首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
T cell intracellular antigen-1 (TIA-1), an apoptosis promoting factor, functions as a splicing regulator for the Fas pre-mRNA. TIA-1 possesses three RNA recognition motifs (RRMs) and a glutamine-rich domain. The second RRM (RRM2) is necessary and sufficient for tight, sequence-specific binding to the uridine-rich sequences buried around the 5' splice sites. In the present study, we solved the solution structure of the murine TIA-1 RRM2 by heteronuclear-nuclear magnetic resonance spectroscopy. The TIA-1 RRM2 adopts the RRM fold (betaalphabetabetaalphabeta) and possesses an extra beta-strand between beta2 and beta3, which forms an additional beta-sheet with the C-terminal part of beta2. We refer to this structure as the beta2-beta2' beta-loop. Interestingly, this characteristic beta-loop structure is conserved among a number of RRMs, including the U2AF65 RRM2 and the Sex-lethal RRM1 and RRM2, which also bind to uridine-rich RNAs. Furthermore, we identified a new sequence motif in the beta2-beta2' beta-loop, the DxxT motif. Chemical shift perturbation analyses of both the main and side chains upon binding to the uridine pentamer RNA revealed that most of the beta-sheet surface, including the beta2-beta2' beta-loop, is involved in the RNA binding. An investigation of the chemical shift perturbation revealed similarity in the RNA recognition modes between the TIA-1 and U2AF65 RRMs.  相似文献   

2.
T-cell intracellular antigen-1 (TIA-1) is a DNA/RNA-binding protein that regulates critical events in cell physiology by the regulation of pre-mRNA splicing and mRNA translation. TIA-1 is composed of three RNA recognition motifs (RRMs) and a glutamine-rich domain and binds to uridine-rich RNA sequences through its C-terminal RRM2 and RRM3 domains. Here, we show that RNA binding mediated by either isolated RRM3 or the RRM23 construct is controlled by slight environmental pH changes due to the protonation/deprotonation of TIA-1 RRM3 histidine residues. The auxiliary role of the C-terminal RRM3 domain in TIA-1 RNA recognition is poorly understood, and this work provides insight into its binding mechanisms.  相似文献   

3.
T-cell intracellular antigen-1 (TIA-1) plays a pleiotropic role in cell homeostasis through the regulation of alternative pre-mRNA splicing and mRNA translation by recognising uridine-rich sequences of RNAs. TIA-1 contains three RNA recognition motifs (RRMs) and a glutamine-rich domain. Here, we characterise its C-terminal RRM2 and RRM3 domains. Notably, RRM3 contains an extra novel N-terminal α-helix (α(1)) which protects its single tryptophan from the solvent exposure, even in the two-domain RRM23 context. The α(1) hardly affects the thermal stability of RRM3. On the contrary, RRM2 destabilises RRM3, indicating that both modules are tumbling together, which may influence the RNA binding activity of TIA-1.  相似文献   

4.
The U1 small nuclear ribonucleoprotein (U1 snRNP) binds to the pre-mRNA 5' splice site (ss) at early stages of spliceosome assembly. Recruitment of U1 to a class of weak 5' ss is promoted by binding of the protein TIA-1 to uridine-rich sequences immediately downstream from the 5' ss. Here we describe a molecular dissection of the activities of TIA-1. RNA recognition motifs (RRMs) 2 and 3 are necessary and sufficient for binding to the pre-mRNA. The non- consensus RRM1 and the C-terminal glutamine-rich (Q) domain are required for association with U1 snRNP and to facilitate its recruitment to 5' ss. Co-precipitation experiments revealed a specific and direct interaction involving the N-terminal region of the U1 protein U1-C and the Q-rich domain of TIA-1, an interaction enhanced by RRM1. The results argue that binding of TIA-1 in the vicinity of a 5' ss helps to stabilize U1 snRNP recruitment, at least in part, via a direct interaction with U1-C, thus providing one molecular mechanism for the function of this splicing regulator.  相似文献   

