首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytic subunit of the Ca2+/calmodulin- (CaM) dependent phosphoprotein phosphatase calcineurin (CN) was phosphorylated by an activated form of Ca2+/CaM-dependent protein kinase II (CaM-kinase II) incorporating approximately 1 mol of phosphoryl group/mol of catalytic subunit, in agreement with a value previously reported (Hashimoto et al., 1988). Cyanogen bromide cleavage of radiolabeled CN followed by peptide fractionation using reverse-phase high-performance liquid chromatography yielded a single labeled peptide that contained a phosphoserine residue. Microsequencing of the peptide allowed both the determination of the cleavage cycle that released [32P]phosphoserine and the identity of amino acids adjacent to it. Comparison of this sequence with the sequences of methionyl peptides deduced from the cDNA structure of CN (Kincaid et al., 1988) allowed the phosphorylated serine to be uniquely identified. Interestingly, the phosphoserine exists in the sequence Met-Ala-Arg-Val-Phe-Ser(P)-Val-Leu-Arg-Glu, part of which lies within the putative CaM-binding site. The phosphorylated serine residue was resistant to autocatalytic dephosphorylation, yet the slow rate of hydrolysis could be powerfully stimulated by effectors of CN phosphatase activity. The mechanism of dephosphorylation may be intramolecular since the initial rate was the same at phosphoCN concentrations of 2.5-250 nM.  相似文献   

2.
A neuronal Ca2+/calmodulin-dependent protein kinase (CaM kinase-Gr) undergoes autophosphorylation on a serine residue(s) in response to Ca2+ and calmodulin. Phosphate incorporation leads to the formation of a Ca(2+)-independent (autonomous) activity state, as well as potentiation of the Ca2+/calmodulin-dependent response. The autonomous enzyme activity of the phosphorylated enzyme approximately equals the Ca2+/calmodulin-stimulated activity of the unphosphorylated enzyme, but displays diminished affinity toward ATP and the synthetic substrate, syntide-2. The Km(app) for ATP and syntide-2 increased 4.3- and 1.7-fold, respectively. Further activation of the autonomous enzyme by Ca2+/calmodulin yields a marked increase in the affinity for ATP and peptide substrate such that the Km(app) for ATP and syntide-2 decreased by 14- and 8-fold, respectively. Both autophosphorylation and the addition of Ca2+/calmodulin are required to produce the maximum level of enzyme activation and to increase substrate affinity. Unlike Ca2+/calmodulin-dependent protein kinase type II that is dephosphorylated by the Mg(2+)-independent phosphoprotein phosphatases 1 and 2A, CaM kinase-Gr is dephosphorylated by a Mg(2+)-dependent phosphoprotein phosphatase that may be related to the type 2C enzyme. Dephosphorylation of CaM kinase-Gr reverses the effects of autophosphorylation on enzyme activity. A comparison between the autophosphorylation and dephosphorylation reactions of CaM kinase-Gr and Ca2+/calmodulin-dependent protein kinase type II provides useful insights into the operation of Ca(2+)-sensitive molecular switches.  相似文献   

3.
Dephosphorylation of neuromodulin by calcineurin   总被引:8,自引:0,他引:8  
Neuromodulin (p57, GAP-43, F1, B-50) is a major neural-specific, calmodulin binding protein found in brain, spinal cord, and retina that is associated with membranes. Phosphorylation of neuromodulin by protein kinase C causes a significant reduction in its affinity for calmodulin (Alexander, K. A., Cimler, B. M., Meirer, K. E., and Storm, D. R. (1987) J. Biol. Chem. 262, 6108-6113). It has been proposed that neuromodulin may function to bind and concentrate calmodulin at specific sites within neurons and that activation of protein kinase C causes the release of free calmodulin at high concentrations near its target proteins. It was the goal of this study to determine whether bovine brain contains a phosphoprotein phosphatase that will utilize phosphoneuromodulin as a substrate. Phosphatase activity for phosphoneuromodulin was partially purified from a bovine brain extract using DEAE-Sephacel and Sephacryl S-200 gel filtration chromatography. The neuromodulin phosphatase activity was resolved into two peaks by Affi-Gel Blue chromatography. One of these phosphatases, which represented approximately 60% of the total neuromodulin phosphatase activity, was tentatively identified as calcineurin by its requirement for Ca2+ and calmodulin (CaM) and inhibition of its activity by chlorpromazine. Therefore, bovine brain calcineurin was purified to homogeneity and examined for its phosphatase activity against bovine phosphoneuromodulin. Calcineurin rapidly dephosphorylated phosphoneuromodulin in the presence of micromolar Ca2+ and 3 microM CaM. The apparent Km and Vmax for the dephosphorylation of neuromodulin, measured in the presence of micromolar Ca2+ and 2 microM CaM, were 2.5 microM and 70 nmol Pi/mg/min, respectively, compared to a Km and Vmax of 4 microM and 55 nmol Pi/mg/min, respectively, for myosin light chain under the same conditions. Dephosphorylation of neuromodulin by calcineurin was stimulated 50-fold by calmodulin in the presence of micromolar free Ca2+. Half-maximal stimulation was observed at a calmodulin concentration of 0.5 microM. We propose that phosphoneuromodulin may be a physiologically important substrate for calcineurin and that calcineurin and protein kinase C may regulate the levels of free calmodulin available in neurons.  相似文献   

