首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we analysed chromosome number variation and chromomycin A3/4′,6‐diamidino‐2‐phenylindole (CMA/DAPI) banding patterns in 48 species belonging to 12 genera of subtribe Pleurothallidinae (Orchidaceae) in order to understand the chromosome evolution based on recent phylogenetic hypotheses and taxonomic treatments. All species had small chromosomes, with numbers ranging from 2n = 20 in two Specklinia spp. to 2n = 80 in an unidentified Octomeria sp. In Acianthera, the most highly represented genus in this study, a great diversity of chromosome number and pattern of fluorescent bands was observed, showing heterochromatin accumulation in Acianthera section Sicariae subsection Pectinatae. Interspecific ascending and, mainly, descending dysploidy were the main mechanisms of chromosome number evolution in subtribe Pleurothallidinae. For Pleurothallidinae, x = 20 is suggested as the basic chromosome number, the same suggested for the related subtribe Laeliinae and for the whole tribe Epidendreae. The Brazilian species of the mega‐genus Stelis had chromosomes with small amounts of heterochromatin and chromosome numbers based on x2 = 16. These are generally divergent from those reported for Andean and Meso‐American species, but in agreement with the monophyletic hypothesis proposed for Stelis spp. with a Brazilian Atlantic distribution. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 102–120.  相似文献   

2.
Passiflora L. has more than 575 species distributed especially in the Neotropics. The chromosome number variation in the genus is highly congruent with its main subgenera, but its basic chromosome number (x) and the underlying events responsible for this variation have remained controversial. Here, we provide a robust and well-resolved time-calibrated phylogeny that includes 102 taxa, and by means of phylogenetic comparative methods (PCM) we tested the relative importance of polyploidy and dysploidy events to Passiflora karyotype evolution and diversification. Passiflora arose 42.9 Mya, with subgenus diversification at the end of the Palaeogene (Eocene-Oligocene). The basic chromosome number of the genus is proposed as x?=?6, and a strong recent diversification found in the Passiflora subgenus (Miocene) correlated to genome size increase and a chromosome change from n?=?6 to n?=?9 by ascending dysploidy. Polyploidy, conversely, appeared restricted to few lineages, such as Astrophea and Deidamioides subgenera, and did not lead to diversification increases. Our findings suggest that ascending dysploidy provided a great advantage for generating long-term persistent lineages and promoting species diversification. Thus, chromosome numbers/genome size changes may have contributed to morphological/ecological traits that explain the pattern of diversification observed in the genus Passiflora.  相似文献   

3.
With the present work, we aim to provide a better understanding of chromosome evolutionary trends among southern Brazilian species of Iridoideae. Chromosome numbers and genome sizes were determined for 21 and 22 species belonging to eight genera of Tigridieae and two genera of Trimezieae, respectively. The chromosome numbers of nine species belonging to five genera are reported here for the first time. Analyses of meiotic behaviour, tetrad normality and pollen viability in 14 species revealed regular meiosis and high meiotic indexes and pollen viability (> 90%). The chromosome data obtained here and compiled from the literature were plotted onto a phylogenetic framework to identify major events of chromosome rearrangements across the phylogenetic tree of Iridoideae. Following this approach, we propose that the ancestral base chromosome number for Iridoideae is x = 8 and that polyploidy and dysploidy events have occurred throughout evolution. Despite the variation in chromosome numbers observed in Tigridieae and Trimezieae, for these two tribes our data provide support for an ancestral base number of x = 7, largely conserved in Tigridieae, but a polyploidy event may have occurred prior to the diversification of Trimezieae, giving rise to a base number of x2 = 14 (detected by maximum‐parsimony using haploid number and maximum likelihood). In Tigridieae, polyploid cytotypes were commonly observed (2x, 4x, 6x and 8x), whereas in Trimezieae, dysploidy seems to have been the most important event. This feature is reflected in the genome size, which varied greatly among species of Iridoideae, 4.2‐fold in Tigridieae and 1.5‐fold in Trimezieae. Although no clear difference was observed among the genome sizes of Tigridieae and Trimezieae, an important distinction was observed between these two tribes and Sisyrinchieae, with the latter possessing the smallest genome sizes in Iridoideae. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 177 , 27–49.  相似文献   