5.
6.
The RNA recognition motif (RRM) is a prevalent class of RNA binding domains. Although a number of RRM/RNA structures have been determined, thermodynamic analyses are relatively uncommon. Here, we use isothermal titration calorimetry to characterize single-stranded (ss)RNA binding by four representative RRM-containing proteins: (i) U2AF(65), (ii) SXL, (iii) TIA-1, and (iv) PAB. In all cases, ssRNA binding is accompanied by remarkably large favorable enthalpy changes (-30 to -60 kcal mol(-1)) and unfavorable entropy changes. Alterations of key RRM residues and binding sites indicate that under the nearly physiological conditions of these studies, large thermodynamic changes represent a signature of specific ssRNA recognition by RRMs.  相似文献   

7.
Polypyrimidine tract binding protein (PTB), an RNA binding protein containing four RNA recognition motifs (RRMs), is involved in both pre-mRNA splicing and translation initiation directed by picornaviral internal ribosome entry sites. Sequence comparisons previously indicated that PTB is a non-canonical RRM protein. The solution structure of a PTB fragment containing RRMs 3 and 4 shows that the protein consists of two domains connected by a long, flexible linker. The two domains tumble independently in solution, having no fixed relative orientation. In addition to the betaalphabetabetaalphabeta topology, which is characteristic of RRM domains, the C-terminal extension of PTB RRM-3 incorporates an unanticipated fifth beta-strand, which extends the RNA binding surface. The long, disordered polypeptide connecting beta4 and beta5 in RRM-3 is poised above the RNA binding surface and is likely to contribute to RNA recognition. Mutational analyses show that both RRM-3 and RRM-4 contribute to RNA binding specificity and that, despite its unusual sequence, PTB binds RNA in a manner akin to that of other RRM proteins.  相似文献   

8.
The essential pre-mRNA splicing factor, U2 auxiliary factor 65KD (U2AF(65)) recognizes the polypyrimidine tract (Py-tract) consensus sequence of the pre-mRNA using two RNA recognition motifs (RRMs), the most prevalent class of eukaryotic RNA-binding domain. The Py-tracts of higher eukaryotic pre-mRNAs are often interrupted with purines, yet U2AF(65) must identify these degenerate Py-tracts for accurate pre-mRNA splicing. Previously, the structure of a U2AF(65) variant in complex with poly(U) RNA suggested that rearrangement of flexible side-chains or bound water molecules may contribute to degenerate Py-tract recognition by U2AF(65). Here, the X-ray structure of the N-terminal RRM domain of U2AF(65) (RRM1) is described at 1.47 A resolution in the absence of RNA. Notably, RNA-binding by U2AF(65) selectively stabilizes pre-existing alternative conformations of three side-chains located at the RNA interface (Arg150, Lys225, and Arg227). Additionally, a flexible loop connecting the beta2/beta3 strands undergoes a conformational change to interact with the RNA. These pre-existing alternative conformations may contribute to the ability of U2AF(65) to recognize a variety of Py-tract sequences. This rare, high-resolution view of an important member of the RRM class of RNA-binding domains highlights the role of alternative side-chain conformations in RNA recognition.  相似文献   

