首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
总结了国家种质库最近10年野生大豆搜集进展和研究概况。我国野生大豆资源在1979-1982年间搜集并保存在国家基因库的为5939份;1996-2000年搜集了600份;2001-2010最近10年补充搜集了全国17个省(市、区)、318个县(市、旗)、930个乡镇(农场)。其中新搜集县市178个,共收集典型野生大豆资源1979份,野生大豆收集样品新增资源33.3%。  相似文献   

2.
采用SSR分子标记对来自广东省5个县野生大豆居群的遗传多样性进行了分析,为广东野生大豆资源保护和利用提供依据。结果显示:(1)5个野生大豆居群在60个SSR位点共检测出263个等位变异,同一位点上等位基因数目最多为10个,最少为2个,平均为4.38个;不同群体中特有等位基因数不同,其中连州(LZ)和南雄(NX)野生大豆的特有等位基因数目较多,分别为19个和16个;Shannon指数(I)变化范围为0.162~2.174,期望杂合度(He)的变化范围为0.073~0.899。(2)广东连州(LZ)野生大豆居群的遗传多样性最高,而仁化(RH)野生大豆的遗传多样性最低,二者的Shannon指数(I)分别为0.811、0.113;群体分子方差(AMOVA)分析结果揭示,居群间变异占51%,群体内变异占49%,且仁化居群与其他居群间基因流较小。(3)依据遗传距离可将连州(LZ)和连南(LN)聚类为一类,乳源(RY)和南雄(NX)为一类,仁化(RH)单独为一类。研究表明,广东不同野生大豆居群间遗传多样性差异较大,而且居群内基因类型多,其中连州(LZ)和乳源(RY)野生大豆居群的遗传多样性较高,证明广东野生大豆群体保存了丰富的基因资源。  相似文献   

3.
抗大豆疫霉根腐病野生大豆资源的初步筛选   总被引:9,自引:0,他引:9  
由大豆疫霉菌引起的大豆疫霉根腐病是严重影响大豆生产的毁灭性病害之一.防治该病唯一经济、有效和环境安全的方法是利用抗病品种.本研究对野生大豆资源进行抗大豆疫霉根腐病初步筛选,以期探讨野生大豆的抗性水平、分布和获得抗性野生大豆资源.通过苗期接种大豆疫霉菌对412份野生大豆资源进行抗病性鉴定,有13.4%的资源抗大豆疫霉根腐病,15.3%的资源表现为中间反应类型.对野生大豆资源的来源分析表明,抗大豆疫霉根腐病野生大豆资源在我国分布广泛,其中安徽省野生大豆资源抗性最丰富.  相似文献   

4.
中国东北受威胁植物的优先保护区域   总被引:1,自引:0,他引:1  
在确定中国东北地区受威胁植物的基础上,依据植物优先保护值确定受威胁植物的优先保护区域.结果表明:中国东北地区共有受威胁植物25科42属60种.在东北地区219个县(市)中,共119个县(市)分布有受威胁植物.吉林省安图县是东北地区拥有受威胁植物最多的县,有受威胁植物42种.确定吉林省安图县、辽宁省桓仁满族自治县等16县(市)为东北地区受威胁植物优先保护县(市).根据受威胁植物的优先保护区域值,划分出中国东北地区的5个优先保护区域,分别为长白山优先保护区、辽东优先保护区、辽南优先保护区、张广才岭优先保护区和小兴安岭优先保护区,并对各优先保护区的主要受威胁植物进行了分析.  相似文献   

5.
黑龙江省野生大豆、栽培大豆高异黄酮种质资源筛选   总被引:20,自引:1,他引:19  
利用改进的高效液相色谱法(HPLC)检测了黑龙江省野生大豆(Glycine soja)、栽培大豆(G. max) 60份种质资源的异黄酮含量.结果表明,不同类型大豆种质资源异黄酮含量有明显遗传差异,变幅为416.2~6808.2μg/g,野生大豆高于栽培大豆,筛选出高异黄酮野生大豆种质资源4份、高异黄酮栽培大豆种质资源2份.  相似文献   