4.
5.
  • Aluminium (Al) toxicity is the major constraint for crop productivity in acid soils. Wild rye species (Secale spp.) exhibit high Al tolerance, being a good source of genes related to this trait. The Alt1 locus located on the 6RS chromosome arm is one of the four main loci controlling Al tolerance in rye and is known to harbour major genes but, so far, none have been found.
  • Through synteny among the short arm of the rye chromosome 6R and the main grass species, we found a candidate MATE gene for the Atl1 locus, later named ScMATE3, which was isolated and characterized in different Secale species.
  • The sequence comparisons revealed both intraspecific and interspecific variability, with high sequence conservation in the Secale genus. SNP with replacement substitution that changed the structure of the protein and can be involved in the Al tolerance trait were found in ScMATE3 gene. The predicted subcellular localization of ScMATE3 is the vacuolar membrane which, together with the phylogenetic relationships performed with other MATE genes of the Poaceae related to Al detoxification, suggest involvement of ScMATE3 in an internal tolerance mechanism. Moreover, expression studies of this gene in rye corroborate its contribution in some Al resistance mechanisms.
  • The ScMATE3 gene is located on the 6RS chromosome arm between the same markers in which the Alt1 locus is involved in Al resistance mechanisms in rye, thus being a good candidate gene for this function.
  相似文献   

6.
Chromosome rearrangements may result in both decrease and increase of chromosome numbers. Here we have used comparative chromosome painting (CCP) to reconstruct the pathways of descending and ascending dysploidy in the genus Boechera (tribe Boechereae, Brassicaceae). We describe the origin and structure of three Boechera genomes and establish the origin of the previously described aberrant Het and Del chromosomes found in Boechera apomicts with euploid (2n = 14) and aneuploid (2n = 15) chromosome number. CCP analysis allowed us to reconstruct the origin of seven chromosomes in sexual Bstricta and apomictic B. divaricarpa from the ancestral karyotype (n = 8) of Brassicaceae lineage I. Whereas three chromosomes (BS4, BS6, and BS7) retained their ancestral structure, five chromosomes were reshuffled by reciprocal translocations to form chromosomes BS1‐BS3 and BS5. The reduction of the chromosome number (from x = 8 to x = 7) was accomplished through the inactivation of a paleocentromere on chromosome BS5. In apomictic 2n = 14 plants, CCP identifies the largely heterochromatic chromosome (Het) being one of the BS1 homologues with the expansion of pericentromeric heterochromatin. In apomictic B. polyantha (2n = 15), the Het has undergone a centric fission resulting in two smaller chromosomes – the submetacentric Het′ and telocentric Del. Here we show that new chromosomes can be formed by a centric fission and can be fixed in populations due to the apomictic mode of reproduction.  相似文献   

7.
During evolutionary history many grasses from the tribe Triticeae have undergone interspecific hybridization, resulting in allopolyploidy; whereas homoploid hybrid speciation was found only in rye. Homoeologous chromosomes within the Triticeae preserved cross‐species macrocolinearity, except for a few species with rearranged genomes. Aegilops markgrafii, a diploid wild relative of wheat (2n = 2x = 14), has a highly asymmetrical karyotype that is indicative of chromosome rearrangements. Molecular cytogenetics and next‐generation sequencing were used to explore the genome organization. Fluorescence in situ hybridization with a set of wheat cDNAs allowed the macrostructure and cross‐genome homoeology of the Ae. markgrafii chromosomes to be established. Two chromosomes maintained colinearity, whereas the remaining were highly rearranged as a result of inversions and inter‐ and intrachromosomal translocations. We used sets of barley and wheat orthologous gene sequences to compare discrete parts of the Ae. markgrafii genome involved in the rearrangements. Analysis of sequence identity profiles and phylogenic relationships grouped chromosome blocks into two distinct clusters. Chromosome painting revealed the distribution of transposable elements and differentiated chromosome blocks into two groups consistent with the sequence analyses. These data suggest that introgressive hybridization accompanied by gross chromosome rearrangements might have had an impact on karyotype evolution and homoploid speciation in Ae. markgrafii.  相似文献   

8.
Chromosome data are fundamental in evolution. However, there has been no attempt to synthesize and evaluate the significance of such information from a phylogenetic perspective in the giant genus Solanum, which was the aim of this work. New and published information of the main cytotaxonomic features (chromosome number, polyploidy, total length of the haploid complement, mean chromosome length, mean arm ratio, karyotype formula, nuclear DNA amount, number/position of rDNA sites) was compiled and mapped onto an embracing Solanaceae phylogeny, performing Ancestral States Reconstruction. There were 506 Solanum species with chromosome counts (49.7% from an estimated total of 1,018 spp.), with x?=?12 being the most frequent number (97%). Species with karyotypes represent 18.8%, while 8% have been studied with any molecular cytogenetic technique. Chromosome characters showed transitions associated with supported nodes, some of which have undergone fewer transitions than others. The common ancestor of all Solanum was a diploid with 2n?=?24, a karyotype with st and/or t chromosomes, 2C DNA content of 1–1.2 pg, one locus of 18–5.8–26S rDNA and one of 5S, both loci being asyntenic. The chromosomal variables behave as homoplastic, with reversions in all branches. The analysed characters were sorted from more to less conserved: asynteny of rDNA loci; number of sites of 18–5.8–26S; chromosome number; karyotype formula; number of 5S loci. This pattern of chromosomal evolution distinguishes Solanum from closely related genera and from genera from other families with a similar number of species.  相似文献   