9.
The U2 auxiliary factor large subunit (U2AF65) is an essential pre-mRNA splicing factor for the initial stages of spliceosome assembly. Tandem RNA recognition motifs (RRM)s of U2AF65 recognize polypyrimidine tract signals adjacent to 3' splice sites. Despite the central importance of U2AF65 for splice site recognition, the relative arrangement of the U2AF65 RRMs and the energetic forces driving polypyrimidine tract recognition remain unknown. Here, the solution conformation of the U2AF65 RNA binding domain determined using small angle x-ray scattering reveals a bilobal shape without apparent interdomain contacts. The proximity of the N and C termini within the inter-RRM configuration is sufficient to explain the action of U2AF65 on spliceosome components located both 5' and 3' to its binding site. Isothermal titration calorimetry further demonstrates that an unusually large enthalpy-entropy compensation underlies U2AF65 recognition of an optimal polyuridine tract. Qualitative similarities were observed between the pairwise distance distribution functions of the U2AF65 RNA binding domain and those either previously observed for N-terminal RRMs of Py tract-binding protein that lack interdomain contacts or calculated from the high resolution coordinates of a U2AF65 deletion variant bound to RNA. To further test this model, the shapes and RNA interactions of the wild-type U2AF65 RNA binding domain were compared with those of U2AF65 variants containing either Py tract-binding protein linker sequences or a deletion within the inter-RRM linker. Results of these studies suggest inter-RRM conformational plasticity as a possible means for U2AF65 to universally identify diverse pre-mRNA splice sites.  相似文献   

10.
T-cell-restricted intracellular antigen-1 (TIA-1) regulates alternative pre-mRNA splicing in the nucleus, and mRNA translation in the cytoplasm, by recognizing uridine-rich sequences of RNAs. As a step towards understanding RNA recognition by this regulatory factor, the X-ray structure of the central RNA recognition motif (RRM2) of human TIA-1 is presented at 1.95 Å resolution. Comparison with structurally homologous RRM-RNA complexes identifies residues at the RNA interfaces that are conserved in TIA-1-RRM2. The versatile capability of RNP motifs to interact with either proteins or RNA is reinforced by symmetry-related protein-protein interactions mediated by the RNP motifs of TIA-1-RRM2. Importantly, the TIA-1-RRM2 structure reveals the locations of mutations responsible for inhibiting nuclear import. In contrast with previous assumptions, the mutated residues are buried within the hydrophobic interior of the domain, where they would be likely to destabilize the RRM fold rather than directly inhibit RNA binding.  相似文献   

11.
Prp24 is an essential yeast U6 snRNP protein with four RNA recognition motifs (RRMs) that facilitates the association of U4 and U6 snRNPs during spliceosome assembly. Genetic interactions led to the proposal that RRMs 2 and 3 of Prp24 bind U6 RNA, while RRMs 1 and 4 bind U4 RNA. However, the function of each RRM has yet to be established through biochemical means. We compared the binding of recombinant full-length Prp24 and truncated forms lacking RRM 1 or RRM 4 with U6 RNA. Contrary to expectations, we found that the N-terminal segment containing RRM 1 is important for high-affinity binding to U6 RNA and for discrimination between wild-type U6 RNA and U6 with point mutations in the 3' intramolecular stem-loop. In contrast, deletion of RRM 4 and the C terminus did not significantly alter the affinity for U6 RNA, but resulted in the formation of higher order Prp24.U6 complexes. Truncation and internal deletion of U6 RNA mapped three Prp24-binding sites, with the central site providing most of the affinity for Prp24. A newly identified temperature-sensitive lethal point mutation in RRM 1 is exacerbated by mutations in the U6 RNA telestem, as is a mutation in RRM 2, but not one in RRM 3. We propose that RRMs 1 and 2 of yeast Prp24 bind the same central site in U6 RNA that is bound by the two RRMs of human Prp24, and that RRMs 3 and 4 bind lower affinity flanking sites, thereby restricting the stoichiometry of Prp24 binding.  相似文献   

12.
The essential splicing factors SF1 and U2AF play an important role in the recognition of the pre-mRNA 3' splice site during early spliceosome assembly. The structure of the C-terminal RRM (RRM3) of human U2AF(65) complexed to an N-terminal peptide of SF1 reveals an extended negatively charged helix A and an additional helix C. Helix C shields the potential RNA binding surface. SF1 binds to the opposite, helical face of RRM3. It inserts a conserved tryptophan into a hydrophobic pocket between helices A and B in a way that strikingly resembles part of the molecular interface in the U2AF heterodimer. This molecular recognition establishes a paradigm for protein binding by a subfamily of noncanonical RRMs.  相似文献   