4.
Exogenous purified rabbit skeletal-muscle glycogen synthase was used as a substrate for adipose-tissue phosphoprotein phosphatase from fed and starved rats in order to (1) compare the relationship between phosphate released from, and the kinetic changes imparted to, the substrate and (2) ascertain if decreases in adipose-tissue phosphatase activity account for the apparent decreased activation of endogenous glycogen synthase from starved as compared with fed rats. Muscle glycogen synthase was phosphorylated with [gamma-(32)P]ATP and cyclic AMP-dependent protein kinase alone, or in combination with a cyclic AMP-independent protein kinase, to 1.7 or 3mol of phosphate per subunit. Adipose-tissue phosphatase activity determined with phosphorylated skeletal-muscle glycogen synthase as substrate was decreased by 35-60% as a consequence of starvation. This decrease in phosphatase activity had little effect on the capacity of adipose-tissue extracts to activate exogenous glycogen synthase (i.e. to increase the glucose 6-phosphate-independent enzyme activity), although there were marked differences in the activation profiles for the two exogenous substrates. Glycogen synthase phosphorylated to 1.7mol of phosphate per subunit was activated rapidly by adipose-tissue extracts from either fed or starved rats, and activation paralleled enzyme dephosphorylation. Glycogen synthase phosphorylated to 3mol of phosphate per subunit was activated more slowly and after a lag period, since release of the first mol of phosphate did not increase the glucose 6-phosphate-independent activity of the enzyme. These patterns of enzyme activation were similar to those observed for the endogenous adipose-tissue glycogen synthase(s): the glucose 6-phosphate-independent activity of the endogenous enzyme from fed rats increased rapidly during incubation, whereas that of starved rats, like that of the more highly phosphorylated muscle enzyme, increased only very slowly after a lag period. The observations made here suggest that (1) changes in glucose 6-phosphate-independent glycogen synthase activity are at best only a qualitative measure of phosphoprotein phosphatase activity and (2) the decrease in glycogen synthase phosphatase activity during starvation is not sufficient to explain the differential glycogen synthase activation in adipose tissue from fed and starved rats. However, alterations in the phosphorylation state of glycogen synthase combined with decreased activity of phosphoprotein phosphatase, both as a consequence of starvation, could explain the apparent markedly decreased enzyme activation.  相似文献   

5.
Shen X  Li H  Ou Y  Tao W  Dong A  Kong J  Ji C  Yu S 《The Journal of biological chemistry》2008,283(17):11407-11413
The protein serine/threonine phosphatase calcineurin (CN) is activated by calmodulin (CaM) in response to intracellular calcium mobilization. A widely accepted model for CN activation involves displacement of the CN autoinhibitory peptide (CN(467-486)) from the active site upon binding of CaM. However, CN activation requires calcium binding both to the low affinity sites of CNB and to CaM, and previous studies did not dissect the individual contributions of CNB and CaM to displacement of the autoinhibitory peptide from the active site. In this work we have produced separate CN fragments corresponding to the CNA regulatory region (CNRR(381-521), residues 381-521), the CNA catalytic domain truncated at residue 341, and the CNA-CNB heterodimer with CNA truncated at residue 380 immediately after the CNB binding helix. We show that the separately expressed regulatory region retains its ability to inhibit CN phosphatase activity of the truncated CN341 and CN380 and that the inhibition can be reversed by calcium/CaM binding. Tryptophan fluorescence quenching measurements further indicate that the isolated regulatory region inhibits CN activity by occluding the catalytic site and that CaM binding exposes the catalytic site. The results provide new support for a model in which calcium binding to CNB enables CaM binding to the CNA regulatory region, and CaM binding then instructs an activating conformational change of the regulatory region that does not depend further on CNB. Moreover, the secondary structural content of the CNRR(381-521) was tentatively addressed by Fourier transform infrared spectroscopy. The results indicate that the secondary structure of CNRR(381-521) fragment is predominantly random coil, but with significant amount of beta-strand and alpha-helix structures.  相似文献   