6.
对野生大豆种子雨的时空动态及其与外界天气情况关系的初步研究表明,在野生大豆整个种子雨的历程中,出现3个较为明显的炸荚和种子散落的高峰,并且峰的出现与天气晴朗(相对湿度)相关,而与气温相关性不大.野生大豆种子雨的空间分布格局主要是野生大豆种子炸荚的自身习性(炸荚弹力)和荚本身在植株上的空间分布有关,而与风向(风力≤7级)关系不大.  相似文献   

7.
云南新收集水稻地方品种的表型多样性分析   总被引:3,自引:0,他引:3  
以来自云南16个州(市)新收集的1189份水稻地方品种为试验材料,分析了17个农艺性状的多样性指数在县(市)、州(市)、稻作生态区及稻作民族间的差异和分布。结果表明,在县(市)分析单元内,滇南、滇西南的芒市、盈江、陇川、腾冲、勐海、沧源等县(市)的多样性指数为1. 6010~1. 6822,高于其他县(市)。在州(市)分析单元内,滇南、滇西南的德宏(1. 6951)、普洱(1. 6746)、临沧(1. 6723)等州(市)的多样性指数较其他州(市)高。在稻作生态区分析单元内,有效穗数、穗粒数、千粒重和结实率等产量性状及株高、谷粒长、谷粒宽、剑叶宽和穗抽出度生物学性状的多样性指数为南部边缘水陆稻区(Ⅱ)高于滇西北高寒粳稻区(Ⅲ)和滇南单双季籼稻区(Ⅰ); 17个性状的多样性指数在Ⅰ、Ⅱ和Ⅲ稻作生态区间的差异不显著,而结实率、谷粒宽、谷粒长宽比、剑叶长和剑叶宽5个性状的多样性指数在南部边缘水陆稻区(Ⅱ)与滇东北高原粳稻区(Ⅴ)间存在显著差异;除剑叶角度、倒伏性、种皮色和叶片茸毛外,其他13个性状的多样性指数在南部边缘水陆稻区(Ⅱ)与滇中一季粳籼稻区(Ⅳ)间也有显著差异。在稻作民族分析单元内,哈尼族、汉族、景颇族和彝族稻作的多样性指数为1. 7033~1. 7308,高于其他稻作民族;其中,在同一州(市)不同稻作民族间,德宏州景颇族(1. 3735)、傈僳族(1. 3714)和汉族(1. 3526)的多样性指数平均值较高;同一稻作民族不同州(市)间,德宏、保山和临沧汉族及红河州彝族的多样性指数平均值较大(1. 6190~1. 6808)。大穗和大粒型资源分别为173份和84份,主要分布于德宏、西双版纳和普洱等州(市);长粒型资源主要分布于德宏州和临沧市。总体而言,位于滇南和滇西南地区的县(市)、州(市)及稻作生态区是云南水稻地方品种性状多样性分布中心,而哈尼族、汉族、景颇族和彝族等的稻作表型多样性高于其他民族。  相似文献   

8.
野生大豆地理群体的性状变异   总被引:1,自引:0,他引:1  
王克晶 《生物学通报》1991,(11):20-21,34
中国是栽培大豆(Glycine max)的故乡,其原始种野生大豆(Glycine·soja)在我国大陆有大面积分布。种子富含蛋白质,是世人所瞩目的野生高蛋白基因资源。分布范围大约北纬24°—53°N,东经98°—135°E。其白花变种(G·soja var. albiflora)广见于东北和华北两大遗传多样性中心。狭叶白花变型(G·soja f. angustifolia)主要见于东北;华北和南方少见。狭叶变型(G·soja f. lanceolata)北方分布较多。野生大豆种子极小,一般百粒重在3克以下。在天然野生群体中通常还存在一类G·soja向G·max进化的中间过渡型半野生种(G·gracilis),种子较大,百粒重一般达到3—7克。电泳测定,天然野生群体中的酶或蛋白质标记基因证明,野生大豆是较严格的自花授粉植物,天然异交率  相似文献   

