首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
L. Cattivelli  D. Bartels 《Planta》1989,178(2):184-188
The effect of cold treatment on gene expression in two different barley (Hordeum vulgare L.) cultivars has been studied. Cold stress induced a set of new mRNAs as determined by in-vitro translation of coleoptile RNA obtained from control and stressed seedlings. These mRNAs accumulated with different kinetics, and the cold-induced proteins could be grouped into five categories. The first category (a) is represented by a single protein with Mr of 75 kDa that reaches its highest level of expression after 6 h at 5°C. This polypeptide readily accumulates in the plant tissues and it can be detected when proteins separated by two-dimensional electrophoresis are stained with silver nitrate. The other polypeptides appear later during the 1- to 4-d stress period (protein groups b and c), increase (group d), or decrease during the period of treatment (group e). Only minor differences between the two cultivars with different cold-resistance capacities were found when the in-vitro translation products were compared. The results obtained demonstrate that several mRNAs are specifically expressed as a response to cold treatment in barley coleoptiles.Abbreviations 2-D two-dimensional - IEF isoelectrofocusing - Mr relative molecular weight - poly(A) polyadenylated - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

2.
We have characterized the general properties of the heat shock response of the Gram-positive hardy bacteriumEnterococcus faecalis. The heat resistance (60°C or 62.5°C, 30 min) of log phase cells ofE. faecalis grown at 37°C was enhanced by exposing cells to a prior heat shock at 45°C or 50°C for 30 min. These conditioning temperatures also induced ethanol (22%, v/v) tolerance. The onset of thermotolerance was accompanied by the synthesis of a number of heat shock proteins. The most prominent bands had molecular weights in the range of 48 to 94kDa. By Western blot analysis two of them were found to be immunologically related to the well known DnaK (72 kDa) and GroEL (63 kDa) heat shock proteins ofEscherichia coli. Four other proteins showing little or no variations after exposure to heat are related to DnaJ, GrpE and Lon (La)E. coli proteins and to theBacillus subtilis 43 factor. Ethanol (2% or 4%, v/v) treatments elicited a similar response although there was a weaker induction of heat shock proteins than with heat shock.  相似文献   

3.
Diapausing pharate first instars of the gypsy moth, Lymantria dispar, respond to high temperature (37–41°C) by suppressing normal protein synthesis and synthesizing a set of seven heat shock proteins with Mrs of 90,000, 75,000, 73,000, 60,000, 42,000, 29,000, and 22,000 as determined by SDS-PAGE. During recovery at 25°C from heat shock, synthesis of the heat shock proteins gradually decreases over a period of 6 h, while normal protein synthesis is restored. A subset of these same heat shock proteins is also expressed during recovery at 4°C or 25°C from brief exposures to low temperature (-10 to 20°C), and its expression is more intense with increased severity of cold exposure. During recovery at 4°C after 24 h at ?20°C, both 90,000 and 75,000 Mr heat shock proteins are expressed for more than 96 h. While normal protein synthesis is suppressed during heat shock and recovery from heat shock, normal protein synthesis coincides with synthesis of the heat shock proteins during recovery from low temperatures, thus implying that expression of the heat shock proteins is not invariably linked to suppression of normal protein synthesis. Western transfer, using a monoclonal antibody that recognizes the inducible form of the human 70,000 Mr heat shock protein, demonstrates that immunologically related proteins in the gypsy moth are expressed at 4°C and during recovery from cold and heat shock.  相似文献   

4.
The psychrotrophic bacterium Aeromonas hydrophila 7966 was subjected to cold shocks from 30°C to 20°C, 15°C, 10°C, or 5°C, or were incubated at low temperature to determine its adaptative response. The cell protein patterns analyzed by two-dimensional electrophoresis revealed that only a few proteins were underexpressed, whereas numerous new proteins appeared with the decrease of temperature, and some others were overexpressed. Among them, a few constituted cold shock proteins because they were transiently induced, whereas others belong to the acclimatation family proteins. Two cold shock proteins of 11 kDa were synthesized at low level because they were visualized only after radiolabeling or silver staining. Moreover, under our experimental conditions, no major cold shock protein of a molecular mass similar to that of E. coli (7.4 kDa) could be identified.  相似文献   