9.
Despite extensive literature on the diversity of karyotypes in Allium is available, no attempt to analyse these data together, within a robust phylogenetic framework, has been carried out so far. Thus, we examined patterns and trends in chromosome evolution across the genus. Based on literature survey, karyo-morphometric features for 207 species belonging to 12 subgenera of Allium were obtained. Included in the data-set were basic chromosome number (x), somatic chromosome number (2n), total haploid (monoploid) chromosome length (THL) and three different measures defining karyotype structure: CVCI, measuring how heterogeneous are centromeres positions in a karyotype, CVCL and MCA, quantifying interchromosomal and intrachromosomal karyotype asymmetry, respectively. Trends in karyotype evolution were analysed by phylogenetic regressions and independent contrasts. Mean karyotypes highlighted differences and similarities in karyotype structure between the 12 subgenera. Further differences were noted when the two parameters for analysing karyotype asymmetry were assessed. In addition, by examining the effects of increasing karyotype dimensions (a proxy for genome size) on karyotype structure and asymmetry, it was shown that in Allium species, the DNA was added proportionally to their arm lengths. Overall, p = 8 and somehow intermediate karyotype asymmetry levels seem to represent plesiomorphic character-states in Allium.  相似文献   

10.
11.
Classifications of Theaceae have usually placed the endangered monotypic genus Apterosperma in tribe Schimeae (x=18), whereas recent molecular phylogenetic evidence supports its transfer to tribe Theeae (x=15). Molecular data have not resolved the phylogenetic position of Apterosperma within Theeae. We investigated the chromosome number and karyotype of Apterosperma in the context of molecular and morphological phylogenetic evidence to provide further insight into the placement of Apterosperma within Theaceae. The chromosome number and karyotype was found to be 2n = 30 = 26m + 4sm, consistent with the transfer of Apterosperma to tribe Theeae. When the chromosome data were incorporated into a data set of 46 other nonmolecular characters, Apterosperma was placed as the first-diverging lineage within the clade comprising tribe Theeae. This supports its placement based on molecular data. The low intrachromosomal asymmetry (type 1A) of Apterosperma, presumably ancestral for the family, is also consistent with this placement. Character optimization strongly supports a base chromosome number of x=15 for tribe Theeae. Because of variable and sometimes conflicting chromosome count reports of species in tribes Schimeae and Stewartieae, the base chromosome number of Theaceae could be either x=15 or 17.  相似文献   

12.
We used molecular characters to infer the phylogenetic position of the Western Mediterranean bushcricket genus Odontura and to trace its high karyotype diversity. Analysis of 1391 base pairs of two mitochondrial genes (COI and ND1) and one nuclear sequence (ITS2) was conducted. Phylogenetic topologies were estimated using maximum parsimony, maximum likelihood and likelihood‐based Bayesian inference. The genus Odontura is a phylogenetic outlier in respect of all other European Phaneropterinae genera and has been proposed to have originated from a hitherto unknown ancestor. Our results support the monophyly of the genus Odontura and the recognition of two subgenera: Odontura and Odonturella. We found that both Sicilian taxa of the subgenus Odontura have a completely identical morphology and song patterns. Combining these results, we proposed that both should be treated as subspecies: O. (Odontura) stenoxypha stenoxypha and O. (O.) st. arcuata. Bioacoustic data also proved to support independent markers, with song characteristics reflecting the molecular topology. Mapping the karyotypic characters onto the phylogenetic tree allows a reconstruction of the directions and transitional stages of chromosome differentiation. The number of autosomes within the genus Odontura ranges from 26 to 30. In addition to the ancestral X0 sex determination mechanism, neo‐XY and neo‐X1X2Y sex chromosomes have evolved independently.  相似文献   

