首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Mechanically bendable and flexible functionalities are urgently required for next‐generation battery systems that will be included in soft and wearable electronics, active sportswear, and origami‐based deployable space structures. However, it is very difficult to synthesize anode and cathode electrodes that have high energy density and structural reliability under large bending deformation. Here, vanadium oxide (V2O5) and nickel cobalt oxide (NiCo2O4) nanowire‐carbon fabric electrodes for highly flexible and bendable lithium ion batteries are reported. The vanadium oxide and nickel cobalt oxide nanowires were directly grown on plasma‐treated carbon fabric and were used as cathode and anode electrodes in a full cell lithium ion battery. Most importantly, a pre‐lithiation process was added to the nickel cobalt oxide nanowire anode to facilitate the construction of a full cell using symmetrically‐architectured nanowire‐carbon fabric electrodes. The highly bendable full cell based on poly(ethylene oxide) polymer electrolyte and room temperature ionic liquid shows high energy density of 364.2 Wh kg?1 at power density of 240 W kg?1, without significant performance degradation even under large bending deformations. These results show that vanadium oxide and lithiated nickel cobalt oxide nanowire‐carbon fabrics are a good combination for binder‐free electrodes in highly flexible lithium‐ion batteries.  相似文献   

2.
Partially amorphous La0.6Sr0.4CoO3‐δ (LSC) thin‐film cathodes are fabricated using pulsed laser deposition and are integrated in free‐standing micro‐solid oxide fuel cells (micro‐SOFC) with a 3YSZ electrolyte and a Pt anode. A low degree of crystallinity of the LSC layers is achieved by taking advantage of the miniaturization of the cells, which permits low‐temperature operation (300–450 °C). Thermomechanically stable micro‐SOFC are obtained with strongly buckled electrolyte membranes. The nanoporous columnar microstructure of the LSC layers provides a large surface area for oxygen incorporation and is also believed to reduce the amount of stress at the cathode/electrolyte interface. With a high rate of failure‐free micro‐SOFC membranes, it is possible to avoid gas cross‐over and open‐circuit voltages of 1.06 V are attained. First power densities as high as 200–262 mW cm?2 at 400–450 °C are achieved. The area‐specific resistance of the oxygen reduction reaction is lower than 0.3 Ω cm2 at 400 °C around the peak power density. These outstanding findings demonstrate that partially amorphous oxides are promising electrode candidates for the next‐generation of solid oxide fuel cells working at low‐temperatures.  相似文献   

3.
Nearly all implantable bioelectronics are powered by bulky batteries which limit device miniaturization and lifespan. Moreover, batteries contain toxic materials and electrolytes that can be dangerous if leakage occurs. Herein, an approach to fabricate implantable protein‐based bioelectrochemical capacitors (bECs) employing new nanocomposite heterostructures in which 2D reduced graphene oxide sheets are interlayered with chemically modified mammalian proteins, while utilizing biological fluids as electrolytes is described. This protein‐modified reduced graphene oxide nanocomposite material shows no toxicity to mouse embryo fibroblasts and COS‐7 cell cultures at a high concentration of 1600 µg mL?1 which is 160 times higher than those used in bECs, unlike the unmodified graphene oxide which caused toxic cell damage even at low doses of 10 µg mL?1. The bEC devices are 1 µm thick, fully flexible, and have high energy density comparable to that of lithium thin film batteries. COS‐7 cell culture is not affected by long‐term exposure to encapsulated bECs over 4 d of continuous charge/discharge cycles. These bECs are unique, protein‐based devices, use serum as electrolyte, and have the potential to power a new generation of long‐life, miniaturized implantable devices.  相似文献   

4.
Sodium‐ion capacitors (SICs) are emerging energy storage devices with high energy, high power, and durable life. Sn is a promising anode material for lithium storage, but the poor conductivity of the a‐NaSn phase upon sodaition hinders its implementation in SICs. Herein, a superior Sn‐based anode material consisting of plum pudding‐like Co2P/Sn yolk encapsulated with nitrogen‐doped carbon nanobox (Co2P/Sn@NC) for high‐performance SICs is reported. The 8–10 nm metallic nanoparticles produced in situ are uniformly dispersed in the amorphous Sn matrix serving as conductive fillers to facilitate electron transfer in spite of the formation of electrically resistive a‐NaSn phase during cycling. Meanwhile, the carbon shell buffers the large expansion of active Sn and provides a stable electrode–electrolyte interface. Owing to these merits, the yolk–shell Co2P/Sn@NC demonstrates a large capacity of 394 mA h g?1 at 100 mA g?1, high rate capability of 168 mA h g?1 at 5000 mA g?1, and excellent cyclability with 87% capacity retention after 10 000 cycles. By integrating the Co2P/Sn@NC anode with a peanut shell‐derived carbon cathode in the SIC, high energy densities of 112.3 and 43.7 Wh kg?1 at power densities of 100 and 10 000 W kg?1 are achieved.  相似文献   