6.
Wang H  Zhou CL  Lei H  Zhang SD  Zheng J  Wei Q 《IUBMB life》2008,60(8):549-554
Calcineurin (CN), the Ca(2+)/calmodulin (CaM)-dependant protein phosphatase, is the target for immunosuppressive drugs cyclosporine A (CsA) and FK506. These immunosuppressants can inhibit CN activity after binding with respective immunophilins. Based on the model of screening by using p-nitrophenyl phosphate as a substrate for preliminary screening and (32)P-labeled 19-residue phosphopeptide as a specific substrate for final determination, we found Kaempferol, a natural flavonol, could inhibit CN activity in purified enzyme and Jurkat T-cells. Unlike CsA and FK506, CN inhibition by kaempferol is independent of matchmaker protein and the inhibitory manner is noncompetitive. Through investigation of inhibitions for CNA and a series of its truncated mutants, we suggested that Kaempferol could directly act on the catalytic domain. Data also indicated that the CN inhibition by kaempferol could be enhanced when the enzyme was activated in the presence of CaM and CNB. CNB is necessary for mediating inhibition of enzyme by kaempferol. The result of RT-PCR also indicated that kaempferol had an inhibitory activity against IL-2 gene expression in activated Jurkat cells. All data suggested that kaempferol could be a new immunosuppressant of CN.  相似文献   

7.
Plasma membrane fractions I and II isolated from bovine corpus luteum contain phosphoprotein phosphatases. Enzyme activities associated with both membrane fractions showed pH optima in the neutral range and were most active with phosphoprotamine as the exogenous substrate. The enzyme activity was partially inhibited by Co2+, Zn2+ and Fe2+. Dithioerythritol, glutathione (reduced) and 2-mercaptoethanol stimulated the enzyme activity, whereas N-ethylmaleimide and N-phenylmaleimide were inhibitory. Similarly, various cyclic nucleotides and nuclsoside triphosphates also inhibited phosphoprotein phosphatase activities. The phosphatase activity was also observed with endogenous phosphorylated membrane proteins as substrate. The endogenous phosphorylation of membranes was rapid and attained a maximal level after 15--20 min of incubation. Initially endogenous dephosphorylation was also very rapid, but did not reach completion. In addition to phosphoprotein phosphatase, membrane preparations also possessed very active cyclic-AMP-dependent protein kinase activity. Phosphoprotein phosphatase activity from plasma membranes was solubilized by ionic and nonionic detergents. Optimal solubilization was achieved with 0.1% sodium deoxycholate. Sucrose density gradient centrifugation of deoxycholate-solubilized fraction I and fraction II membranes resolved phosphoprotein phosphatase activity into two species with apparent sedimentation coefficients of 6.7 S (Mr 130000) and 4.8 S (Mr 90000). Cyclic-AMPstimulated protein kinase activity sedimented as a broad peak with a sedimentation coefficient of 5.5 S (Mr 110000).  相似文献   