13.
RNA recognition motifs (RRMs) constitute versatile macromolecular interaction platforms. They are found in many components of spliceosomes, in which they mediate RNA and protein interactions by diverse molecular strategies. The human U11/U12-65K protein of the minor spliceosome employs a C-terminal RRM to bind hairpin III of the U12 small nuclear RNA (snRNA). This interaction comprises one side of a molecular bridge between the U11 and U12 small nuclear ribonucleoprotein particles (snRNPs) and is reminiscent of the binding of the N-terminal RRMs in the major spliceosomal U1A and U2B″ proteins to hairpins in their cognate snRNAs. Here we show by mutagenesis and electrophoretic mobility shift assays that the β-sheet surface and a neighboring loop of 65K C-terminal RRM are involved in RNA binding, as previously seen in canonical RRMs like the N-terminal RRMs of the U1A and U2B″ proteins. However, unlike U1A and U2B″, some 30 residues N-terminal of the 65K C-terminal RRM core are additionally required for stable U12 snRNA binding. The crystal structure of the expanded 65K C-terminal RRM revealed that the N-terminal tail adopts an α-helical conformation and wraps around the protein toward the face opposite the RNA-binding platform. Point mutations in this part of the protein had only minor effects on RNA affinity. Removal of the N-terminal extension significantly decreased the thermal stability of the 65K C-terminal RRM. These results demonstrate that the 65K C-terminal RRM is augmented by an N-terminal element that confers stability to the domain, and thereby facilitates stable RNA binding.  相似文献   

14.
The general splicing factor U2AF(65) recognizes the polypyrimidine tract (Py tract) that precedes 3' splice sites and has three RNA recognition motifs (RRMs). The C-terminal RRM (RRM3), which is highly conserved, has been proposed to contribute to Py-tract binding and establish protein-protein contacts with splicing factors mBBP/SF1 and SAP155. Unexpectedly, we find that the human RRM3 domain is dispensable for U2AF(65) activity in vitro. However, it has an essential function in Schizosaccharomyces pombe distinct from binding to the Py tract or to mBBP/SF1 and SAP155. First, deletion of RRM3 from the human protein has no effect on Py-tract binding. Second, RRM123 and RRM12 select similar sequences from a random pool of RNA. Third, deletion of RRM3 has no effect on the splicing activity of U2AF(65) in vitro. However, deletion of the RRM3 domain of S. pombe U2AF(59) abolishes U2AF function in vivo. In addition, certain amino acid substitutions on the four-stranded beta-sheet surface of RRM3 compromise U2AF function in vivo without affecting binding to mBBP/SF1 or SAP155 in vitro. We propose that RRM3 has an unrecognized function that is possibly relevant for the splicing of only a subset of cellular introns. We discuss the implications of these observations on previous models of U2AF function.  相似文献   

15.
CUGBP, Elav-like family member 1 (CELF1) is an RNA binding protein with important roles in the regulation of splicing, mRNA decay and translation. CELF1 contains three RNA recognition motifs (RRMs). We used gel retardation, gel filtration, isothermal titration calorimetry and NMR titration studies to investigate the recognition of RNA by the first two RRMs of CELF1. NMR shows that RRM1 is promiscuous in binding to both UGU and CUG repeat sequences with comparable chemical shift perturbations. In contrast, RRM2 shows greater selectivity for UGUU rather than CUG motifs. A construct (T187) containing both binding domains (RRM1 and RRM2) was systematically studied for interaction with tandem UGU RNA binding sites with different length linker sequences UGU(U)xUGU where x = 1–7. A single U spacer results in interactions only with RRM1, demonstrating both steric constraints in accommodating both RRMs simultaneously at adjacent sites, and also subtle differences in binding affinities between RRMs. However, high affinity co-operative binding (Kd ~ 0.4 µM) is evident for RNA sequences with x = 2–4, but longer spacers (x ≥ 5) lead to a 10-fold reduction in affinity. Our analysis rationalizes the high affinity interaction of T187 with the 11mer GRE consensus regulatory sequence UGUUUGUUUGU and has significant consequences for the prediction of CELF1 binding sites.  相似文献   