5.
The major heat shock proteins of Staphylococcus aureus had apparent Mrs of 84,000, 76,000, and 60,000, and other prominent proteins of Mrs 66,000, 51,000, 43,000 and 24,000 were also induced. Staphylococcus epidermidis showed a similar response. These proteins were also induced by CdCl2, ethanol and apparently osmotic stress (1.71 M NaCl or 2.25 M sucrose). Most of the proteins sedimented with the membrane fraction, but the Mr 60,000 protein remained in the cytoplasm.  相似文献   

6.
The pattern of puffing and protein synthesis was determined in individuals of Drosophila subobscura subjected to heat shock. Depending on the extent of the heat treatment, the response at the puffing level varied. Some puffs were expressed at 31°–34°C, and others at 37° C. Considering the response as a whole the depression of gene activity after shock at 31°–34° C in individuals raised at 19° C was greater than with the other treatments. Six major heat shock proteins (Hsps) were found in this species. The properties of the high molecular weight proteins are conserved their electrophoretic characteristics and the range of temperatures over which they are synthesized are close to those in other Drosophila species. Remarkable heterogeneity was found in the small Hsps. In addition, an Mr=41000 Hsp was clearly identified in this species. A low level of variability in the patterns of protein synthesis compared with those of puffing activity was detected.  相似文献   

7.
Thermotolerant Paenibacillus strain Dex70-1B and unidentified strain Dex70-34 produce thermoactive dextran-degrading enzymes. Plasmid-based genomic DNA libraries constructed from mixed bacterial cultures containing Dex70-1B or Dex70-34 were screened for the ability to confer dextranolytic activity at 70°C onto Escherichia coli. One gene, designated dex1, was isolated from each strain. The Dex70-1B and Dex70-34 dex1 gene sequences were non-identical, and encoded proteins containing 597 (Mr 68.6 kDa) and 600 amino acids (Mr 69.2 kDa), respectively. The Dex1 amino acid sequences were most similar to one another, and formed a new clade among the family 66 glycosyl hydrolase sequences. Expression of the Dex1 proteins in E. coli produced dextranolytic activity that converted ethanol-insoluble blue dextran into an ethanol-soluble form, suggestive of endodextranases (EC 3.2.1.11). Both enzymes were most active at about 60°C and pH 5.5, and retained more than 70% maximal activity after incubation at 57°C for 9.5 h in the absence of substrate.  相似文献   

8.
The cold shock response in the Gram-positive soil bacterium Bacillus subtilis is described. Cells were exposed to sudden decreases in temperature from their optimal growth temperature of 37°C. The B. subtilis cells were cold shocked at 25°C, 20°C, 15°C, and 10°C. A total of 53 polypeptides were induced at the various cold shock temperatures and were revealed by two-dimensional gel electrophoresis. General stress proteins were identified by a comparative analysis with the heat shock response of B. subtilis. Some unique, prominent cold shock proteins such as the 115 kDa, 97 kDa, and 21 kDa polypeptides were microsequenced. Sequence comparison demonstrated that the 115-kDa protein had homology to the TCA cycle enzyme, aconitase.  相似文献   

9.
NAD-specific glutamate dehydrogenase (NAD-GluDH; EC 1.4.1.2) was purified to homogeneity from Sporosarcina ureae DSM 320; the native enzyme (M r 250,000±25,000) is composed of subunits identical in molecular mass (M r 42,000±3,000), suggesting a hexameric structure. In cell-free extracts and in its purified form, the enzyme was heat-stable, retaining 50% activity after 15 min incubation at temperatures up to 82°C. When exposed to low temperatures at pH values between 7.0 and 9.0. cell-free extracts and purified preparations lost enzyme activity rapidly and irreversibly. The addition of substrates, glycerol, or sodium chloride improved the stability of the enzyme with respect to cold lability and heat stability.Abbreviation NAD-GluDH nicotinamide-adenine-dinucleotide-specific glutamate dehydrogenase  相似文献   

