首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The shrubby milkwort (Polygala chamaebuxus L.) is widely distributed in the Alps, but occurs also in the lower mountain ranges of Central Europe such as the Franconian Jura or the Bohemian uplands. Populations in these regions may either originate from glacial survival or from postglacial recolonization. In this study, we analyzed 30 populations of P. chamaebuxus from the whole distribution range using AFLP (Amplified Fragment Length Polymorphism) analysis to identify glacial refugia and to illuminate the origin of P. chamaebuxus in the lower mountain ranges of Central Europe. Genetic variation and the number of rare fragments within populations were highest in populations from the central part of the distribution range, especially in the Southern Alps (from the Tessin Alps and the Prealps of Lugano to the Triglav Massiv) and in the middle part of the northern Alps. These regions may have served, in accordance with previous studies, as long‐term refugia for the glacial survival of the species. The geographic pattern of genetic variation, as revealed by analysis of molecular variance, Bayesian cluster analysis and a PopGraph genetic network was, however, only weak. Instead of postglacial recolonization from only few long‐term refugia, which would have resulted in deeper genetic splits within the data set, broad waves of postglacial expansion from several short‐term isolated populations in the center to the actual periphery of the distribution range seem to be the scenario explaining the observed pattern of genetic variation most likely. The populations from the lower mountain ranges in Central Europe were more closely related to the populations from the southwestern and northern than from the nearby eastern Alps. Although glacial survival in the Bohemian uplands cannot fully be excluded, P. chamaebuxus seems to have immigrated postglacially from the southwestern or central‐northern parts of the Alps into these regions during the expansion of the pine forests in the early Holocene.  相似文献   

2.
Quaternary glaciations have played a major role in shaping the genetic diversity and distribution of plant species. Strong palaeoecological and genetic evidence supports a postglacial recolonization of most plant species to northern Europe from southern, eastern and even western glacial refugia. Although highly controversial, the existence of small in situ glacial refugia in northern Europe has recently gained molecular support. We used genomic analyses to examine the phylogeography of a species that is critical in this debate. Carex scirpoidea Michx subsp. scirpoidea is a dioecious, amphi‐Atlantic arctic–alpine sedge that is widely distributed in North America, but absent from most of Eurasia, apart from three extremely disjunct populations in Norway, all well within the limits of the Weichselian ice sheet. Range‐wide population sampling and variation at 5,307 single nucleotide polymorphisms show that the three Norwegian populations comprise unique evolutionary lineages divergent from Greenland with high between‐population divergence. The Norwegian populations have low within‐population genetic diversity consistent with having experienced genetic bottlenecks in glacial refugia, and host private alleles that probably accumulated in long‐term isolated populations. Demographic analyses support a single, pre‐Weichselian colonization into Norway from East Greenland, and subsequent divergence of the three populations in separate refugia. Other refugial areas are identified in North‐east Greenland, Minnesota/Michigan, Colorado and Alaska. Admixed populations in British Columbia and West Greenland indicate postglacial contact. Taken together, evidence from this study strongly indicates in situ glacial survival in Scandinavia.  相似文献   

3.
4.
5.
6.
Populations occurring in areas of overlap between the current and future distribution of a species are particularly important because they can represent “refugia from climate change”. We coupled ecological and range‐wide genetic variation data to detect such areas and to evaluate the impacts of habitat suitability changes on the genetic diversity of the transitional Mediterranean‐temperate tree Fraxinus angustifolia. We sampled and genotyped 38 natural populations comprising 1006 individuals from across Europe. We found the highest genetic diversity in western and northern Mediterranean populations, as well as a significant west to east decline in genetic diversity. Areas of potential refugia that correspond to approximately 70% of the suitable habitat may support the persistence of more than 90% of the total number of alleles in the future. Moreover, based on correlations between Bayesian genetic assignment and climate, climate change may favour the westward spread of the Black Sea gene pool in the long term. Overall, our results suggest that the northerly core areas of the current distribution contain the most important part of the genetic variation for this species and may serve as in situ macrorefugia from ongoing climate change. However, rear‐edge populations of the southern Mediterranean may be exposed to a potential loss of unique genetic diversity owing to habitat suitability changes unless populations can persist in microrefugia that have facilitated such persistence in the past.  相似文献   

