首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phylogeographical structure of coral‐associated reef fishes may have been severely affected, more than species from deeper habitats, by habitat loss during periods of low sea level. The humbug damselfish, Dascyllus aruanus, is widely distributed across the Indo‐West Pacific, and exclusively inhabits branching corals. We used mitochondrial cytochrome b sequence and seven microsatellite loci on D. aruanus samples (260 individuals) from 13 locations across the Indo‐West Pacific to investigate its phylogeographical structure distribution‐wide. A major genetic partition was found between the Indian and Pacific Ocean populations, which we interpret as the result of geographical isolation on either side of the Indo‐Pacific barrier during glacial periods. The peripheral populations of the Red Sea and the Society Islands exhibited lower genetic diversity, and substantial genetic differences with the other populations, suggesting relative isolation. Thus, vicariance on either side of the Indo‐Pacific barrier and peripheral differentiation are considered to be the main drivers that have shaped the phylogeographical patterns presently observed in D. aruanus. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 931–942.  相似文献   

2.
Allozyme variability was assessed, using starch gel electrophoresis, at 15 polymorphic loci in two samples of the Pacific mussel Mytilus trossulus collected from local populations in heavily (Golden Horn Bay) and slightly polluted areas (Sukhoputnaya Bay) of Peter the Great Bay. Significant differences between samples were found in the genotypic frequencies at nine loci and in allele frequencies, at six loci. The results are suggestive of the differential survival of individuals having different genotypes and alleles at some of the surveyed loci under conditions of pollution. Our data are not in conflict with the hypothesis of the adaptive significance of allozyme polymorphism.  相似文献   

3.
Pacific halibut collected in the Aleutian Islands, Bering Sea and Gulf of Alaska were used to test the hypothesis of genetic panmixia for this species in Alaskan marine waters. Nine microsatellite loci and sequence data from the mitochondrial (mtDNA) control region were analyzed. Eighteen unique mtDNA haplotypes were found with no evidence of geographic population structure. Using nine microsatellite loci, significant heterogeneity was detected between Aleutian Island Pacific halibut and fish from the other two regions (F ST range = 0.007–0.008). Significant F ST values represent the first genetic evidence of divergent groups of halibut in the central and western Aleutian Archipelago. No significant genetic differences were found between Pacific halibut in the Gulf of Alaska and the Bering Sea leading to questions about factors contributing to separation of Aleutian halibut. Previous studies have reported Aleutian oceanographic conditions at deep inter-island passes leading to ecological discontinuity and unique community structure east and west of Aleutian passes. Aleutian Pacific halibut genetic structure may result from oceanographic transport mechanisms acting as partial barriers to gene flow with fish from other Alaskan waters.  相似文献   

4.
The Pacific oyster, Crassostrea gigas, is the most important and valuable commercial fishery species in Korea. Its farming started 20 years ago and is still rapid expansion in Korea. In this study, to maintain the genetic diversity of this valuable marine resource, possible genetic similarity and differences between the wild population and hatchery population in Tongyeong, Korea were accessed using multiplex assays with nine highly polymorphic microsatellite loci. A total of 250 different alleles were found over all loci. Despite a long history of hatchery practices, very high levels of polymorphism (mean alleles = 22.89 and mean heterozygosity = 0.92) were detected between the two populations. No statistically significant reductions were found in heterozygosity or allelic diversity in the hatchery population compared with the wild population. However, significant genetic heterogeneity was found between two populations. These results provide no evidence to show that hatchery practice of Pacific oyster in Korea has significantly affected the genetic variability of the hatchery stock. Although further studies are needed for comprehensive determinations of the hatchery and wild populations with increased number of Pacific oyster sample collections, information on the genetic variation and differentiation obtained in this study can be applied for genetic monitoring of aquaculture stocks, genetic improvement by selective breeding and designing of more efficient conservation management guidelines for these valuable genetic materials.  相似文献   

5.
This investigation has demonstrated considerable heterogeneity among populations and some heterogeneity within populations in the distribution of alleles at two variant loci of Mytilus edulis. Although the causes of this variation remain obscure, some speculations have been made on the basis of available data. A cline for aspartate aminotransferase (AAT) alleles has been observed on the Pacific Coast. An immigration model has been proposed to explain the atypical ecological and genetic characteristics of large mussels found on Amchitka Island, Alaska. Marked differences were found in the distribution of peptidase alleles among collections from Southern California, the North Pacific Ocean, and New Jersey. Deviations from random distribution of phenotypes observed in comparisons made between large and small mussels from the New Jersey collection may reflect selection operating on these loci in this population.  相似文献   