8.
Calmodulin (CaM)-dependent enzymes, such as CaM-dependent phosphodiesterase (CaM-PDE), CaM-dependent protein phosphatase (CN), and CaM-dependent protein kinase II (CaM kinase II), are found in high concentrations in differentiated mammalian neurons. In order to determine whether neuroblastoma cells express these CaM-dependent enzymes as a consequence of cellular differentiation, a series of experiments was performed on human SMS-KCNR neuroblastoma cells; these cells morphologically differentiate in response to retinoic acid and phorbol esters [12-O-tetradecanoylphorbol 13-acetate (TPA)]. Using biotinylated CaM overlay procedures, immunoblotting, and protein phosphorylation assays, we found that SMS-KCNR cells expressed CN and CaM-PDE, but did not appear to have other neuronal CaM-binding proteins. Exposure to retinoic acid, TPA, or conditioned media from human HTB-14 glioma cells did not markedly alter the expression of CaM-binding proteins; 21-day treatment with retinoic acid, however, did induce expression of novel CaM-binding proteins of 74 and 76 kilodaltons. Using affinity-purified polyclonal antibodies, CaM-PDE immunoreactivity was detected as a 75-kilodalton peptide in undifferentiated cells, but as a 61-kilodalton peptide in differentiated cells. CaM kinase II activity and subunit autophosphorylation was not evident in either undifferentiated or neurite-bearing cells; however, CaM-dependent phosphatase activity was seen. Immunoblot analysis with affinity-purified antibodies against CN indicated that this enzyme was present in SMS-KCNR cells regardless of their state of differentiation. Although SMS-KCNR cells did not show a complete pattern of neuronal CaM-binding proteins, particularly because CaM kinase II activity was lacking, they may be useful models for examination of CaM-PDE and CN expression. It is possible that CaM-dependent enzymes can be used as sensitive markers for terminal neuronal differentiation.  相似文献   

9.
Calcineurin (CN) is a Ca(2+)/calmodulin (CaM)-dependent protein serine/threonine phosphatase that contains Zn(2+) in its catalytic domain and can be stimulated by divalent ions such as Mn(2+) and Ni(2+). In this study, the role of exogenous Zn(2+) in the regulation of CN activity and its relevance to the role of Ni(2+) was investigated. Zn(2+) at a concentration range of 10nM-10 micro M inhibited Ni(2+)-stimulated CN-activity in vitro in a dose-dependent manner and approximately 50% inhibition was attained with 0.25 micro M Zn(2+). Kinetic analysis showed that Zn(2+) inhibited the activity of CN by competing with Ni(2+). Interaction of CN and CaM was not inhibited with Zn(2+) at 10 micro M. Zn(2+) never affected the activity of cAMP phosphodiesterase 1 or myosin light-chain kinase (CaM-dependent enzymes) and rather activated alkaline phosphatase. The present results indicate that Zn(2+) should be a potent inhibitor for CN activity although this ion is essential for CN.  相似文献   

10.
Arabidopsis MAP kinase phosphatase 1 (AtMKP1) is a member of the mitogen-activated protein kinase (MPK) phosphatase family, which negatively regulates AtMPKs. We have previously shown that AtMKP1 is regulated by calmodulin (CaM). Here, we examined the phosphorylation of AtMKP1 by its substrate AtMPK6. Intriguingly, AtMKP1 was phosphorylated by AtMPK6, one of AtMKP1 substrates. Four phosphorylation sites were identified by phosphoamino acid analysis, TiO(2) chromatography and mass spectrometric analysis. Site-directed mutation of these residues in AtMKP1 abolished the phosphorylation by AtMPK6. In addition, AtMKP1 interacted with AtMPK6 as demonstrated by the yeast two-hybrid system. Finally, the phosphatase activity of AtMKP1 increased approximately twofold following phosphorylation by AtMPK6. By in-gel kinase assays, we showed that AtMKP1 could be rapidly phosphorylated by AtMPK6 in plants. Our results suggest that the catalytic activity of AtMKP1 in plants can be regulated not only by Ca(2+)/CaM, but also by its physiological substrate, AtMPK6.  相似文献   