5.
The integration of highly conductive solid‐state electrolytes (SSEs) into solid‐state cells is still a challenge mainly due to the high impedance existing at the electrolyte/electrode interface. Although solid‐state garnet‐based batteries have been successfully assembled with the assistance of an intermediate layer between the garnet and the Li metal anode, the slow discharging/charging rates of the batteries inhibits practical applications, which require much higher power densities. Here, a crystalline sulfonated‐covalent organic framework (COF) thin layer is grown on the garnet surface via a simple solution process. It not only significantly improves the lithiophilicity of garnet electrolytes via the lithiation of the COF layer with molten Li, but also creates effective Li+ diffusion “highways” between the garnet and the Li metal anode. As a result, the interfacial impedance of symmetric solid‐state Li cells is significantly decreased and the cells can be operated at high current densities up to 3 mA cm?2, which is difficult to achieve with current interfacial modification technologies for SSEs. The solid‐state Li‐ion batteries using LiFePO4 cathodes, Li anodes, and COF‐modified garnet electrolytes thus exhibit a significantly improved rate capability.  相似文献   

6.
Hard carbon (HC) is the state‐of‐the‐art anode material for sodium‐ion batteries (SIBs). However, its performance has been plagued by the limited initial Coulombic efficiency (ICE) and mediocre rate performance. Here, experimental and theoretical studies are combined to demonstrate the application of lithium‐pretreated HC (LPHC) as high‐performance anode materials for SIBs by manipulating the solid electrolyte interphase in tetraglyme (TEGDME)‐based electrolyte. The LPHC in TEGDME can 1) deliver > 92% ICE and ≈220 mAh g?1 specific capacity, twice of the capacity (≈100 mAh g?1) in carbonate electrolyte; 2) achieve > 85% capacity retention over 1000 cycles at 1000 mA g?1 current density (4 C rate, 1 C = 250 mA g?1) with a specific capacity of ≈150 mAh g?1, ≈15 times of the capacity (10 mAh g?1) in carbonate. The full cell of Na3V2(PO4)3‐LPHC in TEGDME demonstrated close to theoretical specific capacity of ≈98 mAh g?1 based on Na3V2(PO4)3 cathode, ≈2.5 times of the value (≈40 mAh g?1) with nontreated HC. This work provides new perception on the anode development for SIBs.  相似文献   

7.
Based on a liquid metal (eutectic alloy with 90 wt% gallium and 10 wt% indium) anode, a soft, highly elastic, discharge‐current‐controllable, cable‐shaped liquid metal–air battery operated at 25 °C, with effective reactions of Ga ? 3e? → Ga3+ and O2 + 2H2O + 4e? → 4OH? is presented. In the liquid metal electrode, indium is used not only to inhibit the corrosion of gallium in the alkaline electrolyte but also to maintain the liquid state of the anode at room temperature. Thus, the liquid anode can be easily injected into (or extracted from) the battery cavity, leading to an easily renewable anode. In addition, the cable‐shaped battery shows a pressure‐responsive discharge current, owing to the soft, deformable battery body. Due to the liquid anode and flexible carbon fiber‐based cathode, the battery is highly flexible (bending radius < 1 mm) and easily recovers from any degree of bending without electrochemical performance impairment. With its elastic polyacrylic acid‐based gel electrolyte, the battery shows high elasticity, stretching by up to 100% (from 12 to 24 cm), excellent shape recovery from stretched states, and a discharge performance retention of 98.87%. Moreover, this paper provides the possibility to develop a deformable battery based on the liquid metal material.  相似文献   

8.
All‐solid‐state Li‐ion batteries based on Li7La3Zr2O12 (LLZO) garnet structures require novel electrode assembly strategies to guarantee a proper Li+ transfer at the electrode–electrolyte interfaces. Here, first stable cell performances are reported for Li‐garnet, c‐Li6.25Al0.25La3Zr2O12, all‐solid‐state batteries running safely with a full ceramics setup, exemplified with the anode material Li4Ti5O12. Novel strategies to design an enhanced Li+ transfer at the electrode–electrolyte interface using an interface‐engineered all‐solid‐state battery cell based on a porous garnet electrolyte interface structure, in which the electrode material is intimately embedded, are presented. The results presented here show for the first time that all‐solid‐state Li‐ion batteries with LLZO electrolytes can be reversibly charge–discharge cycled also in the low potential ranges (≈1.5 V) for combinations with a ceramic anode material. Through a model experiment, the interface between the electrode and electrolyte constituents is systematically modified revealing that the interface engineering helps to improve delivered capacities and cycling properties of the all‐solid‐state Li‐ion batteries based on garnet‐type cubic LLZO structures.  相似文献   