10.
The thermal sensitivity and heat shock response of the different races of the mulberry silkwormBombyx mori have been analysed. The multivoltine race, strainsC. Nichi andPure Mysore showed better survival rates than the bivoltine race, strainNB4D2 exposed to 41°C and above. In general, the fifth instar larvae and the pupae exhibited maximum tolerance compared to the early larval instars, adult moths or the eggs. Exposure up to 39°C for 1 or 2 h was tolerated equally whereas temperatures above 43°C proved to be lethal for all. Treatment of larvae at 41°C for 1 h resulted in a variety of physiological alterations including increased heart beat rates, differential haemocyte counts, enlargement of granulocytes and the presence of additional protein species in the tissues and haemolymph. The appearance of a 93 kDa protein in the haemolymph, fat bodies and cuticle, following the heat shocking of larvaein vivo was a characteristic feature in all the three strains examined although the kinetics of their appearance itself was different. In haemolymph, the protein appeared immediately in response to heat shock inC. Nichi reaching the maximal levels in 2–4 h whereas its presence was noticeable only after 2–4 h recovery time inPure Mysore and bivoltine races. The fat body from bothC. Nichi andNB4D2 showed the presence of 93 kDa, 89 kDa and 70 kDa proteins on heat shock. The haemocytes, on the other hand, expressed only a 70 kDa protein consequent to heat shock. The 93 kDa protein in the haemolymph, therefore could have arisen from some other tissue, possibly the fat body. The 93 kDa protein was detected after heat shock in pupae and adult moths as well, although the presence of an additional (56 kDa) protein was also apparent in the adults. The presence of 46 kDa and 28 kDa bands in addition to the 93 kDa band in the cuticular proteins immediately following heat shock was clearly discernible. The 70 kDa band did not show much changes in the cuticular proteins on heat shock. In contrast to the changes in protein profiles seen in tissues and haemolymph following heat shockin vivo, the heat treatment of isolated fat body or haemolymphin vitro resulted in protein degradation.  相似文献   

11.
The penicillin-binding protein (PBP) profiles of 33Clostridium perfringens and sixClostridium species isolated from clinically significant infections were analyzed. Three new PBPs—PBPs 2B, 4B, and 5B (84, 70, and 49 kDa respectively)—and a high-molecular-weight PBP 6 (45 kDa) were demonstrated in theC. perfringens isolates. In addition to PBPs 1 and 2, PBPs 2B and 4B were seen to show low binding affinities for penicillin, although further studies are required to determine their possible roles in the development of penicillin resistance. The PBP profiles of theC. perfringens isolates were complex. Variations in apparent molecular weights (M r s) of all PBPs, with the exception of PBP 5 and the presence or absence of PBPs 2, 3, and 4B, gave rise to nine different PBP patterns. The high-M rPBPs 5 and 6, which exhibited high-penicillin-binding affinities, were with only one exception consistent within theC. perfringens isolates. These PBPs 5 and 6 of theC. perfringens isolates and independent PBPs found in the otherClostridium species studied indicate that PBP analysis may assist in the differentiation ofClostridium spacies.  相似文献   

12.
Summary The monoclonal antibody MPM-2, which interacts with a mitosis-specific phosphorylated epitope, has been used to study phosphorylation of proteins in microspores and pollen ofBrassica napus. One- (1-D) and two-dimensional (2-D) immunoblots revealed that MPM-2 recognized a family of phosphorylated proteins in freshly isolated microspores and pollen. The same set of phosphorylated proteins was found after 8 h of culture at embryogenie (32 °C) and non-embryogenic (18 °C) conditions. Two major spots were observed on 2-D immunoblots, one of which (Mr75 kDa, pI5.1) co-localized with the 70 kDa heat shock protein. Immunolabelling of sectioned microspores and pollen showed that MPM-2 reactive epitopes were predominantly observed in the nucleoplasm from G1 until G2-phase, and in the cytoplasm during mitosis. This may be due to a cell cycle related translocation of phosphoproteins from the nucleus to the cytoplasm, or alternate phosphorylation and dephosphorylation in nucleus and cytoplasm. Detectability of epitopes on sections depended on the embedding procedure. Cryo processing revealed epitope reactivity in all stages of the cell cycle whereas polyethylene glycol embedded material showed no labelling in the cytoplasm during mitosis. Processing might reduce the antigenicity of cytoplasmic MPM-2 detectable proteins, probably due to dephosphorylation. The MPM-2 detectable epitope was observed in all cells investigated, irrespective of culture conditions, and its intracellular distribution depended on the cell cycle stage and was not related to the developmental fate of the microspores and pollen.  相似文献   