16.
The polypyrimidine tract binding protein (PTB) is an important regulator of alternative splicing that also affects mRNA localization, stabilization, polyadenylation, and translation. NMR structural analysis of the N-terminal half of PTB (residues 55-301) shows a canonical structure for RRM1 but reveals novel extensions to the beta strands and C terminus of RRM2 that significantly modify the beta sheet RNA binding surface. Although PTB contains four RNA recognition motifs (RRMs), it is widely held that only RRMs 3 and 4 are involved in RNA binding and that RRM2 mediates homodimerization. However, we show here not only that the RRMs 1 and 2 contribute substantially to RNA binding but also that full-length PTB is monomeric, with an elongated structure determined by X-ray solution scattering that is consistent with a linear arrangement of the constituent RRMs. These new insights into the structure and RNA binding properties of PTB suggest revised models of its mechanism of action.  相似文献   

17.
Heterogeneous nuclear ribonucleoprotein L (hnRNP L) is an abundant RNA-binding protein implicated in many bioprocesses, including pre-mRNA processing, mRNA export of intronless genes, internal ribosomal entry site-mediated translation, and chromatin modification. It contains four RNA recognition motifs (RRMs) that bind with CA repeats or CA-rich elements. In this study, surface plasmon resonance spectroscopy assays revealed that all four RRM domains contribute to RNA binding. Furthermore, we elucidated the crystal structures of hnRNP L RRM1 and RRM34 at 2.0 and 1.8 Å, respectively. These RRMs all adopt the typical β1α1β2β3α2β4 topology, except for an unusual fifth β-strand in RRM3. RRM3 and RRM4 interact intimately with each other mainly through helical surfaces, leading the two β-sheets to face opposite directions. Structure-based mutations and surface plasmon resonance assay results suggested that the β-sheets of RRM1 and RRM34 are accessible for RNA binding. FRET-based gel shift assays (FRET-EMSA) and steady-state FRET assays, together with cross-linking and dynamic light scattering assays, demonstrated that hnRNP L RRM34 facilitates RNA looping when binding to two appropriately separated binding sites within the same target pre-mRNA. EMSA and isothermal titration calorimetry binding studies with in vivo target RNA suggested that hnRNP L-mediated RNA looping may occur in vivo. Our study provides a mechanistic explanation for the dual functions of hnRNP L in alternative splicing regulation as an activator or repressor.  相似文献   

18.
Jenkins JL  Laird KM  Kielkopf CL 《Biochemistry》2012,51(26):5223-5225
U2AF(65) is essential for pre-mRNA splicing in most eukaryotes. Two consecutive RNA recognition motifs (RRM) of U2AF(65) recognize a polypyrimidine tract at the 3' splice site. Here, we use small-angle X-ray scattering to demonstrate that the tandem U2AF(65) RRMs exhibit a broad range of conformations in the solution ensemble. The majority of U2AF(65) conformations exhibit few contacts between the RRMs, such as observed in the crystal structure. A subpopulation adopts tight inter-RRM contacts, such as independently reported based on paramagnetic relaxation enhancements. These complementary structural methods demonstrate that diverse splice sites have the opportunity to select compact or extended inter-RRM proximities from the U2AF(65) conformational pool.  相似文献   

19.
Saccharomyces cerevisiae Prp24 is an essential RNA binding protein involved in pre-mRNA splicing. Nearly complete backbone and side chain resonance assignments have been obtained for the second RNA recognition motif (RRM) of Prp24 (RRM2, residues M114-E197) both in isolation and bound to a six nucleotide fragment of U6 RNA (AGAGAU). In addition, nearly complete backbone assignments have been made for a Prp24 construct spanning the second and third RRMs (RRM23, residues M114-K290), both free and bound to AGAGAU.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号