T layer was found to make up 16% of the total cellular protein. A virulent bacteriophage which is inactivated by purified T layer was isolated from soil. Twenty-four phage-resistant mutants were isolated, of which 17 had T layer subunits of increased mobility on sodium dodecyl sulfate acrylamide gels. No mutants devoid of T layer were found. Mutants were grouped into six classes according to the molecular weight of their T layer subunits. These ranged from that of the wild type, 150,000 down to 86,000. Two mutants from different classes were examined in detail. Cells of the mutant strains did not adsorb phage nor did cell walls isolated from these mutants inactivate phage. The amino acid composition of the T layers from mutants differed little from that of the wild-type T layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号