9.
中国野生大豆遗传资源搜集基本策略与方法   总被引:2,自引:0,他引:2  
遗传资源搜集原则是通过种子采集追求样本具有最高程度的遗传多样性。为了合理而有效地搜集野生大豆资源,近年来通过野生大豆居群考察和遗传多样性分析,初步明确了野生大豆资源居群的遗传多样性分布动态:遗传多样性地理的和生态的区域性、生态系统内居群的遗传相关性及各种生境下居群遗传多样性差异,从理论上奠定了野生大豆资源合理有效搜集的依据。根据居群遗传多样性的分布规律,初步建立了居群野生大豆资源的搜集策略和方法。  相似文献   

10.
2011-2015年和2017年配合实施科技部"西北干旱区抗逆农作物种质资源调查"项目对西北地区甘肃、宁夏、陕西及内蒙古东部等部分县市(区、农场)进行了野生大豆的搜集考察。搜集54个县市(区、旗)、134个乡镇(场)、173个村(点),222份资源(220个居群)。搜集资源海拔范围在332~1623 m,约70%资源分布在海拔1000 m以上。鉴定出高耐旱资源2个居群15株; 13544个单株Kunitz蛋白质电泳结果显示,83. 90%的频率是Tia类型,16. 69%的频率是Tib类型,发现两个新的变异体Til和Tim型,并识别出1个稀有的Tiab1类型。测序确认至少15. 76%Tib类型是Tibi7等位基因; Til型是Tibi7等位基因第57号的异亮氨酸(Ile)突变为缬氨酸(Val),Tim型是Tiab1型第159号的精氨酸(Arg)突变为色氨酸(Trp)和第169号遗传密码发生一个无义碱基突变(TTA→CTA)。调查显示,α组皂角苷成分普遍存在于中国野生大豆,而我国西北陕甘的大豆含有高比率的α组皂角苷成分品种。目前只有在中国大豆发现有α组皂角苷成分,从化学成分地理分布的角度我们提出栽培大豆最早驯化地在我国渭河流域的可能性。  相似文献   

11.
我国野生大豆资源保护管理问题   总被引:1,自引:0,他引:1  
阐述了国家重点保护野生植物野生大豆的利用价值及在我国面临的问题,介绍了湖南省的野生大豆资源保护管理的经验,科学合理地提出了保护好我国野生大豆资源保护管理的建议.  相似文献   

12.
J Guo  Y Liu  Y Wang  J Chen  Y Li  H Huang  L Qiu  Y Wang 《Annals of botany》2012,110(4):777-785
Background and Aims Wild soybean (Glycine soja), a native species of East Asia, is the closest wild relative of the cultivated soybean (G. max) and supplies valuable genetic resources for cultivar breeding. Analyses of the genetic variation and population structure of wild soybean are fundamental for effective conservation studies and utilization of this valuable genetic resource. Methods In this study, 40 wild soybean populations from China were genotyped with 20 microsatellites to investigate the natural population structure and genetic diversity. These results were integrated with previous microsatellite analyses for 231 representative individuals from East Asia to investigate the genetic relationships of wild soybeans from China. Key Results Analysis of molecular variance (AMOVA) revealed that 43·92 % of the molecular variance occurred within populations, although relatively low genetic diversity was detected for natural wild soybean populations. Most of the populations exhibited significant effects of a genetic bottleneck. Principal co-ordinate analysis, construction of a Neighbor-Joining tree and Bayesian clustering indicated two main genotypic clusters of wild soybean from China. The wild soybean populations, which are distributed in north-east and south China, separated by the Huang-Huai Valley, displayed similar genotypes, whereas those populations from the Huang-Huai Valley were different. Conclusions The previously unknown population structure of the natural populations of wild soybean distributed throughout China was determined. Two evolutionarily significant units were defined and further analysed by combining genetic diversity and structure analyses from Chinese populations with representative samples from Eastern Asia. The study suggests that during the glacial period there may have been an expansion route between south-east and north-east China, via the temperate forests in the East China Sea Land Bridge, which resulted in similar genotypes of wild soybean populations from these regions. Genetic diversity and bottleneck analysis supports that both extensive collection of germplasm resources and habitat management strategies should be undertaken for effective conservation studies of these important wild soybean resources.  相似文献   

13.