13.
We report the thermotolerance of new bivoltine silkworm, Bombyx mori strains NB4D2, KSO1, NP2, CSR2 and CSR4and differential expression of heat shock proteins at different instars. Different instars of silkworm larva were subjected to heat shock at 35°C, 40°C and 45°C for 2 hours followed by 2 hours recovery. Heat shock proteins were analyzed by SDS‐PAGE. The impact of heat shock on commercial traits of cocoons was analyzed by following different strategies in terms of acquired thermotolerance over control. Comparatively NP2 exhibited better survivability than other strains. Resistance to heat shock was increased as larval development proceeds in the order of first instar > second instar > third instar > fourth instar > fifth instar in all silkworm strains. Expression of heat shock proteins varies in different instars. 90 kDa in the first, second and third instars, 84 kDa in the fourth instar and 84, 62, 60, 47 and 33 kDa heat shock proteins in fifth instar was observed in response to heat shock. Relative influence of heat shock on commercial traits that correspond to different stages was significant in all strains. In NB4D2, cocoon and shell weight significantly increased to 17.52% and 19.44% over control respectively. Heat shock proteins as molecular markers for evaluation and evolution of thermotolerant silkworm strains for tropics was discussed.  相似文献   

14.
The effects of thermal stress on the induction of heat shock proteins (HSPs) were examined in northern bay scallops, Argopecten irradians irradians, a relatively heat tolerant estuarine species, and sea scallops, Placopecten magellanicus, a species residing in cooler, deeper water. Polyclonal antibodies used in this work for analysis of inducible HSP70 and HSP40 only recognized proteins of 72 and 40 kDa respectively from the mantles of both scallop species. Additionally, HSP quantification using the antibody to HSP70 was equally effective by either immunoprobing of western blots or ELISA, demonstrating that either approach could be successfully employed for analysis of thermal response in scallops. Sea scallop HSP70 and HSP40 did not change when animals were heat-shocked for 3 h by raising the temperature from 10 °C to 20 °C; however, a 24 h treatment of the same magnitude elicited a significant response. Conversely, bay scallops displayed rapid and prolonged HSP70 and HSP40 responses during the recovery period following a 3 h heat shock from 20 °C to 30 °C. Temperature reduction from 20 °C to 3 °C for 3 h also caused significant HSP70 and HSP40 increases in bay scallops; this represents the first time cold shock was shown to induce HSP synthesis in bivalve mollusks. The onset of the HSP40 response was more rapid than for HSP70, occurring at the end of the cold shock itself prior to transfer to a recovery temperature. Both proteins responded maximally during recovery at control temperature. HSP responses of sea and bay scallops to thermal stress may be related to their habitat in the natural environment and they suggest a differential capacity for adaptation to temperature change. This is an important consideration in assessing the response of these scallops to different culture conditions.  相似文献   

15.
Summary Leaves and stems from endod (Phytolacca dodecandra L'Herit), known to produce the 29 kDa ribosome-inactivating protein (RIP) dodecandrin, were initiated into tissue culture. Callus and suspension cultures were maintained on modified Murashige and Skoog medium plus 1.0 mg/l 2,4-dichlorophenoxyacetic acid. Six callus and two suspension cell lines were screened for dodecandrin production by western blots with affinitypurified antiserum. Antiribosomal activity of culture extracts was tested by in vitro translation assays. One suspension cell line was found to be free of immunoreactive proteins and a ribosome inhibitor. All other cell lines contain a ribosome inhibitor, although only two callus cell lines show detectable amounts of immunoreactive proteins at the same Mr as dodecandrin. Other immuno-reactive proteins were detected in callus (Mr 31000, 33000, 41000 and 43000) and in suspension cells (Mr 23000 and 43000), and may be ribosome inhibitors related to dodecandrin—either other RIPs or dodecandrin at various stages of processing.  相似文献   

16.
Conditions are described for the heat shock acquisition of thermotolerance, peroxide tolerance and synthesis of heat shock proteins (hsps) in the Antarctic, psychrophilic yeast Candida psychrophila. Cells grown at 15°C and heat shocked at 25°C (3 h) acquired tolerance to heat (35°C) and hydrogen peroxide (100 mM). Novel heat shock inducible proteins at 80 and 110 kDa were observed as well as the presence of hsp 90, 70 and 60. The latter hsps were not significantly heat shock inducible. The absence of hsp 104 was intriguing and it was speculated that the 110 kDa protein may play a role in stress tolerance in psychrophilic yeasts, similar to that of hsp 104 in mesophilic species.  相似文献   