6.
This investigation has demonstrated considerable heterogeneity among populations and some heterogeneity within populations in the distribution of alleles at two variant loci of Mytilus edulis. Although the causes of this variation remain obscure, some speculations have been made on the basis of available data. A cline for aspartate aminotransferase (AAT) alleles has been observed on the Pacific Coast. An immigration model has been proposed to explain the atypical ecological and genetic characteristics of large mussels found on Amchitka Island, Alaska. Marked differences were found in the distribution of peptidase alleles among collections from Southern California, the North Pacific Ocean, and New Jersey. Deviations from random distribution of phenotypes observed in comparisons made between large and small mussels from the New Jersey collection may reflect selection operating on these loci in this population.  相似文献   

7.
The allozyme variability for 15 loci in two samples of the Pacific mussel Mytilus trossulus collected from a single giant cluster was investigated using the method of gel electrophoresis. One sample was subjected to short-term anaerobic stress and then to a longer aerobic stress, leading to the death of about 85% of the individuals. At some of the loci, significant differences in the genotypic and allele frequencies were found between the samples. The results are suggestive of the differential survival of mussels with different genotypes and alleles at some of the surveyed loci under stress. Our data are in agreement with the hypothesis of the adaptive significance of allozyme polymorphism.  相似文献   

8.
The population structure of the giant mottled eel, Anguilla marmorata, was investigated with mitochondrial and microsatellite DNA analyses using 449 specimens from 13 localities throughout the species range. Control region F-statistics indicated the North Pacific (Japan, Taiwan, Philippines, Sulawesi), South Pacific (Tahiti, Fiji, New Caledonia, Papua New Guinea), eastern Indian Ocean (Sumatra), western Indian Ocean (Réunion, Madagascar), Ambon, and Guam regions were significantly different (Phi(ST) = 0.131-0.698, P < 0.05) while only a few differences were observed between localities within the South Pacific. These regions were roughly clustered in the neighbour-joining tree, although Ambon individuals were mainly divided into North and South Pacific groups. Analysis with eight microsatellite loci showed almost identical results to those of the control region, except no genetic difference was observed between the western and eastern Indian Ocean (F(ST) = 0.009, P > 0.05). The Bayesian cluster analysis of the microsatellite data detected two genetic groups. One included four North Pacific localities, and the other included eight localities in the South Pacific, Indian Ocean, and Guam, but Ambon individuals were evenly assigned to these two groups. These results showed that A. marmorata has four genetically different populations (North Pacific, South Pacific, Indian Ocean, Guam region). The North Pacific population is fully panmictic whereas the South Pacific and Indian Ocean populations have a metapopulation structure. Interestingly, Guam was suggested to be inhabited by a reproductive population restricted to that region, and the individuals from the North and South Pacific populations co-exist in Ambon.  相似文献   

9.
The genetic variability at six cloned minisatellite loci was analyzed in minke whale populations from the North Atlantic, North Pacific, and Antarctic Oceans. Three loci displayed only a few different alleles in each of the three populations, with heterozygosity ranging from 0.00 to 0.47, and three loci revealed many different alleles in at least two fo the three populations, with heterozygosity ranging up to 0.98. Using small sample sizes, samples from two adjacent Antarctic Management Areas were not found to differ significantly in allele frequencies at any of the six loci. The use of principal coordinate analysis to detect multilocus disequilibria was explored. No significant evidence was found of intrapopulation heterogeneity within the pooled Antarctic sample. Pronounced interoceanic differences were observed at every locus, confirming the existence of genetic isolation found earlier using more conventional marker systems. The populations from the three oceans appear to have diverged to such a degree that the hypervariable loci have had time to evolve independently and arrive at different evolutionary stages in different populations. The frequency of undetected "null" alleles is remarkably high in minke whale populations compared to human populations and is probably a result of the cloning protocol used. Minisatellite loci are shown to provide a powerful population genetic tool, supplying levels of resolution appropriate to different degrees of evolutionary divergence.   相似文献   