Background and Aims

It is essential to illuminate the evolutionary history of crop domestication in order to understand further the origin and development of modern cultivation and agronomy; however, despite being one of the most important crops, the domestication origin and bottleneck of soybean (Glycine max) are poorly understood. In the present study, microsatellites and nucleotide sequences were employed to elucidate the domestication genetics of soybean.

Methods

The genomes of 79 landrace soybeans (endemic cultivated soybeans) and 231 wild soybeans (G. soja) that represented the species-wide distribution of wild soybean in East Asia were scanned with 56 microsatellites to identify the genetic structure and domestication origin of soybean. To understand better the domestication bottleneck, four nucleotide sequences were selected to simulate the domestication bottleneck.

Key Results

Model-based analysis revealed that most of the landrace genotypes were assigned to the inferred wild soybean cluster of south China, South Korea and Japan. Phylogeny for wild and landrace soybeans showed that all landrace soybeans formed a single cluster supporting a monophyletic origin of all the cultivars. The populations of the nearest branches which were basal to the cultivar lineage were wild soybeans from south China. The coalescent simulation detected a bottleneck severity of K′ = 2 during soybean domestication, which could be explained by a foundation population of 6000 individuals if domestication duration lasted 3000 years.

Conclusions

As a result of integrating geographic distribution with microsatellite genotype assignment and phylogeny between landrace and wild soybeans, a single origin of soybean in south China is proposed. The coalescent simulation revealed a moderate genetic bottleneck with an effective wild soybean population used for domestication estimated to be ≈2 % of the total number of ancestral wild soybeans. Wild soybeans in Asia, especially in south China contain tremendous genetic resources for cultivar improvement.  相似文献   

14.
Data are presented on the genetic diversity and spatial structure of the natural wild soybean population from the neighborhood of the settlement of Ekaterinovka in Primorskii krai and on the relationship between the genetic structure of this population and its spatial organization. These data are discussed in comparison with the results of studies of wild soybean populations in the Far East region of the Russian Federation and China. Recommendations are given concerning the collection of genetic wild soybean resources.  相似文献   

15.
Li  Ying-Hui  Qin  Chao  Wang  Li  Jiao  Chengzhi  Hong  Huilong  Tian  Yu  Li  Yanfei  Xing  Guangnan  Wang  Jun  Gu  Yongzhe  Gao  Xingpeng  Li  Delin  Li  Hongyu  Liu  Zhangxiong  Jing  Xin  Feng  Beibei  Zhao  Tao  Guan  Rongxia  Guo  Yong  Liu  Jun  Yan  Zhe  Zhang  Lijuan  Ge  Tianli  Li  Xiangkong  Wang  Xiaobo  Qiu  Hongmei  Zhang  Wanhai  Luan  Xiaoyan  Han  Yingpeng  Han  Dezhi  Chang  Ruzhen  Guo  Yalong  Reif  Jochen C.  Jackson  Scott A.  Liu  Bin  Tian  Shilin  Qiu  Li-juan 《中国科学:生命科学英文版》2023,66(2):350-365

Soybean is a leguminous crop that provides oil and protein. Exploring the genomic signatures of soybean evolution is crucial for breeding varieties with improved adaptability to environmental extremes. We analyzed the genome sequences of 2,214 soybeans and proposed a soybean evolutionary route, i.e., the expansion of annual wild soybean (Glycine soja Sieb. & Zucc.) from southern China and its domestication in central China, followed by the expansion and local breeding selection of its landraces (G. max (L.) Merr.). We observed that the genetic introgression in soybean landraces was mostly derived from sympatric rather than allopatric wild populations during the geographic expansion. Soybean expansion and breeding were accompanied by the positive selection of flowering time genes, including GmSPA3c. Our study sheds light on the evolutionary history of soybean and provides valuable genetic resources for its future breeding.

