首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
α-Haemolysin (HlyA) is a toxin secreted by pathogenic Escherichia coli, whose lytic activity requires submillimolar Ca2+ concentrations. Previous studies have shown that Ca2+ binds within the Asp and Gly rich C-terminal nonapeptide repeat domain (NRD) in HlyA. The presence of the NRD puts HlyA in the RTX (Repeats in Toxin) family of proteins. We tested the stability of the whole protein, the amphipathic helix domain and the NRD, in both the presence and absence of Ca2+ using native HlyA, a truncated form of HlyAΔN601 representing the C-terminal domain, and a novel mutant HlyA W914A whose intrinsic fluorescence indicates changes in the N-terminal domain. Fluorescence and infrared spectroscopy, tryptic digestion, and urea denaturation techniques concur in showing that calcium binding to the repeat domain of α-haemolysin stabilizes and compacts both the NRD and the N-terminal domains of HlyA. The stabilization of the N-terminus through Ca2+ binding to the C-terminus reveals long-range inter-domain structural effects. Considering that RTX proteins consist, in general, of a Ca2+-binding NRD and separate function-specific domains, the long-range stabilizing effects of Ca2+ in HlyA may well be common to other members of this family.  相似文献   

3.
Mutations in rpoB (RNA polymerase β-subunit) can cause high-level resistance to rifampicin, an important first-line drug against tuberculosis. Most rifampicin-resistant (Rif(R)) mutants selected in vitro have reduced fitness, and resistant clinical isolates of M. tuberculosis frequently carry multiple mutations in RNA polymerase genes. This supports a role for compensatory evolution in global epidemics of drug-resistant tuberculosis but the significance of secondary mutations outside rpoB has not been demonstrated or quantified. Using Salmonella as a model organism, and a previously characterized Rif(R) mutation (rpoB R529C) as a starting point, independent lineages were evolved with selection for improved growth in the presence and absence of rifampicin. Compensatory mutations were identified in every lineage and were distributed between rpoA, rpoB and rpoC. Resistance was maintained in all strains showing that increased fitness by compensatory mutation was more likely than reversion. Genetic reconstructions demonstrated that the secondary mutations were responsible for increasing growth rate. Many of the compensatory mutations in rpoA and rpoC individually caused small but significant reductions in susceptibility to rifampicin, and some compensatory mutations in rpoB individually caused high-level resistance. These findings show that mutations in different components of RNA polymerase are responsible for fitness compensation of a Rif(R) mutant.  相似文献   

4.
5.
6.
Upstream interactions of Escherichia coli RNA polymerase (RNAP) in an open promoter complex (RPo) formed at the PR and PRM promoters of bacteriophage λ have been studied by atomic force microscopy. We demonstrate that the previously described 30-nm DNA compaction observed upon RPo formation at PR [Rivetti, C., Guthold, M. & Bustamante, C. (1999). Wrapping of DNA around the E. coli RNA polymerase open promoter complex. EMBO J., 18, 4464-4475.] is a consequence of the specific interaction of the RNAP with two AT-rich sequence determinants positioned from − 36 to − 59 and from − 80 to − 100. Likewise, RPos formed at PRM showed a specific contact between RNAP and the upstream DNA sequence. We further demonstrate that this interaction, which results in DNA wrapping against the polymerase surface, is mediated by the C-terminal domains of α-subunits (carboxy-terminal domain). Substitution of these AT-rich sequences with heterologous DNA reduces DNA wrapping but has only a small effect on the activity of the PR promoter. We find, however, that the frequency of DNA templates with both PR and PRM occupied by an RNAP significantly increases upon loss of DNA wrapping. These results suggest that α carboxy-terminal domain interactions with upstream DNA can also play a role in regulating the expression of closely spaced promoters. Finally, a model for a possible mechanism of promoter interference between PR and PRM is proposed.  相似文献   

7.
8.
Bacteriophage PBS2 replication is unaffected by rifampicin and other rifamycin derivatives, which are potent inhibitors of Bacillus subtilis RNA synthesis. Extracts of gently-lysed infected cells contain a DNA-dependent RNA polymerase activity which is specific for uracil-containing PBS2 DNA. The PBS2-induced RNA polymerase is insensitive to rifamycin derivatives which inhibit the host's RNA polymerase.  相似文献   