10.
Pacific threadfin, Polydactylus sexfilis, is popular fish in recreational fishing, as well as aquaculture in Hawaii. Its natural population has been continuously declining in the past several decades. Microsatellite DNA markers are useful DNA-based tool for monitoring Pacific threadfin populations. In this study, fifteen Microsatellite (MS) DNA markers were identified from a partial genomic Pacific threadfin DNA library enriched in CA repeats, and six highly-polymorphic microsatellite loci were employed to analyze genetic similarity and differences between the wild population and hatchery population in Oahu Island. A total of 37 alleles were detected at the six MS loci in the two populations. Statistical analysis of fixation index (F(ST)) and analysis of molecular variance (AMOVA) showed no genetic differentiation between the wild and hatchery populations (F(ST) = 0.001, CI(95%) = -0.01-0.021). Both high genetic diversity (H(o) = 0.664-0.674 and H(e) = 0.710-0.715) and Hardy-Weinberg equilibrium were observed in the wild and hatchery populations. Results of genetic bottleneck analysis indicated that the hatchery was founded with sufficient numbers of brooders as inbreeding coefficient is very low (F(IS) = 0.052-0.072) in both wild and hatchery populations. Further studies are needed for comprehensive determinations of genetic varieties of primary founder broodstocks and successive offspring of the hatchery and wild populations with increased number of Pacific threadfin sample collections.  相似文献   

11.
There has been an increasing concern about shark overexploitation in the last decade, especially for open ocean shark species, where there is a paucity of data about their life histories and population dynamics. Little is known regarding the population structure of the pelagic thresher shark, Alopias pelagicus. Though an earlier study using mtDNA control region data, showed evidence for differences between eastern and western Pacific populations, the study was hampered by low sample size and sparse geographic coverage, particularly a lack of samples from the central Pacific. Here, we present the population structure of Alopias pelagicus analyzing 351 samples from six different locations across the Pacific Ocean. Using data from mitochondrial DNA COI sequences and seven microsatellite loci we found evidence of strong population differentiation between western and eastern Pacific populations and evidence for reciprocally monophyly for organelle haplotypes and significant divergence of allele frequencies at nuclear loci, suggesting the existence of two Evolutionarily Significant Units (ESU) in the Pacific Ocean. Interestingly, the population in Hawaii appears to be composed of both ESUs in what seems to be clear sympatry with reproductive isolation. These results may indicate the existence of a new cryptic species in the Pacific Ocean. The presence of these distinct ESUs highlights the need for revised management plans for this highly exploited shark throughout its range.  相似文献   

12.
The spiny dogfish (Squalus acanthias) is a temperate, coastal squaloid shark with an antitropical distribution in the Atlantic and Pacific oceans. The global population structure of this species is poorly understood, although individuals are known to undergo extensive migrations within coastal waters and across ocean basins. In this study, an analysis of the global population structure of the spiny dogfish was conducted using eight polymorphic nuclear microsatellite markers and a 566‐bp fragment of the mitochondrial ND2 gene region. A low level of genetic divergence was found among collections from the Atlantic and South Pacific basins, whereas a high level of genetic divergence was found among Pacific Ocean collections. Two genetically distinct groups were recovered by both marker classes: one exclusive to North Pacific collections, and one including collections from the South Pacific and Atlantic locations. The strong genetic break across the equatorial Pacific coincides with major regional differences in the life‐history characters of spiny dogfish, suggesting that spiny dogfish in areas on either side of the Pacific equator have been evolving independently for a considerable time. Phylogeographic analyses indicate that spiny dogfish populations had a Pacific origin, and that the North Atlantic was colonized as a result of a recent range expansion from the South American coast. Finally, the available data strongly argue for the taxonomic separation of the North Pacific spiny dogfish from S. acanthias and a re‐evaluation of the specific status of S. acanthias is warranted.  相似文献   

13.
We studied the genetic diversity of a coral reef fish species to investigate the origin of the differentiation. A total of 727 Acanthurus triostegus collected from 15 locations throughout the Pacific were analyzed for 20 polymorphic loci. The genetic structure showed limited internal disequilibrium within each population; 3.7% of the loci showed significant Hardy-Weinberg disequilibrium, mostly associated with Adh*, and we subsequently removed this locus from further analysis of geographic pattern. The genetic structure of A. triostegus throughout the tropical Pacific Ocean revealed a strong geographic pattern. Overall, there was significant population differentiation (multilocus F(ST) = 0.199), which was geographically structured according to bootstraps of neighbor-joining analysis on Nei's unbiased genetic distances and AMOVA analysis. The genetic structure revealed five geographic groups in the Pacific Ocean: western Pacific (Guam, Philippines, Palau, and Great Barrier Reef); central Pacific (Solomons, New Caledonia, and Fiji); and three groups made up of the eastern populations, namely Hawaiian Archipelago (north), Marquesas (equatorial), and southern French Polynesia (south) that incorporates Clipperton Island located in the northeastern Pacific. In addition, heterozygosity values were found to be geographically structured with higher values grouped within Polynesian and Clipperton populations, which exhibited lower population size. Finally, the genetic differentiation (F(ST)) was significantly correlated with geographic distance when populations from the Hawaiian and Marquesas archipelagos were separated from all the other locations. These results show that patterns of differentiation vary within the same species according to the spatial scale, with one group probably issued from vicariance, whereas the other followed a pattern of isolation by distance. The geographic pattern for A. triostegus emphasizes the diversity of the evolutionary processes that lead to the present genetic structure with some being more influential in certain areas or according to a particular spatial scale.  相似文献   