13.
14.
  • Knowledge on the metabolism of polysaccharide reserves in wild species is still scarce. In natural sites we collected tubers of Arum italicum Mill. and A. maculatum L. – two geophytes with different apparent phenological timing, ecology and chorology – during five stages of the annual cycle in order to understand patterns of reserve accumulation and degradation.
  • Both the entire tuber and its proximal and distal to shoot portion were utilised. Pools of non‐structural carbohydrates (glucose, sucrose and starch), glucose‐6‐phosphate and ATP were analysed as important markers of carbohydrate metabolism.
  • In both species, starch and glucose content of the whole tuber significantly increased from sprouting to the maturation/senescence stages, whereas sucrose showed an opposite trend; ATP and glucose‐6‐phosphate were almost stable and dropped only at the end of the annual cycle. Considering the two different portions of the tuber, both ATP and glucose‐6‐phosphate concentrations were higher in proximity to the shoot in all seasonal stages, except the flowering stage.
  • Our findings suggest that seasonal carbon partitioning in the underground organ is driven by phenology and occurs independently of seasonal climate conditions. Moreover, our results show that starch degradation, sustained by elevated ATP and glucose‐6‐phosphate pools, starts in the peripheral, proximal‐to‐shoot portion of the tuber, consuming starch accumulated in the previous season, as a ‘Last In–First Out’ mechanism of carbohydrate storage.
  相似文献   

15.

Background and Aims

Since the advent of molecular phylogenetics, numerous attempts have been made to infer the evolutionary trajectories of chromosome numbers on DNA phylogenies. Ideally, such inferences should be evaluated against cytogenetic data. Towards this goal, we carried out phylogenetic modelling of chromosome number change and fluorescence in situ hybridization (FISH) in a medium sized genus of Araceae to elucidate if data from chromosomal markers would support maximum likelihood-inferred changes in chromosome numbers among close relatives. Typhonium, the focal genus, includes species with 2n = 65 and 2n = 8, the lowest known count in the family.

Methods

A phylogeny from nuclear and plastid sequences (96 taxa, 4252 nucleotides) and counts for all included species (15 of them first reported here) were used to model chromosome number evolution, assuming discrete events, such as polyploidization and descending or ascending dysploidy, occurring at different rates. FISH with three probes (5S rDNA, 45S rDNA and Arabidopsis-like telomeres) was performed on ten species with 2n = 8 to 2n = 24.

Key Results

The best-fitting models assume numerous past chromosome number reductions. Of the species analysed with FISH, the two with the lowest chromosome numbers contained interstitial telomeric signals (Its), which together with the phylogeny and modelling indicates decreasing dysploidy as an explanation for the low numbers. A model-inferred polyploidization in another species is matched by an increase in rDNA sites.

Conclusions

The combination of a densely sampled phylogeny, ancestral state modelling and FISH revealed that the species with n = 4 is highly derived, with the FISH data pointing to a Robertsonian fusion-like chromosome rearrangement in the ancestor of this species.  相似文献   

16.
In this work, we have analysed the karyotypes of six species of Timarcha for the first time and updated the cytological information for two additional taxa, for one of them confirming previous results ( Timarcha erosa vermiculata ), but not for the other ( T. scabripennis ). We describe the remarkable karyotype of T. aurichalcea , the lowest chromosome number in the genus (2 n  = 18), distinctive as well for the presence of an unusual chiasmatic sexual bivalent hitherto unreported for Timarcha . This study increases the number of species studied cytologically in this genus to forty. Additional cytogenetic analyses are performed on several species, including Ag-NOR staining and fluorescent in situ hybridization (FISH) studies with ribosomal DNA probes. Karyotype evolution is analysed by tracing different karyotype coding strategies on a published independent phylogenetic hypothesis for Timarcha based on the study of three genetic markers. The implementation of a likelihood model of character change optimized onto the phylogeny is tentatively used to detect possible drifts in chromosome changes. These analyses show that karyotype is conservative in the evolution of the genus and that there is an apparent trend to reducing chromosome number. Cytological and phylogenetic data are used to explain the evolutionary origin of the karyotype of T. aurichalcea by two centric fusions involving one pair of acrocentric autosomes and the sexual chromosomes.  相似文献   

17.
Antheraea pernyi is a semi‐domesticated lepidopteran insect species valuable to the silk industry, human health, and ecological tourism. Owing to its economic influence and developmental properties, it serves as an ideal model for investigating divergence of the Bombycoidea super family. However, studies on the karyotype evolution and functional genomics of A. pernyi are limited by scarce genomic resource. Here, we applied PacBio sequencing and chromosome structure capture technique to assemble the first high‐quality A. pernyi genome from a single male individual. The genome is 720.67 Mb long with 49 chromosomes and a 13.77‐Mb scaffold N50. Approximately 441.75 Mb, accounting for 60.74% of the genome, was identified as repeats. The genome comprises 21,431 protein‐coding genes, 85.22% of which were functionally annotated. Comparative genomics analysis suggested that A. pernyi diverged from its common ancestor with A. yamamai ~30.3 million years ago, and that chromosome fission contributed to the increased chromosome number. The genome assembled in this work will not only facilitate future research on A. pernyi and related species but also help to progress comparative genomics analyses in Lepidoptera.  相似文献   