7.
  • The performance of seedlings is crucial for the survival and persistence of plant populations. Although drought frequently occurs in floodplains and can cause seedling mortality, studies on the effects of drought on seedlings of floodplain grasslands are scarce. We tested the hypotheses that drought reduces aboveground biomass, total biomass, plant height, number of leaves, leaf area and specific leaf area (SLA), and increases root biomass and root‐mass fraction (RMF) and that seedlings from species of wet floodplain grasslands are more affected by drought than species of dry grasslands.
  • In a greenhouse study, we exposed seedlings of three confamilial pairs of species (Pimpinella saxifraga, Selinum carvifolia, Veronica teucrium, Veronica maritima, Sanguisorba minor, Sanguisorba officinalis) to increasing drought treatments. Within each plant family, one species is characteristic of wet and one of dry floodplain grasslands, confamilial in order to avoid phylogenetic bias of the results.
  • In accordance with our hypotheses, drought conditions reduced aboveground biomass, total biomass, plant height, number of leaves and leaf area. Contrary to our hypotheses, drought conditions increased SLA and decreased root biomass and RMF of seedlings. Beyond the effects of the families, the results were species‐specific (V. maritima being the most sensitive species) and habitat‐specific. Species indicative of wet floodplain grasslands appear to be more sensitive to drought than species indicative of dry grasslands.
  • Because of species‐ and habitat‐specific responses to reduced water availability, future drought periods due to climate change may severely affect some species from dry and wet habitats, while others may be unaffected.
  相似文献   

8.
Aim Based on extensive range‐wide sampling, we address the phylogeographical history of one of the most widespread and taxonomically complex sedges in Europe, Carex nigra s. lat. We compare the genetic structure of the recently colonized northern areas (front edge) and the long‐standing southern areas (rear edge), and assess the potential genetic basis of suggested taxonomic divisions at the rank of species and below. Location Amphi‐Atlantic, central and northern Europe, circum‐Mediterranean mountain ranges, central Siberia, Himalayas. Methods A total of 469 individuals sampled from 83 populations, covering most of the species’ range, were analysed with amplified fragment length polymorphism (AFLP) and chloroplast DNA (cpDNA) markers. Bayesian clustering, principal coordinates analysis, and estimates of diversity and differentiation were used for the analysis of AFLP data. CpDNA data were analysed with statistical parsimony networks and maximum parsimony and Bayesian inference of phylogenetic trees. Results Overall genetic diversity was high, but differentiation among populations was limited. Major glacial refugia were inferred in the Mediterranean Basin and in western Russia; in addition, there may have been minor refugia in the North Atlantic region. In the southern part of the range, we found high levels, but geographically quite poorly structured genetic diversity, whereas the levels of genetic diversity varied among different areas in the north. North American populations were genetically very similar to the European populations. Main conclusions The data are consistent with extensive gene flow, which has obscured the recent history of the taxon. The limited differentiation in the south probably results from the mixing of lineages expanding from several local refugia. Northward post‐glacial colonization resulted in a leading‐edge pattern of low diversity in the Netherlands, Belgium, Scotland and Iceland, whereas the observed high diversity levels in Fennoscandia suggest broad‐fronted colonization from the south as well as from the east. The patterns found in the American populations are consistent with post‐glacial colonization, possibly even with anthropogenic introduction from Europe. Our data also suggest that the tussock‐forming populations of C. nigra, often referred to as a distinct species (Carex juncella), represent an ecotype that has originated repeatedly from different populations with creeping rhizomes.  相似文献   

9.
Aim The aim of this study was to test hypotheses regarding some of the main phylogeographical patterns proposed for European plants, in particular the locations of glacial refugia, the post‐glacial colonization routes, and genetic affinities between southern (alpine) and northern (boreal) populations. Location The mountains of Europe (Alps, Balkans, Carpathians, Central Massif, Pyrenees, Scandinavian chain, Sudetes), and central European/southern Scandinavian lowlands. Methods As our model system we used Pulsatilla vernalis, a widely distributed European herbaceous plant occurring both in the high‐mountain environments of the Alps and other European ranges and in lowlands north of these ranges up to Scandinavia. Based on a distribution‐wide sampling of 61 populations, we estimated chloroplast DNA (cpDNA) variation along six regions using polymerase chain reaction–restriction fragment‐length polymorphisms (PCR–RFLPs) (trnH–trnK, trnK–trnK, trnC–trnD, psbC–trnS, psaA–trnS, trnL–trnF) and further sequencing of trnL–trnF and trnH–psbA. In addition, 11 samples of other European species of Pulsatilla were sequenced to survey the genus‐scale cpDNA variation. Results Eleven PCR–RFLP polymorphisms were detected in P. vernalis, revealing seven haplotypes. They formed two distinct genetic groups. Three haplotypes representing both groups dominated and were widely distributed across Europe, whereas the others were restricted to localized regions (central Alps, Tatras/Sudetes mountains) or single populations. Sequencing analysis confirmed the reliability of PCR–RFLPs and homology of haplotypes across their distribution. The chloroplast DNA variation across the section Pulsatilla was low, but P. vernalis did not share haplotypes with other species. Main conclusions The genetic distinctiveness of P. vernalis populations from the south‐western Alps with respect to other Alpine populations, as well as the affinities between the former populations and those from the eastern Pyrenees, is demonstrated, thus providing support for the conclusions of previous studies. Glacial refugia in the Dolomites are also suggested. Isolation is inferred for the high‐mountain populations from the Tatras and Sudetes; this is in contrast to the case for the Balkans, which harboured the common haplotype. Specific microsatellite variation indicates the occurrence of periglacial lowland refugia north of the Alps, acting as a source for the post‐glacial colonization of Scandinavia. The presence of different fixed haplotypes in eastern and western Scandinavia, however, suggests independent post‐glacial colonization of these two areas, with possible founder effects.  相似文献   