9.
All‐solid‐state thin film lithium batteries are promising devices to power the next generations of autonomous microsystems. Nevertheless, some industrial constraints such as the resistance to reflow soldering (260 °C) and to short‐circuiting necessitate the replacement of the lithium anode. In this study, a 2 V lithium‐ion system based on amorphous silicon nanofilm anodes (50–200 nm thick), a LiPON electrolyte, and a new lithiated titanium oxysulfide cathode Li1.2TiO0.5S2.1 is prepared by sputtering. The determination of the electrochemical behavior of each active material and of whole systems with different configurations allows the highlighting of the particular behavior of the LixSi electrode and the understanding of its consequences on the performance of Li‐ion cells. Lithium‐ion microbatteries processed with industrial tools and embedded in microelectronic packages exhibit particularly high cycle life (?0.006% cycle?1), ultrafast charge (80% capacity in 1 min), and tolerate both short‐circuiting and reflow soldering. Moreover, the perfect stability of the system allows the assignment of some modifications of the voltage curve and a slow and reversible capacity fade occurring in specific conditions, to the formation of Li15Si4 and to the expression of a “memory effect.” These new findings will help to optimize the design of future Li‐ion systems using nanosized silicon anodes.  相似文献   

10.
BaZr0.7Sn0.1Y0.2O3–δ (BZSY) is developed as a novel chemically stable proton conductor for solid oxide fuel cells (SOFCs). BZSY possesses the same cubic symmetry of space group Pm‐3m with BaZr0.8Y0.2O3‐δ (BZY). Thermogravimetric analysis (TGA) and X‐ray photoelectron spectra (XPS) results reveal that BZSY exhibits remarkably enhanced hydration ability compared to BZY. Correspondingly, BZSY shows significantly improved electrical conductivity. The chemical stability test shows that BZSY is quite stable under atmospheres containing CO2 or H2O. Fully dense BZSY electrolyte films are successfully fabricated on NiO–BZSY anode substrates followed by co‐firing at 1400 °C for 5 h and the film exhibits excellent electrical conductivity under fuel cell conditions. The single cell with a 12‐μm‐thick BZSY electrolyte film outputs by far the best performance for acceptor‐doped BaZrO3‐based SOFCs. With wet hydrogen (3% H2O) as the fuel and static air as the oxidant, the peak power density of the cell achieves as high as 360 mWcm?2 at 700 °C, an increase of 42% compared to the reported highest performance of BaZrO3‐based cells. The encouraging results demonstrate that BZSY is a good candidate as the electrolyte material for next generation high performance proton‐conducting SOFCs.  相似文献   

11.
Sodium‐ion batteries (SIBs) that operate in a wide temperature range are in high demand for practical large‐scale electric energy storage. Herein, a novel full SIB is composed of a bulk Bi anode, a Na3V2(PO4)3/carbon nanotubes composite (NVP‐CNTs) cathode and a NaPF6‐diglyme electrolyte. The Bi anode gradually evolves into a porous network in the ether‐based electrolyte during initial cycles, and in the NVP‐CNTs cathode the NVP is cross linked by CNTs to show large exchange current density. These unique features merit the full SIB of Bi//NVP‐CNTs with high Na+ diffusion coefficient and low reaction activation energy, and hence fast Na+ transport and facile redox reaction kinetics. The resultant full SIB presents high power density of 2354.6 W kg?1 and energy density of 150 Wh kg?1 and superior cycling stability in a wide temperature range from ?15 to 45 °C. This will shed light on battery design, and promote their development for practical applications in various weather conditions.  相似文献   