11.
Tong L  Song Y  Jia Z  Zhang W  Wei Q 《IUBMB life》2007,59(6):402-407
Chlorogenic acid (CGA) has been proved to be an activator of calcineurin (CN) in our previous research. In this study, the activation mechanism of CN by CGA was further explored. The results showed that although the purified CN was inactive in vitro if only Ca(2+)/calmodulin (CaM) existed without Mn(2+)/Ni(2+), CGA activated the inactive CN potently. It was found that CN's activity increased as the concentration of CGA increased and reached a plateau of 4- to 6-fold higher activity using p-nitrophenyl phosphate (pNPP) or phosphopeptide (32)P-RII as substrate. And the activation was CaM-dependent. Moreover, the fluorescent emission of CN had a 17 nm red shift in the presence of 128 muM CGA, and the quenching constant was 1.21x10(12) M(-1) . s(-1), which indicated that CGA bound to CN statically and changed its conformation. According to the kinetic analysis, CGA preferred to activate CN in a substrate noncompetitive manner. When Mn(2+) or Ni(2+) presented, CGA also activated CN with CaM-dependency by improving CN's affinity for Mn(2+) or Ni(2+). In addition, the inhibition of CN by Zn(2+) was partially eliminated by CGA chelation. Our findings suggested the activation of CN by CGA was in a CaM-dependent and substrate noncompetitive manner. This might provide the basis for the further study of CN-targeted activators.  相似文献   

12.
Elevation of the intracellular calcium concentration is necessary for cell growth and the activation of several lymphokine genes. The immunosuppressive drugs cyclosporin A and FK506 profoundly inhibit the calcium-dependent signaling pathway in T lymphocytes by interfering with the activity of the calcium/calmodulin (CaM)-dependent serine/threonine phosphatase, calcineurin (CN). Little is known, however, about how activation of CN enzyme activity or interaction with its substrate, nuclear factor of activated T cell (NF-AT), is regulated. We show here that the binding of CaM to CN may affect the conformation of CN at both the CaM-binding and the autoinhibitory (AI) domains and that this is critical for activation of CN to dephosphorylate NF-AT. Dissociation of the AI domain from the enzyme active site on CN leads to expose a binding site for NF-AT at the N terminus of CN and allows the CN binding to NF-AT. Since the cytoplasmic form of NF-AT can interact with CN mutants lacking enzyme activity, the interaction of the two molecules is independent of CN enzyme activity and occurs prior to the dephosphorylation of NF-AT. Dephosphorylation converts NF-AT from the cytoplasmic to the nuclear form by exposing the DNA-binding domain on NF-AT, and the nuclear form of NF-AT brings CN together into the nuclei. We therefore propose that the activation of CN by the CaM binding independently regulates the interaction with NF-AT and the dephosphorylation of NF-AT.  相似文献   

13.
Using autophosphorylated Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) as substrate, we now find that long-term potentian (LTP) induction and maintenance are also associated with a significant decrease in calyculin A-sensitive protein phosphatase (protein phosphatase 2A) activity, without changes in Mg2+-dependent protein phosphatase (protein phosphatase 2C) activity. This decrease in protein phosphatase 2A activity was prevented when LTP induction was inhibited by treatment with calmidazolium or D-2-amino-5-phosphonopentanoic acid. In addition, the application of high-frequency stimulation to 32P-labeled hippocampal slices resulted in increases in the phosphorylation of a 55-kDa protein immunoprecipitated with anti-phosphatase 2A antibodies. Use of a specific antibody revealed that the 55-kDa protein is the B'alpha subunit of protein phosphatase 2A. Following purification of brain protein phosphatase 2A, the B'alpha subunit was phosphorylated by CaM kinase II, an event that led to the reduction of protein phosphatase 2A activity. These results suggest that the decreased activity in protein phosphatase 2A following LTP induction contributes to the maintenance of constitutively active CaM kinase II and to the long-lasting increase in phosphorylation of synaptic components implicated in LTP.  相似文献   

14.
CoA hydrolysis was studied by a homogenous phosphoprotein phosphatase (EC 3.1 3.16) preparation from bovine spleen nuclei at pH 5.8. Phosphoprotein phosphatase catalyzed hydrolysis of the CoA 3'-phosphoester bond to form dephospho-CoA and Pi. The Km value for phosphoprotein phosphatase with CoA as substrate was 3.7 mM, the specific activity - 0.26 mmol Pi.min-1.mg-1. Phosphoprotein phosphatase did not essentially catalyze the calcium pantothenate hydrolysis (not more than 2% as compared with the CoA hydrolysis rate).  相似文献   