9.
Rifampicin is a widely used drug for antituberculosis therapy. Its target is the bacterial RNA polymerase. After entry into the human or mammalian organism, rifampicin is accumulated in cells of epithelial origin (kidneys, liver, lungs) where it induces apoptosis, necrosis, and fibrosis. The purpose of this study was to determine the intracellular mechanisms leading to rifampicin-induced pathological changes and cell death. We analyzed the survival and state of the chondriome of cultured epithelial cells of the SPEV line under the influence of rifampicin. Our data show that the drug induces pronounced pathological changes in the network and ultrastructure of mitochondria, and their dysfunction results in excessive production of reactive oxygen species and release of cytochrome c. These data suggest the initiation of the mitochondrial pathway of apoptosis. Simultaneously, we observed inhibition of cell proliferation and changes in morphology of the epithelial cells toward fibroblast-like appearance, which could indicate induction of epithelial-mesenchymal transition. Thus, mitochondria are the main potential target for rifampicin in cells of epithelial origin. We suggest that similar mechanisms of pathological changes can be induced in vivo in organs and tissues accumulating rifampicin during chemotherapy of bacterial infectious diseases.  相似文献   

10.
The legume Medicago arborea L. is very interesting as regards the regeneration of marginal arid soils. The problem is that it does not have a good germinative yield. It was therefore decided to regenerate via somatic embryogenesis and find a marker of embryogenic potential. In this study, peroxidase activity was evaluated in non-embryogenic and embryogenic calli from M. arborea L. A decrease in soluble peroxidase activity is observed in its embryonic calli at the time at which the somatic embryos begin to appear. This activity is always lower in embryonic calli than in non-embryonic ones (unlike what happens in the case of wall-bound peroxidases). These results suggest that peroxidases can be considered to be enzymes involved in somatic embryogenesis in M. arborea. In addition, isozyme analyses were carried out on protein extracts using polyacrylamide gel electrophoresis. The band called P5 was detected only in embryogenic cultures at very early stages of development. This band was digested with trypsin and analyzed using linear ion trap (LTQ) mass spectrometer. In P5 isoform a peroxidase-l-ascorbate peroxidase was identified. It can be used as a marker that allows the identification of embryological potential.  相似文献   

11.
12.
THE bactericidal effect of rifampicin, a semi-synthetic rifamycin, is due to its action on DNA-dependent RNA polymerase1 and all rifampicin-resistant mutants of Escherichia coli contain an altered RNA polymerase with an increased resistance to rifampicin in vitro2–4. While studying a possible curing effect of rifampicin on E. coli R factors, we observed that R+ recombinants of some rif-r mutants are more sensitive to rifampicin (Table 1). Of the cells harbouring certain R factors, less than 1% are able to form colonies on rifampicin-supplemented agar, while with certain others there is no detectable effect.  相似文献   

13.
Cytological preparations of Drosophila polytene chromosomes serve as templates for RNA synthesis carried out by exogenous RNA polymerase (Escherichia coli). Incorporation of labeled ribonucleoside triphosphates into RNA may be observed directly by autoradiography. Because of the effects of rifampicin, actinomycin D, ribonuclease, high salt, and the requirement for all four nucleoside triphosphates, we conclude that the labeling observed over chromosomes is due to DNA-dependent RNA polymerase activity. Using this method, one can observe RNA synthesis in vitro on specific chromosome regions due to the activity of exogenous RNA polymerase. We find that much of the RNA synthesis in this system occurs on DNA sequences which appear to be in a nondenatured state.  相似文献   

14.
15.
Cancer cells that escape induction therapy are a major cause of relapse. Understanding metabolic alterations associated with drug resistance opens up unexplored opportunities for the development of new therapeutic strategies. Here, we applied a broad spectrum of technologies including RNA sequencing, global untargeted metabolomics, and stable isotope labeling mass spectrometry to identify metabolic changes in P-glycoprotein overexpressing T-cell acute lymphoblastic leukemia (ALL) cells, which escaped a therapeutically relevant daunorubicin treatment. We show that compared with sensitive ALL cells, resistant leukemia cells possess a fundamentally rewired central metabolism characterized by reduced dependence on glutamine despite a lack of expression of glutamate-ammonia ligase (GLUL), a higher demand for glucose and an altered rate of fatty acid β-oxidation, accompanied by a decreased pantothenic acid uptake capacity. We experimentally validate our findings by selectively targeting components of this metabolic switch, using approved drugs and starvation approaches followed by cell viability analyses in both the ALL cells and in an acute myeloid leukemia (AML) sensitive/resistant cell line pair. We demonstrate how comparative metabolomics and RNA expression profiling of drug-sensitive and -resistant cells expose targetable metabolic changes and potential resistance markers. Our results show that drug resistance is associated with significant metabolic costs in cancer cells, which could be exploited using new therapeutic strategies.  相似文献   