12.
Potassium ion hybrid capacitors have great potential for large‐scale energy devices, because of the high power density and low cost. However, their practical applications are hindered by their low energy density, as well as electrolyte decomposition and collector corrosion at high potential in potassium bis(fluoro‐sulfonyl)imide‐based electrolyte. Therefore, anode materials with high capacity, a suitable voltage platform, and stability become a key factor. Here, N‐doping carbon‐coated FeSe2 clusters are demonstrated as the anode material for a hybrid capacitor, delivering a reversible capacity of 295 mAh g?1 at 100 mA g?1 over 100 cycles and a high rate capability of 158 mAh g?1 at 2000 mA g?1 over 2000 cycles. Meanwhile, through density functional theory calculations, in situ X‐ray diffraction, and ex situ transmission electron microscopy, the evolution of FeSe2 to Fe3Se4 for the electrochemical reaction mechanism is successfully revealed. The battery‐supercapacitor hybrid using commercial activated carbon as the cathode and FeSe2/N‐C as the anode is obtained. It delivers a high energy density of 230 Wh kg?1 and a power density of 920 W kg?1 (the energy density and power density are calculated based on the total mass of active materials in the anode and cathode).  相似文献   

13.
Alloy materials such as Si and Ge are attractive as high‐capacity anodes for rechargeable batteries, but such anodes undergo severe capacity degradation during discharge–charge processes. Compared to the over‐emphasized efforts on the electrode structure design to mitigate the volume changes, understanding and engineering of the solid‐electrolyte interphase (SEI) are significantly lacking. This work demonstrates that modifying the surface of alloy‐based anode materials by building an ultraconformal layer of Sb can significantly enhance their structural and interfacial stability during cycling. Combined experimental and theoretical studies consistently reveal that the ultraconformal Sb layer is dynamically converted to Li3Sb during cycling, which can selectively adsorb and catalytically decompose electrolyte additives to form a robust, thin, and dense LiF‐dominated SEI, and simultaneously restrain the decomposition of electrolyte solvents. Hence, the Sb‐coated porous Ge electrode delivers much higher initial Coulombic efficiency of 85% and higher reversible capacity of 1046 mAh g?1 after 200 cycles at 500 mA g?1, compared to only 72% and 170 mAh g?1 for bare porous Ge. The present finding has indicated that tailoring surface structures of electrode materials is an appealing approach to construct a robust SEI and achieve long‐term cycling stability for alloy‐based anode materials.  相似文献   

14.
Although potassium‐ion batteries (KIBs) have been considered to be promising alternatives to conventional lithium‐ion batteries due to large abundance and low cost of potassium resources, their development still stays at the infancy stage due to the lack of appropriate cathode and anode materials with reversible potassium insertion/extraction as well as good rate and cycling performance. Herein, a novel dual‐carbon battery based on a potassium‐ion electrolyte (named as K‐DCB), utilizing expanded graphite as cathode material and mesocarbon microbead as anode material is developed. The working mechanism of the K‐DCB is investigated, which is further demonstrated to deliver a high reversible capacity of 61 mA h g‐1 at a current density of 1C over a voltage window of 3.0–5.2 V, as well as good cycling performance with negligible capacity decay after 100 cycles. Moreover, the high working voltage with medium discharge voltage of 4.5 V also enables the K‐DCB to meet the requirement of some high‐voltage devices. With the merits of environmental friendliness, low cost and high energy density, the K‐DCB shows attractive potential for future energy storage application.  相似文献   

15.
Aqueous Zn‐based batteries are attracting extensive interest because of their economic feasibility and potentially high energy density. However, poor rechargeability of Zn anode in conventional electrolytes resulting from dendrite formation and self‐corrosion hinders their practical implementation. Herein, a Zn molten hydrate composed of inorganic Zn salt and water is demonstrated as an advantageous electrolyte for solving these issues. In this electrolyte, dendrite‐free Zn deposition/dissolution reaction with a high Coulombic efficiency (≈99%) as well as long‐term stability, free from CO2 poisoning are realized. The resultant Zn–air cell exhibits a reversible capacity of 1000 mAh g(catalyst)?1 over 100 cycles at 30 °C. Combined with the intrinsic safety associated with aqueous chemistry and cost benefit of the raw material, the present Zn–air battery makes a strong candidate for large‐scale energy storage.  相似文献   

16.
Minimizing electrolyte use is essential to achieve high practical energy density of lithium–sulfur (Li–S) batteries. However, the sulfur cathode is more readily passivated under a lean electrolyte condition, resulting in low sulfur utilization. In addition, continuous electrolyte decomposition on the Li metal anode aggravates the problem, provoking rapid capacity decay. In this work, the dual functionalities of NO3? as a high‐donor‐number (DN) salt anion is presented, which improves the sulfur utilization and cycling stability of lean‐electrolyte Li–S batteries. The NO3? anion elevates the solubility of the sulfur species based on its high electron donating ability, achieving a high sulfur utilization of above 1200 mA h g?1. Furthermore, the anion suppresses electrolyte decomposition on the Li metal by regulating the lithium ion (Li+) solvation sheath, enhancing the cycle performance of the lean electrolyte cell. By understanding the anionic effects, this work demonstrates the potential of the high‐DN electrolyte, which is beneficial for both the cathode and anode of Li–S batteries.  相似文献   