10.
Extant variation in temperate and boreal plant species has been influenced by both demographic histories associated with Pleistocene glacial cycles and adaptation to local climate. We used sequence capture to investigate the role of these neutral and adaptive processes in shaping diversity in black cottonwood (Populus trichocarpa). Nucleotide diversity and Tajima's D were lowest at replacement sites and highest at intergenic sites, while LD showed the opposite pattern. With samples grouped into three populations arrayed latitudinally, effective population size was highest in the north, followed by south and centre, and LD was highest in the south followed by the north and centre, suggesting a possible northern glacial refuge. FST outlier analysis revealed that promoter, 5′‐UTR and intronic sites were enriched for outliers compared with coding regions, while no outliers were found among intergenic sites. Codon usage bias was evident, and genes with synonymous outliers had 30% higher average expression compared with genes containing replacement outliers. These results suggest divergent selection related to regulation of gene expression is important to local adaptation in P. trichocarpa. Finally, within‐population selective sweeps were much more pronounced in the central population than in putative northern and southern refugia, which may reflect the different demographic histories of the populations and concomitant effects on signatures of genetic hitchhiking from standing variation.  相似文献   

11.
The history of repeated northern glacial cycling and southern climatic stability has long dominated explanations for how genetic diversity is distributed within temperate species in Eurasia and North America. However, growing evidence indicates the importance of cryptic refugia for northern colonization dynamics. An important geographic region to assess this is Fennoscandia, where recolonization at the end of the last glaciation was restricted to specific routes and temporal windows. We used genomic data to analyse genetic diversity and colonization history of the bank vole (Myodes glareolus) throughout Europe (>800 samples) with Fennoscandia as the northern apex. We inferred that bank voles colonized Fennoscandia multiple times by two different routes; with three separate colonizations via a southern land‐bridge route deriving from a “Carpathian” glacial refugium and one via a north‐eastern route from an “Eastern” glacial refugium near the Ural Mountains. Clustering of genome‐wide SNPs revealed high diversity in Fennoscandia, with eight genomic clusters: three of Carpathian origin and five Eastern. Time estimates revealed that the first of the Carpathian colonizations occurred before the Younger Dryas (YD), meaning that the first colonists survived the YD in Fennoscandia. Results also indicated that introgression between bank and northern red‐backed voles (Myodes rutilus) took place in Fennoscandia just after end‐glacial colonization. Therefore, multiple colonizations from the same and different cryptic refugia, temporal and spatial separations and interspecific introgression have shaped bank vole genetic variability in Fennoscandia. Together, these processes drive high genetic diversity at the apex of the northern expansion in this emerging model species.  相似文献   

12.
Calcareous grasslands belong to the most diverse, endangered habitats in Europe, but there is still insufficient information about the origin of the plant species related to these grasslands. In order to illuminate this question, we chose for our study the representative grassland species Hippocrepis comosa (Horseshoe vetch). Based on species distribution modeling and molecular markers, we identified the glacial refugia and the postglacial migration routes of the species to Central Europe. We clearly demonstrate that H. comosa followed a latitudinal and due to its oceanity also a longitudinal gradient during the last glacial maximum (LGM), restricting the species to southern refugia situated on the Peninsulas of Iberia, the Balkans, and Italy during the last glaciation. However, we also found evidence for cryptic northern refugia in the UK, the Alps, and Central Germany. Both species distribution modeling and molecular markers underline that refugia of temperate, oceanic species such as H. comosa must not be exclusively located in southern but also in western of parts of Europe. The analysis showed a distinct separation of the southern refugia into a western cluster embracing Iberia and an eastern group including the Balkans and Italy, which determined the postglacial recolonization of Central Europe. At the end of the LGM, H. comosa seems to have expanded from the Iberian refugium, to Central and Northern Europe, including the UK, Belgium, and Germany.  相似文献   