16.
The technique of resonance Raman spectroscopy has been used to investigate the interaction of the antibiotic rifampicin with Escherichia coli RNA polymerase. Spectra were analyzed by generating the first derivative of each recorded spectrum using the Savitsky-Golay algorithm. The only band that shifted significantly in the resonance Raman spectrum of rifampicin upon the formation of the drug-core polymerase complex was the amide III band. It underwent an 8 cm?1 shift from 1306 cm?1 in aqueous solution to 1314 cm?1. A comparable shift was observed for the rifampicin-holoenzyme complex. Thus, the interaction of the sigma subunit with the core polymerase does not significantly alter the manner in which rifampicin interacts with RNA polymerase. The nature of this shift has been analyzed further by recording the resonance Raman spectrum of rifampicin in a variety of solvents with different hydrogen-bonding ability. In non-hydrogen-bonding solvents (benzene and carbon disulfide) the amide III band was observed at approximately 1220 cm?1; in dimethyl sulfoxide, a weak hydrogen-bond acceptor, 1274 cm?1; in water, a strong hydrogen-bonding solvent, 1306 cm?1; and finally, in triethylamine, a stronger hydrogen-bonding solvent than water, it was observed at 1314 cm?1. Thus, as the hydrogen-bonding ability of the solvent increased, the amide III band shifted to higher frequency. Based on these results, the rifampicin binding site in RNA polymerase provides a stronger hydrogen-bonding environment for the amidic proton of rifampicin than is encountered when rifampicin is free in aqueous solution.  相似文献   

17.
Mammalian Neu3 is a ganglioside specific sialidase. Gangliosides are involved in various physiological events such as cell growth, differentiation and diseases. Significance of Neu3 and gangliosides is still unclear in aquaculture fish species. To gain more insights of fish Neu3 sialidases, molecular cloning and characterization were carried out in tilapia (Oreochromis niloticus). A tilapia genome-wide search for orthologues of human NEU1, NEU2, NEU3 and NEU4 yielded eight putative tilapia sialidases, five of which were neu3-like and designated as neu3a, neu3b, neu3c, neu3d and neu3e. Among five neu3 genes, neu3a, neu3d and neu3e were amplified by PCR from adult fish brain cDNA with consensus sequences of 1227 bp, 1194 bp and 1155 bp, respectively. Multiple alignments showed conserved three Asp-boxes (SXDXGXTW), YRIP and VGPG motifs. The molecular weights for Neu3a, Neu3d and Neu3e were confirmed using immunoblotting analysis as 45.9 kDa, 44.4 kDa and 43.6 kDa, respectively. Lysate from neu3 genes transfected HEK293 cells showed sialidase activity in Neu3a towards ganglioside mix optimally at pH 4.6. Using pure gangliosides as substrates, highest sialidase activity for Neu3a was observed towards GD3 followed by GD1a and GM3, but not GM1. On the other hand, sialidase activities were not observed in Neu3d and Neu3e towards various sialoglycoconjugates. Indirect immunofluorescence showed that tilapia Neu3a and Neu3d are localized at the plasma membrane, while most Neu3e showed a cytosolic localization. RT-PCR analyses for neu3a showed significant expression in the brain, liver, and spleen tissues, while neu3d and neu3e showed different expression patterns. Based on these results, tilapia Neu3 exploration is an important step towards full understanding of a more comprehensive picture of Neu3 sub-family of proteins in fish.  相似文献   

18.
Biotinylation of RNA allows its tight coupling to streptavidin and is thus useful for many types of experiments, e.g., pull-downs. Here we describe three simple techniques for biotinylating the 3′ ends of RNA molecules generated by chemical or enzymatic synthesis. First, extension with either the Schizosaccharomyces pombe noncanonical poly(A) polymerase Cid1 or Escherichia coli poly(A) polymerase and N6-biotin-ATP is simple, efficient, and generally applicable independently of the 3′-end sequences of the RNA molecule to be labeled. However, depending on the enzyme and the reaction conditions, several or many biotinylated nucleotides are incorporated. Second, conditions are reported under which splint-dependent ligation by T4 DNA ligase can be used to join biotinylated and, presumably, other chemically modified DNA oligonucleotides to RNA 3′ ends even if these are heterogeneous as is typical for products of enzymatic synthesis. Third, we describe the use of ϕ29 DNA polymerase for a template-directed fill-in reaction that uses biotin-dUTP and, thanks to the enzyme''s proofreading activity, can cope with more extended 3′ heterogeneities.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号