14.
We describe 10 primers for amplification of microsatellite loci for the mangrove, Avicennia germinans. Eight loci were isolated from a DNA sample from the Pacific coast of Baja California, Mexico and two loci were isolated from a DNA sample from the Atlantic coast of Bermuda. Polymorphism was investigated in a population from the Mexican Pacific coast (n = 15) and in four samples scattered throughout the range of the species. Total number of alleles for the species ranged from two to 10. Observed heterozygosity in the Mexican Pacific coast population ranged from 0.27 to 0.60, with two loci having fixed alleles.  相似文献   

15.
Determining how intra-specific genetic diversity is apportioned among natural populations is essential for detecting local adaptation and identifying populations with inherently low levels of extant diversity which may become a conservation concern. Sequence polymorphism at two adaptive loci (MHC DRA and DQB) was investigated in long-finned pilot whales (Globicephala melas) from four regions in the North Atlantic and compared with previous data from New Zealand (South Pacific). Three alleles were resolved at each locus, with trans-species allele sharing and higher levels of non-synonymous to synonymous substitution, especially in the DQB locus. Overall nucleotide diversities of 0.49?±?0.38% and 4.60?±?2.39% were identified for the DRA and DQB loci, respectively, which are relatively low for MHC loci in the North Atlantic, but comparable to levels previously described in New Zealand (South Pacific). There were significant differences in allele frequencies within the North Atlantic and between the North Atlantic and New Zealand. Patterns of diversity and divergence are consistent with the long-term effects of balancing selection operating on the MHC loci, potentially mediated through the effects of host-parasite coevolution. Differences in allele frequency may reflect variation in pathogen communities, coupled with the effects of differential drift and gene flow.  相似文献   

16.
Pleistocene ice‐ages greatly influenced the historical abundances of Pacific cod, Gadus macrocephalus, in the North Pacific and its marginal seas. We surveyed genetic variation at 11 microsatellite loci and mitochondrial (mt) DNA in samples from twelve locations from the Sea of Japan to Washington State. Both microsatellite (mean H = 0.868) and mtDNA haplotype (mean h = 0.958) diversities were large and did not show any geographical trends. Genetic differentiation between samples was significantly correlated with geographical distance between samples for both microsatellites (FST = 0.028, r2 = 0.33) and mtDNA (FST = 0.027, r2 = 0.18). Both marker classes showed a strong genetic discontinuity between northwestern and northeastern Pacific populations that likely represents groups previously isolated during glaciations that are now in secondary contact. Significant differences appeared between samples from the Sea of Japan and Okhotsk Sea that may reflect ice‐age isolations in the northwest Pacific. In the northeast Pacific, a microsatellite and mtDNA partition was detected between coastal and Georgia Basin populations. The presence of two major coastal mtDNA lineages on either side of the Pacific Ocean basin implies at least two ice‐age refugia and separate postglacial population expansions facilitated by different glacial histories. Northward expansions into the Gulf of Alaska were possible 14–15 kyr ago, but deglaciation and colonization of the Georgia Basin probably occurred somewhat later. Population expansions were evident in mtDNA mismatch distributions and in Bayesian skyline plots of the three major lineages, but the start of expansions appeared to pre‐date the last glacial maximum.  相似文献   