17.
The lithium (Li) metal battery (LMB) is one of the most promising candidates for next‐generation energy storage systems. However, it is still a significant challenge to operate LMBs with high voltage cathodes under high rate conditions. In this work, an LMB using a nickel‐rich layered cathode of LiNi0.76Mn0.14Co0.10O2 (NMC76) and an optimized electrolyte [0.6 m lithium bis(trifluoromethanesulfonyl)imide + 0.4 m lithium bis(oxalato)borate + 0.05 m LiPF6 dissolved in ethylene carbonate and ethyl methyl carbonate (4:6 by weight)] demonstrates excellent stability at a high charge cutoff voltage of 4.5 V. Remarkably, these Li||NMC76 cells can deliver a high discharge capacity of >220 mA h g?1 (846 W h kg?1) and retain more than 80% capacity after 1000 cycles at high charge/discharge current rates of 2C/2C (1C = 200 mA g?1). This excellent electrochemical performance can be attributed to the greatly enhanced structural/interfacial stability of both the Ni‐rich NMC76 cathode material and the Li metal anode using the optimized electrolyte.  相似文献   

18.
A novel method that embeds Pt voltage probes into the triple‐phase boundary (TPB) is developed. Moreover, the quantitative contributions of the anode, the cathode, and the electrolyte to cell performance are investigated in situ for anode‐supported planar solid oxide fuel cells (SOFCs). The voltage and maximum output power density (MOPD) measured by the probes, which are placed on both sides of the electrolyte, account for 97.3% and 94.4%, respectively, of those of the cell during the instantaneous current–voltage testing. When the stack is discharged at 0.32 A cm?2 for 200 h, the voltage drops of the anode, the cathode, and the electrolyte account for 76.9%, 15.4%, and 7.7%, respectively, of the total voltage drop of the unit cell. The ohmic resistance of the unit cell primarily depends on the resistance that results from the TPB. The variation in cell resistance is mainly attributed to the increase in anode polarization resistance caused by Ni particle agglomeration. However, cell voltage is more sensitive to the TPB ohmic resistance, which may be the primary factor for SOFC degradation.  相似文献   

19.
The rapid development of smart wearable and integrated electronic products has urgently increased the requirement for high‐performance microbatteries. Although few lithium ion microbatteries based on organic electrolytes have been reported so far, the problems, such as undesirable energy density, poor flexibility, inflammability, volatility toxicity, and high cost restrict their practical applications in the above‐mentioned electronic products. In order to overcome these problems, a low cost quasi‐solid‐state aqueous zinc ion microbattery (ZIMB) assembled by a vanadium dioxide (B)‐multiwalled carbon nanotubes (VO2 (B)‐MWCNTs) cathode, a zinc nanoflakes anode, and a zinc trifluoromethanesulfonate‐polyvinyl alcohol (Zn(CF3SO3)2‐PVA) hydrogel electrolyte is exploited. As expected, the ZIMB exhibits excellent electrochemical performance, e.g., a high capacity of 314.7 µAh cm?2, an ultrahigh energy density of 188.8 µWh cm?2, and a high power density of 0.61 mW cm?2. Furthermore, the ZIMB also shows high flexibility and excellent high temperature stability: the capacity has no obvious decay when the bending angle is up to 150° and the temperature reaches 100 °C. The ZIMB provides a way to develop next‐generation miniature energy storage devices with high performance.  相似文献   

20.
High ionic conductivity of up to 6.4 × 10?3 S cm?1 near room temperature (40 °C) in lithium amide‐borohydrides is reported, comparable to values of liquid organic electrolytes commonly employed in lithium‐ion batteries. Density functional theory is applied coupled with X‐ray diffraction, calorimetry, and nuclear magnetic resonance experiments to shed light on the conduction mechanism. A Li4Ti5O12 half‐cell battery incorporating the lithium amide‐borohydride electrolyte exhibits good rate performance up to 3.5 mA cm?2 (5 C) and stable cycling over 400 cycles at 1 C at 40 °C, indicating high bulk and interfacial stability. The results demonstrate the potential of lithium amide‐borohydrides as solid‐state electrolytes for high‐power lithium‐ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号