18.
鼠尾草属(Salvia)是唇形科(Lamiaceae)最大的属,属下多种为民间常用草药,亦有供观赏的种类。为探究横断山区物种在细胞学水平的进化方式,讨论形态分类学与分子系统学之间的分类关系,该研究通过广泛收集染色体文献资料,采用植物常规压片法对采集自横断山地区6种8居群鼠尾草属植物进行核型分析,并构建了中国地区分布的鼠尾草属植物叶绿体系统发育树。统计结果表明:(1)全世界范围内报道了约23%的鼠尾草属植物染色体数据,其中分布在中国地区的鼠尾草属植物染色体报道率为32.10%,分布在横断山地区的鼠尾草属植物报道率为40.54%,(2)鼠尾草属植物染色体基数以x=8和x=11为主,分布在中国地区的鼠尾草属植物染色体基数均为x=8。实验结果表明:(1)西藏鼠尾草(S. wardii)核型数据为首次报道。(2)雪山鼠尾草(S. evansiana)首次在云南德钦地区发现二倍体居群。将细胞学数据结合叶绿体进化树开展染色体进化关联分析,论证多倍化可能不是鼠尾草属物种适应高海拔环境的主要机制,表明多倍体不是该属物种形成的主要进化途径而是以二倍体水平为主,推测染色体组的加倍可能是物种在形态学与分子系统学上分类关系不一致的原因之一。该研究丰富了横断山区鼠尾草属植物的染色体核型数据,结合区域分子系统树探讨染色体特征的进化关系,为今后深入研究该属物种的核型进化做出了探索,为开展祖先物种染色体基数推演分析补充了基础数据。  相似文献   

19.
The diversity of phenotypically different and often reproductively isolated lacustrine forms of charrs of the genus Salvelinus represents a substantial problem for taxonomists and evolutionary biologists. Based on the analysis of variability of ten microsatellite loci and two fragments of mitochondrial DNA (control region and cyt‐b gene), the evolutionary history of three charr species from Lake El'gygytgyn was reconstructed, and phylogenetic relationships between the main representatives of the genus were revealed. Three species from Lake El'gygytgyn were strongly reproductively isolated. Long‐finned charr described previously as Salvethymus svetovidovi, an ancient endemic form in the lake, originated 3.5 Mya (95% Bayesian credible intervals: 1.7, 6.1). Placement of this species in the phylogenetic tree of Salvelinus was not determined strictly, but it should be located in the basal part of the clade Salvelinus alpinus – S. malma species complex. The origin of small‐mouth charr S. elgyticus and Boganida charr S. boganidae in Lake El'gygytgyn was related to allopatric speciation. Their ancestors were represented by two glacial lineages of Taranets charr S. alpinus taranetzi from Asia. In Lake El'gygytgyn, these lineages entered into secondary contact postglacially. A revision of the main phylogenetic groups within the Salvelinus alpinus – S. malma complex is conducted. The Boganida charrs from Lakes El'gygytgyn and Lama (Taimyr) belong to different phylogenetic groups of Arctic charr and should not be regarded as a single species S. boganidae. Using the charrs from Lakes El'gygytgyn and Lama as a case study, we show that a model of sympatric speciation, which seemed more probable based on previous empirical evidence, was rejected by other data.  相似文献   

20.
Studies on Chenopodium chromosomes are scarce and restricted mainly to chromosome number estimation. To extend our knowledge on karyotype structure of the genus, the organization of 5S and 35S rRNA genes in Chenopodium chromosomes was studied. The rDNA sites were predominantly located at chromosomal termini, except in a few species where 5S rDNA sites were interstitial. The majority of the diploid species possessed one pair each of 35S and 5S rDNA sites located on separate chromosomes. Slightly higher diversity in rDNA site number was observed in polyploid accessions. One or two pairs of 35S rDNA sites were observed in tetraploids and hexaploids. Tetraploid species had two, four or six sites and hexaploid species had six or eight sites of 5S rDNA, respectively. These data indicate that, in the evolution of some polyploid species, there has been a tendency to reduce the number of rDNA sites. Additionally, polymorphism in rDNA site number was observed. Possible mechanisms of rDNA locus evolution are discussed. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号