15.
钙调神经磷酸酶(calcineurin,CN)是唯一依赖于Ca2+和钙调蛋白(calmodulin,CaM)的丝氨酸/苏氨酸型蛋白磷酸酶,由1个催化亚基CNA和1个调节亚基CNB组成. CNA 有3种亚型,最常见的是由CNA1基因编码的α亚型(CNAα). 在克隆CNA1基因cDNA的过程中,发现了1种新的人CNA1转录本-CNAα4. 与CNA1基因的其它转录本相比,CNAα4缺失第2外显子,其编码蛋白质由454个氨基酸组成,具有比其它3种CNAα亚型更短的磷酸酶催化结构域. CNAα4具有与CNAα1相似的CaM亲和力,但是其激活活化T细胞核因子(nuclear factor of activated T cells,NFAT)的活性明显强于CNAα1,提示CNAα4所缺失的氨基酸序列(Ala20 Thr86)并非CNA催化结构域所必需,相反,Ala20-Thr86缺失可能有助于其酶活性中心与NFAT的结合并发挥作用.  相似文献   

16.
Using 32P-labeled phosphocasein or phosphohistones as exogenous substrates it was possible to detect a phosphoprotein phosphatase activity on the outer surface of intact normal and transformed 3T3 fibroblasts. Incubation of monolayers of intact cells in buffered salt solution with the radioactively labeled substrate resulted in the release of alkali-labile 32P counts into the surrounding medium. The reaction was: (a) linear with time (at least up to 20 min); (b) proportional to the cell density; (c) dependent on the temperature and pH of the incubation medium; (d) stimulated by K+; and (e) inhibited by sodium fluoride, inorganic pyrophosphate, zinc chloride and relatively impermeant sulfhydryl reagents. Less than 2% of the externally located phosphoprotein phosphatase activity was detectable in pooled cell-free washings of the intact cell monolayer. Phosphocasein did not cause any detectable leakage of intracellular lactate dehydrogenase or soluble phosphoprotein phosphatase activity into the external medium; incubation of the cells with phosphohistones, on the other hand, resulted in appreciable leakage of both these cytoplasmic activities. Neoplastic transformation was associated with a nearly two-fold decrease in the activity of the surface phosphoprotein phosphatase. Addition of serum to either non-transformed 3T3 or spontaneously transformed 3T6 cells resulted in a rapid and remarkeable drop in the cell surface dephosphorylating activity. Acrylamide gel electrophoresis of the dephosphorylated casein or histone substrate revealed no proteolytic degradation or change in electrophoretic mobility. The intact cells showed no damage upon microscopic examination as a result of exposure to phosphocasein or phosphohistones.  相似文献   

17.
Wang X  Huang Y  Li L  Wei Q 《IUBMB life》2012,64(9):748-756
Calcineurin (CN) is the only serine/threonine specific protein phosphatase regulated by Ca(2+) /calmodulin (CaM), which is composed of catalytic A subunit (CNA) and regulatory B subunit (CNB). Tumor necrosis factor (TNF) receptor associated factor 3 (TRAF3) is an essential component in the Toll like receptors and TNF receptors (TNFRs) pathways. The TRAF domain of TRAF3 interacts with a large range of proteins, which share consensus sequences known as TRAF interacting motifs (TIMs). By sequence alignment, we identified two potential TIMs in CNB. However, the relation between TRAF3 and CN has not been reported before. To explore this, we highly expressed the former insoluble TRAF domain of TRAF3 in soluble form by using CaM fusion system for the first time. We demonstrated that the TRAF domain of TRAF3 interacted with CNB. On further investigation, over-expression of TRAF3 inhibited endogenous CN's activity, which decreased NFAT reporter activity and IL-2 production. Knock-down of TRAF3 partially enhanced CN's activity. The possible mechanism was that TRAF3 functioned as ubiquitin E3 ligase for CN and promoted its degradation. ? 2012 IUBMB IUBMB Life IUBMB Life, 64(9): 748-756, 2012.  相似文献   