17.
Eggs of the American horseshoe crab, Limulus polyphemus L., develop on sandy estuarine beaches during the spring and summer, and are potentially vulnerable to thermal stress during the 3-4 weeks of development to the first instar (trilobite) larval stage. In many marine taxa, heat shock (stress) proteins (Hsp's) help individuals acclimate to stresses by restoring the proper folding of cellular proteins whose shape has been altered by temperature shock or other forms of environmental stress. We examined the survival of embryos and first instar (trilobite) larvae following heat shock, and compared the levels of Hsp70 in heat shocked and control animals. Animals acclimated to 13 or 22 °C had close to 100% survival when heat shocked for 3 h at 35 or 40 °C, but exposure to 45 °C for 3 h was lethal. To study the effect of heat shock on Hsp70 production under environmentally realistic conditions, animals were acclimated to either 13 or 22 °C, heat-shocked at 35 °C for 3 h, and soluble proteins were extracted following 0, 2, 4, or 6 h recovery at 22 °C. The relative amounts of Hsp70 in horseshoe crab embryos and larvae were examined using SDS-PAGE and Western blotting. Relative to controls animals held at a constant temperature, there was a slight elevation of Hsp70 only among heat shocked trilobite larvae in the 6 h recovery treatment. Hsp70 levels did not differ significantly between control and heat shocked embryos. Horseshoe crabs have adapted to living in a thermally stressful environment by maintaining a high baseline (constitutive) level of cellular stress proteins such as Hsp70, rather than by synthesizing inducible Hsp's when stressful temperatures are encountered. This may be an effective strategy given that the heat shocks encountered by intertidal embryos and larvae occur regularly as a function of diurnal and tidal temperature changes.  相似文献   

18.
Urease (EC 3.5.1.5) catalyses the hydrolysis of urea to ammonia and carbon dioxide. The enzyme fromSporobolomyces roseus was enriched 780-fold and purified to apparent homogeneity using heat treatment, ion exchange chromatography on Q-Sepharose fast flow, hydrophobic interaction chromatography on Phenyl-Sepharose, size exclusion chromatography on Sephacryl S 300 HR, and ion exchange chromatography on MonoQ. Analysis of the purified enzyme by SDS-PAGE demonstrated the presence of subunits with a molecular weight of 90 (± 4) kDa. The M r of the native enzyme was estimated by size exclusion chromatography to be 340 (± 30) kDa, suggesting a tetrameric structure different from other ureases isolated so far from both prokaryotes and eukaryotes. The enzyme was heat-stable, showing no loss of activity after incubation at 70 °C for 15 min. The highest urease activities were observed after growth on media containing urea as the sole source of nitrogen.  相似文献   

19.
Embryo formation from microspores of Brassica oleracea var Italica (Broccoli) and other Brassica species is greatly enhanced by an initial incubation at elevated temperatures (eg 35°C) followed by continued incubation of 25°C. In the present study we observed that a three hour high temperature treatment induced the formation of heat shock proteins in cultured anthers. These were identified in two dimensional gels by silver staining, and labelled heat shock proteins were synthesised in vitro from isolated anther RNA. The appearance of heat shock proteins in anthers followed a similar pattern and displayed similar characteristics to that from leaves. Comparison of the heat shock proteins induced in isolated cultured anthers of known highly embryogenic and less embryogenic plans did not reveal obvious qualitative differences.  相似文献   

20.
Different strains of Thiobacillus ferrooxidans were examined for their ability to produce a heat shock and a cold shock response. Strain A1, heat shocked from 20° to 35°C, acquired thermotolerance, as it showed a 1000-fold reduction in cell mortality when exposed to the supermaximum temperature of 42°C, as compared to a non-heat-shocked control. A heat shock from 25° to 35°C yielded similar results, although a higher degree of thermotolerance was achieved for the shorter exposure times. Cultures heat shocked for 5 h showed a five-log reduction in viable counts after 41 h at 42°C, whereas non-heat-shocked cultures showed a similar reduction in viability in 28 h. Conferred thermotolerance was immediate and sustained for the duration of the exposure to 42°C. Heat-shocked cultures were not significantly protected against loss of viability due to freezing (-15°C for 24 h). Strain S2, cold shocked from 25° to 10°C, and strain D6, cold shocked from 25° to 5°C, were not protected against freezing at-15°C. An analysis of proteins extracted from heat-shocked cells of strain A1 showed the presence of at least one newly induced protein and eight hyper-induced proteins. The molecular weights of the heat shock proteins were in the range of 15–80.3 kDa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号