13.
The traditional southern Pleistocene refugia hypothesis in Europe has lately been challenged for several animal and plant species. The Carpathian Basin, especially at the marginal regions, is one of the recently recognized biodiversity hotspots in Europe. Marginal populations are prone to have lower genetic diversity and higher genetic differentiation than central populations. Here, we examined one mitochondrial DNA fragment (D‐loop) and nine nuclear (microsatellite) loci to describe the genetic diversity and phylogeographical pattern of fire salamander (Salamandra salamandra) populations in the Carpathian Basin with focusing on the southern margins of the Western Carpathians, where isolated populations of this species are present. Analyses of microsatellites indicated reduced genetic diversity for most of the isolated populations. Based on the mitochondrial DNA, only two haplotypes were found, whereas the analyses with the nuclear markers revealed a more recent genetic split between Western (Alpine) and Eastern (Carpathian) populations, and separated the Apuseni Mountains population (part of the Western Carpathians). Using approximate Bayesian computation analyses, we identified the most probable colonization scenario for the isolated North Hungarian Carpathian Basin populations. The split between isolated salamander populations from the central populations in the Carpathian Mountains dates back to the beginning of the Late Pleistocene, while the split between most of the Hungarian populations can be associated with the Last Glacial Maximum. We found evidence for long‐time isolation between the marginal Carpathian Basin and central populations. Our results also show that S. salamandra survived glacial periods in the temperate forests of north‐east Pannonia (North Hungarian Mountains), confirming that the Carpathian Basin served as important northerly refugia during the Pleistocene climatic oscillations.  相似文献   

14.
Recurring glacial cycles through the Quaternary period drastically altered the size and distribution of natural populations of North American flora and fauna. The “southerly refugia model” has been the longstanding framework for testing the effects of glaciation on contemporary genetic patterns; however, insights from ancient DNA have contributed to the reconstruction of more complex histories for some species. The American badger, Taxidea taxus, provides an interesting species for exploring the genetic legacy of glacial history, having been hypothesized to have postglacially emerged from a single, southerly refugium to recolonize northern latitudes. However, previous studies have lacked genetic sampling from areas where distinct glacial refugia have been hypothesized, including the Pacific Northwest and American Far North (Yukon, Alaska). In order to further investigate the phylogeographic history of American badgers, we collected mitochondrial DNA sequence data from ancient subfossil material collected within the historical range (Alaska, Yukon) and combined them with new and previously published data from across the species' contemporary distribution (n = 1,207). We reconstructed a mostly unresolved phylogenetic tree and star‐like haplotype network indicative of emergence from a largely panmictic glacial refugium and recent population expansion, the latter further punctuated by significantly negative Tajima's D and Fu's Fs values. Although directionality of migration cannot be unequivocally inferred, the moderate to high levels of genetic variation exhibited by American badgers, alongside the low frequency of haplotypes with indels in the Midwest, suggest a potential recolonization into central North America after the hypothesized ice‐free corridor reopened ~13,000 years ago. Overall, the expanded reconstruction of phylogeographic history of American badgers offers a broader understanding of contemporary range‐wide patterns and identifies unique genetic units that can likely be used to inform conservation of at‐risk populations at the northern periphery.  相似文献   