18.
The effects of calmodulin (CaM) on inositol 1,4,5-trisphosphate (InsP3) 3-kinase activity in pig aortic smooth muscle were examined. The cytosol fraction of muscle cells, containing 1.2-2.0 micrograms of CaM/mg of cytosol protein (thus 0.12-0.2%, w/w), showed a Ca2+-dependent InsP3 3-kinase activity, and there was no further activation by exogenous addition of CaM purified from dog brain. (NH4)2SO4 fractionation of the cytosol fraction revealed that a 20-60%-satd.-(NH4)2SO4 fraction was rich in the enzyme activity, and the activity without exogenous CaM was still dependent on Ca2+, although the CaM content in this fraction was minute (0.013-0.016%, w/w). The kinase activity observed in the absence of exogenous CaM became insensitive to Ca2+ when a 20-60%-satd.-(NH4)2SO4 fraction was applied to a DEAE-cellulose column, but exogenous addition of CaM increased the enzyme activity from 80-120 to 450 pmol/min per mg of protein, with addition of 10 microM free Ca2+. A fraction separated by DEAE-cellulose chromatography was applied to a CaM affinity column. The kinase activity was retained on the column in the presence of Ca2+, and was eluted by lowering the free Ca2+ concentration by adding EGTA. These results directly show that CaM activates InsP3 3-kinase activity and the enzyme becomes sensitive to Ca2+.  相似文献   

19.
Using 32P-labeled phosphocasein or phosphohistones as exogenous substrates it was possible to detect a phosphoprotein phosphate activity on the outer surface of intact normal and transformed 3T3 fibroblasts. Incubation of monolayers of intact cells in buffered salt solution with the radioactively labeled substrate resulted in the release of alkali-labile 32P counts into the surrounding medium. The reaction was: (a) linear with time (at least up to 20 min); (b) proportional to the cell density; (c) dependent on the temperature and pH of the incubation medium; (d) stimulated by K+; and (e) inhibited by sodium fluoride, inorganic pyrophosphate, zinc chloride and relatively impermeant sulfhydryl reagents. Less than 2% of the externally located phosphoprotein phosphatase activity was detectable in pooled cell-free washings of the intact cell monolayer. Phosphocasein did not cause any detectable leakage of intracellular lactate dehydrogenase or soluble phosphoprotein phosphatase activity into the external medium; incubation of the cells with phosphohistones, on the other hand, resulted in appreaciable leakage of both these cytoplasmic activities. Neoplastic transformation was associated with a nearly two-fold decrease in the activity of the surface phosphoprotein phosphatase. Addition of serum to either non-transformed 3T3 or spontaneously transformed 3T6 cells resulted in a rapid and remarkable drop in the cell surface dephosphorylating activity. Acrylamide gel electrophoresis of the dephosphorylated casein or histone substrate revealed no proteolytic degradation or change in electrophoretic mobility. The intact cells showed no damage upon microscopic examination as a result of exposure to phosphocasein or phosphohistones.  相似文献   

20.
In addition to physical properties (DeRemer, M. F., Saeli, R. J., and Edelman, A. M. (1992) J. Biol. Chem. 267, 13460-13465), enzymatic and regulatory characteristics indicate that calmodulin (CaM) kinase Ia and CaM kinase Ib are distinct entities. The Km values for ATP and site 1 peptide were similar between the two kinases, however, CaM kinase Ib is approximately 20-fold more sensitive to CaM than is CaM kinase Ia. The kinases also displayed differential sensitivities to divalent metal ions. For both kinases, site 1 peptide, synapsin I, and syntide-2 were highly preferred substrates relative to others tested. A 72-kDa protein from a heat-treated extract of rat pancreas was phosphorylated by CaM kinase Ib but not by CaM kinase Ia. CaM kinase Ia activity displayed a pronounced lag in its time course suggesting enzyme activation over time. Preincubation of CaM kinase Ia in the combined presence of Ca(2+)-CaM and MgATP led to a time-dependent increase in its site 1 peptide kinase activity of up to 15-fold. The extent of activation of CaM kinase Ia correlated with the extent of autophosphorylation. The enzyme retained full Ca(2+)-CaM dependence in the activated state which was rapidly reversible by treatment with protein phosphatase 2A catalytic subunit. Thus, the activation of CaM kinase Ia is a result of its Ca(2+)-CaM-dependent autophosphorylation. CaM kinase Ib was not activated by preincubation under autophosphorylating conditions yet lost approximately 90% of its activity toward either an exogenous substrate (site 1 peptide) or itself (autophosphorylation) after incubation with protein phosphatase 2A catalytic subunit. The deactivated state was not reversed by subsequent incubations under autophosphorylating conditions. Thus, CaM kinase Ib activity is dependent upon phosphorylation by a regulating kinase(s) which is resolved from CaM kinase Ib during purification of the latter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号