17.
Genetic variation at 47 protein loci was investigated in 16 wild brown trout populations from the Pô basin and three major domesticated stocks used for stocking this area. Twenty-four loci were polymorphic and large frequency differences were found at 15 of them. The most significant allozyme variations were congruent with the mtDNA sequence polymorphism previously observed in the same samples. We confirmed the occurrence of two parapatric incipient species, Salmo marmoratus and S. trutta fario , previously identified by morphological traits. These two species were fixed or nearly fixed for alternate alleles at eight loci (Nei's standard genetic distance = 0.16–0.18), but introgression was detected between adjacent samples of the two forms. Divergence levels at both mtDNA and nuclear loci suggested that the differentiation between S. marmoratus and S. trutta fario started between 3 and 1 million years before present. Variation at protein loci and mtDNA supported the hypothesis that the third species found in this area, S. carpio (an endemic population of the lake Garda) was issued from a recent hybridization of the two first species. Finally, we showed that three of the major Italian fish-farm strains originated from the Atlantic side and displayed substantial genetic differences with the natural populations of the Pô basin. Most of these populations were contaminated by stocking with introgression rate ranging from 0 to 70% and measures of protection and restoration of the rich genetic diversity present in this area should be urgently applied.  相似文献   

18.
A cross-modal matching procedure was used, in twelve subjects,to evaluate regional differences in suprathreshold sensitivityof the oral cavity to electrogustometric stimulation. Stimulationof five loci on each side of the oral cavity was performed:tongue tip (one cm from the midline), anterior tongue side (2.5cm from tip on lateral margin), posterior tongue side (regionof the foliate papillae), posterior medial tongue (one cm frommidline on circumvallate papillae), and soft palate (one cmfrom midline, one cm above superior pole of anterior palatinearch). The tip of the tongue was significantly more sensitivethan the other areas to electric stimulation, as evidenced bythe slope and absolute position of the psychophysical powerfunctions. Strong correlations were observed in the sensitivitymeasures across tongue loci and between tongue and palate sides.No effects of subject gender or mouth side were found.  相似文献   

19.
Nie H  Li Q  Kong L 《Animal genetics》2012,43(3):290-297
Centromere mapping is an essential prerequisite for our understanding of the composition and structure of genomes. For centromere mapping, in two meiogynogenetic families of the Pacific abalone (Haliotis discus hannai), we screened 97 microsatellite markers that cover all linkage groups from a currently available abalone linkage map. Microsatellite analysis showed that no unique paternal allele was found in all gynogenetic progeny, which confirmed 100% success of induction of gynogenesis. In the control crosses, all 97 microsatellite loci were compatible with Mendelian inheritance, while in meiogynogenetic progeny, 5.2% of the microsatellite loci showed segregation distortions from an expected 1:1 ratio of two homozygote classes. The second division segregation frequency of the microsatellites ranged from 0.037 to 0.950 with a mean of 0.399, indicating the existence of interference. Heterogeneity among linkage groups in the crossover distribution was observed. Centromere location was mostly in accordance with the abalone karyotype, but differences in marker order between linkage and centromere maps occurred. Information on the positions of centromeres in relation to the microsatellite loci will represent a contribution towards assembly of genetic maps in the commercially important abalone species.  相似文献   

20.
Genetic studies on Atlantic herring, Clupea harengus, have generally revealed a low level of genetic variation over large geographic areas. Genetically distinct herring populations in some of the Norwegian fjords are exceptions, and juvenile herring from the large oceanic herring, Norwegian Spring Spawners (NSS), are often found in mixture with local fjord populations as well as widely distributed in the Barents Sea. Research surveys in the eastern Barents Sea (Goose Bank) in 1993, 1994 and 2001 included collection of herring samples for allozyme analyses. As expected the results identified juveniles from NSS stock, but an additional unique group of herring (low vertebrae number), being almost fixed for alternative alleles at several allozyme loci, was detected. In some cases, the two groups of herring were taken in the same trawl catches as documented by highly significant departure from Hardy—Weinberg expectation with large excess of homozygotes providing evidence for population mixing. Large genetic differences (Nei's genetic distance = 1.53; FST = 0.754) were detected in pairwise comparisons based on five allozyme loci. The two herring groups were also compared with reference samples of Pacific herring, Clupea pallasi, including one sample from Japan Sea and three Alaskan samples. UPGMA dendrogram based on five allozyme loci revealed a close genetic relationship between the low vertebrae herring in the Barents Sea and the group of samples of Pacific herring. Although significant different in allele frequencies, one of the herring samples clustered together with the reference sample from Bering Sea with genetic distance of 0.008 and FST value of 0.032. The close genetic relationship found in this paper, suggest a re-evaluation of the taxonomic status of the Barents Sea herring populations investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号