  相似文献   

16.
大豆是事关人民生活和经济社会发展的重要农产品之一,提高大豆生产水平和增加自给能力,是中国农业生产必须解决的重大问题。由于中国耕地资源不足的限制,科技创新是提升大豆生产能力的唯一出路。转基因育种是推动大豆生产发展的颠覆性技术,对美国、巴西和阿根廷等世界主产国大豆产业的发展发挥了重要作用。经过20多年的科技创新,中国转基因耐除草剂和抗虫育种技术已经成熟,这些产品的产业化种植可显著降低大豆生产成本和提升单产水平。基于中国转基因大豆技术发展进度和大豆生产的国情特点,我们提出了采用如下策略科学有序推进产业化工作。一是,在产品应用时间上,按照单一耐草甘膦除草剂、多个基因耐草甘膦和草铵膦等多种除草剂,以及耐除草剂与抗虫等复合性状等产品,依次推进相关种子的产业化;二是,在产品区域布局上,按照靶标杂草和害虫的地理分布特点顶层设计各种耐除草剂和抗虫大豆产品的种植区域;三是,在生物安全管理上,研发应用抗性杂草和害虫种群监测与治理技术,延长转基因产品的使用寿命。同时,还要加强野生大豆资源的保护工作,降低转基因大豆基因漂移对野生大豆生物多样性的影响。  相似文献   

17.
Data are presented on the genetic diversity and spatial structure of the natural wild soybean population from the neighborhood of the settlement of Ekaterinovka in Primorskii krai and on the relationship between the genetic structure of this population and its spatial organization. These data are discussed in comparison with the results of studies of wild soybean populations in the Far East region of the Russian Federation and China. Recommendations are given concerning the collection of genetic wild soybean resources.  相似文献   

18.
The purpose of this study was to examine the superoxide dismutase (SOD) zymogram patterns, their frequency and geographical distribution of wild (Glycine soja) and cultivated soybean (G. max) in China. Seeds of 226 wild soybean germplasms and 104 cultivated soybean cultivars (land races) were collected from all provinces and autonomous regions in China except Taiwan, Xinjiang and Qinghai provinces About 50 embryos per wild soybean germplasm and I0 embryos per cultivated soybean cultivars were used for test. Vertical polyacrylamide gel electrophoresis and a stainning system modified after Luo (1984)were used. The Japanese GS- 930 Scanner was used in gel-plate scanning. In program scanning the maximum and minimum absorption wavelength were 700 and 550 nm respectively. The results showed that: 1. Six zymogram patterns were found in soybean (Fig. 1, 2). Wild soybean displayed five patterns (Ⅰ, Ⅱ, Ⅳ Ⅴ, Ⅵ), while the cultivated soybean displayed only two patterns (Ⅱ, Ⅲ). 2. Fourty six percent of wild germplasms gave an 7-band zymogram (Table Ⅰ) (pattern Ⅰ), fourty nine percent had a 6th and 7th band with faster mobility (pattern Ⅱ), about two percent produced a 6-band zymogram which lacked the SODc4 band (pattern Ⅳ), about two percent had a 5-band pattern which lacked the SODc,c4 bands (pattern Ⅴ), and only one germptasm displayed a 5-band zymogram which lacked SODb2b3 bands (pattern Ⅵ). 3. More than ninty eight percent of cultivated cultivars belonged to pattern Ⅱ, only about two percent belonged to pattern Ⅲ. 4. The geographical distribution of frequency of pattern Ⅱ between wild and cultivated soybean was most close in 36–51º N area. The difference of zymograms between G. soja and G. max, and the problems of the origional area and evolution of soybean were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号