15.
Aim Climatic changes and fluctuations in the past have strongly influenced the distribution of animal and plant species. Such fluctuations are also reflected in the patterns of genetic diversity on both local and global scales. The genetic pattern of the pearly heath butterfly, Coenonympha arcania, was used to evaluate the genetic differentiation of isolated (in north‐western Europe), peripheral (in north‐eastern Europe) and central (in southern Europe) populations in the context of post‐glacial distributional changes of the species. Location Europe (Sweden, Germany, the Baltic states, Italy, Slovenia, Hungary, Romania, Bulgaria). Thus, samples were collected from large parts of the species’ distribution representing the three categories mentioned above. Methods We analysed 18 loci of 569 individuals from 28 populations by allozyme electrophoresis. We used both individual‐based and population‐based analyses, including F‐statistics, various clustering methods and Markov chain Monte Carlo simulations. Results All loci, except Fum, were polymorphic. The mean FST for all samples was 0.18. The mean genetic distance among populations was 0.046. Two major genetic lineages were distinguished. Populations from the centre of the distributional range in southern Europe and the northern periphery of the distributional range differed significantly in their level of genetic variability. The central populations of south‐eastern Europe showed high levels of genetic diversity and no differentiation among populations. Main conclusions Most probably the two major genetic lineages evolved during glacial isolation in two disjunct Mediterranean refugia. The lack of genetic differentiation across south‐eastern Europe implies a continuous Würm ice age distribution in this area, thus supporting the functional existence of steppe forests throughout this region. The peripheral‐isolated populations in Sweden seem to have suffered from one or more severe bottlenecks, resulting in substantial genetic impoverishment. The peripheral‐connected eastern Baltic populations, on the other hand, are affected by post‐glacial and possibly recurrent gene flow from more central parts of the distribution.  相似文献   

16.
  • Environmental gradients, and particularly climatic variables, exert a strong influence on plant distribution and, potentially, population genetic diversity and differentiation. Differences in water availability can cause among‐population variation in ecological processes and can thus interrupt populations’ connectivity and isolate them environmentally. The present study examines the effect of environmental heterogeneity on plant populations due to environmental isolation unrelated to geographic distance.
  • Using AFLP markers, we analyzed genetic diversity and differentiation among 12 Salvia spinosa populations and 13 Salvia syriaca populations from three phytogeographical regions (Mediterranean, Irano‐Turanian and Saharo‐Arabian) representing the extent of the species’ geographic range in Jordan. Differences in geographic location and climate were considered in the analyses.
  • For both species, flowering phenology varied among populations and regions. Irano‐Turanian and Saharo‐Arabian populations had higher genetic diversity than Mediterranean populations, and genetic diversity increased significantly with increasing temperature. Genetic diversity in Salvia syriaca was affected by population size, while genetic diversity responded to drought in S. spinosa. For both species, high levels of genetic differentiation were found as well as two well‐supported phytogeographical groups of populations, with Mediterranean populations clustering in one group and the Irano‐Turanian and Saharo‐Arabian populations in another. Genetic distance was significantly correlated to environmental distance, but not to geographic distance.
  • Our data indicate that populations from moist vs. arid environments are environmentally isolated, where environmental gradients affect their flowering phenology, limit gene flow and shape their genetic structure. We conclude that environmental heterogeneity may act as driver for the observed variation in genetic diversity.
  相似文献   

17.
Stipa capillata L. (Poaceae) is a rare grassland species in Central Europe that is thought to have once been widespread in post‐glacial times. Such relict species are expected to show low genetic diversity within populations and high genetic differentiation between populations due to bottlenecks, long‐term isolation and ongoing habitat fragmentation. These patterns should be particularly pronounced in selfing species. We analysed patterns of random amplified polymorphic DNA (RAPD) variation in the facultatively cleistogamous S. capillata to examine whether genetic diversity is associated with population size, and to draw initial conclusions on the migration history of this species in Central Europe. We analysed 31 S. capillata populations distributed in northeastern, central and western Germany, Switzerland and Slovakia. Estimates of genetic diversity at the population level were low and not related to population size. Among all populations, extraordinarily high levels of genetic differentiation (amova : φST = 0.86; Bayesian analysis: θB = 0.758) and isolation‐by‐distance were detected. Hierarchical amova indicated that most of the variability was partitioned among geographic regions (59%), or among populations between regions when the genetically distinct Slovakian populations were excluded. These findings are supported by results of a multivariate ordination analysis. We also found two different groups in an UPGMA cluster analysis: one that contained the populations from Slovakia, and the other that combined the populations from Germany and Switzerland. Our findings imply that Scapillata is indeed a relict species that experienced strong bottlenecks in Central Europe, enhanced by isolation and selfing. Most likely, populations in Slovakia were not the main genetic source for the post‐glacial colonization of Central Europe.  相似文献   

18.
Subdivided Pleistocene glacial refugia, best known as “refugia within refugia”, provided opportunities for diverging populations to evolve into incipient species and/or to hybridize and merge following range shifts tracking the climatic fluctuations, potentially promoting extensive cytonuclear discordances and “ghost” mtDNA lineages. Here, we tested which of these opposing evolutionary outcomes prevails in northern Iberian areas hosting multiple historical refugia of common frogs (Rana cf. temporaria), based on a genomic phylogeography approach (mtDNA barcoding and RAD‐sequencing). We found evidence for both incipient speciation events and massive cytonuclear discordances. On the one hand, populations from northwestern Spain (Galicia and Asturias, assigned to the regional endemic R. parvipalmata), are deeply‐diverged at mitochondrial and nuclear genomes (~4 My of independent evolution), and barely admix with northeastern populations (assigned to R. temporaria sensu stricto) across a narrow hybrid zone (~25 km) located in the Cantabrian Mountains, suggesting that they represent distinct species. On the other hand, the most divergent mtDNA clade, widespread in Cantabria and the Basque country, shares its nuclear genome with other R. temporaria s. s. lineages. Patterns of population expansions and isolation‐by‐distance among these populations are consistent with past mitochondrial capture and/or drift in generating and maintaining this ghost mitochondrial lineage. This remarkable case study emphasizes the complex evolutionary history that shaped the present genetic diversity of refugial populations, and stresses the need to revisit their phylogeography by genomic approaches, in order to make informed taxonomic inferences.  相似文献   

19.
Corynephorus canescens (L.) P.Beauv. is an outbreeding, short‐lived and wind‐dispersed grass species, highly specialised on scattered and disturbance‐dependent habitats of open sandy sites. Its distribution ranges from the Iberian Peninsula over Atlantic regions of Western and Central Europe, but excludes the two other classical European glacial refuge regions on the Apennine and Balkan Peninsulas. To investigate genetic patterns of this uncommon combination of ecological and biogeographic species characteristics, we analysed AFLP variation among 49 populations throughout the European distribution range, expecting (i) patterns of SW European glacial refugia and post‐glacial expansion to the NE; (ii) decreasing genetic diversity from central to marginal populations; and (iii) interacting effects of high gene flow and disturbance‐driven genetic drift. Decreasing genetic diversity from SW to NE and distinct gene pool clustering imply refugia on the Iberian Peninsula and in western France, from where range expansion originated towards the NE. High genetic diversity within and moderate genetic differentiation among populations, and a significant pattern of isolation‐by‐distance indicate a gene flow drift equilibrium within C. canescens, probably due to its restriction to scattered and dynamic habitats and limited dispersal distances. These features, as well as the re‐colonisation history, were found to affect genetic diversity gradients from central to marginal populations. Our study emphasises the need for including the specific ecology into analyses of species (re–)colonisation histories and range centre–margin analyses. To account for discontinuous distributions, new indices of marginality were tested for their suitability in studies of centre–periphery gradients.  相似文献   

20.
Aim We investigated the Quaternary history of the pine processionary moth, Thaumetopoea pityocampa, an oligophagous insect currently expanding its range. We tested the potential role played by mountain ranges during the post‐glacial recolonization of western Europe. Location Western Europe, with a focus on the Pyrenees, Massif Central and western Alps. Methods Maternal genetic structure was investigated using a fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene. We analysed 412 individuals from 61 locations and performed maximum likelihood and maximum parsimony phylogenetic analyses and hierarchical analysis of molecular variance, and we investigated signs of past expansion. Results A strong phylogeographic pattern was found, with two deeply divergent clades. Surprisingly, these clades were not separated by the Pyrenees but rather were distributed from western to central Iberia and from eastern Iberia to the Italian Peninsula, respectively. This latter group consisted of three shallowly divergent lineages that exhibited strong geographic structure and independent population expansions. The three identified lineages occurred: (1) on both sides of the Pyrenean range, with more genetically diverse populations in the east, (2) from eastern Iberia to western France, with a higher genetic diversity in the south, and (3) from the western Massif Central to Italy. Admixture areas were found at the foot of the Pyrenees and Massif Central. Main conclusions The identified genetic lineages were geographically structured, but surprisingly the unsuitable high‐elevation areas of the main mountainous ranges were not responsible for the spatial separation of genetic groups. Rather than acting as barriers to dispersal, mountains appear to have served as refugia during the Pleistocene glaciations, and current distributions largely reflect expansion from these bottlenecked refugial populations. The western and central Iberian clade did not contribute to the northward post‐glacial recolonization of Europe, yet its northern limit does not correspond to the Pyrenees. The different contributions of the identified refugia to post‐glacial expansion might be explained by differences in host plant species richness. For example, the Pyrenean lineage could have been trapped elevationally by tracking montane pines, while the eastern Iberian lineage could have expanded latitudinally by tracking thermophilic lowland pine species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号