首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tamura M  Kajikawa M  Okada N 《Gene》2007,390(1-2):221-231
Long interspersed elements (LINEs) are transposable elements that exist in many kinds of eukaryotic genomes, where they have a large effect on genome evolution. There are several thousands to hundreds of thousands of LINE copies in each eukaryotic genome. LINE elements are amplified by a mechanism called retrotransposition, in which a LINE-encoded protein reverse transcribes (copies) its own RNA. We previously isolated two retrotransposition-competent LINEs, ZfL2-1 and ZfL2-2, from zebrafish. Although it has generally been thought that LINEs do not have ‘introns’ (because the LINE RNA is used as the template during retrotransposition), we now show that these two LINEs contain multiple putative functional splice sites. We further show that at least one pair of these splice sites is actually functional in zebrafish cells. Moreover, some of these splice sites are coupled with the splicing signal of a host endogenous gene, thereby generating a new chimeric spliced mRNA variant for this gene. Our results suggest the possible role of these LINE splice sites in modulating retrotransposition and host gene expression.  相似文献   

2.
Pavlícek A  Jabbari K  Paces J  Paces V  Hejnar JV  Bernardi G 《Gene》2001,276(1-2):39-45
Alus and LINEs (LINE1) are widespread classes of repeats that are very unevenly distributed in the human genome. The majority of GC-poor LINEs reside in the GC-poor isochores whereas GC-rich Alus are mostly present in GC-rich isochores. The discovery that LINES and Alus share similar target site duplication and a common AT-rich insertion site specificity raised the question as to why these two families of repeats show such a different distribution in the genome. This problem was investigated here by studying the isochore distributions of subfamilies of LINES and Alus characterized by different degrees of divergence from the consensus sequences, and of Alus, LINEs and pseudogenes located on chromosomes 21 and 22. Young Alus are more frequent in the GC-poor part of the genome than old Alus. This suggests that the gradual accumulation of Alus in GC-rich isochores has occurred because of their higher stability in compositionally matching chromosomal regions. Densities of Alus and LINEs increase and decrease, respectively, with increasing GC levels, except for the telomeric regions of the analyzed chromosomes. In addition to LINEs, processed pseudogenes are also more frequent in GC-poor isochores. Finally, the present results on Alu and LINE stability/exclusion predict significant losses of Alu DNA from the GC-poor isochores during evolution, a phenomenon apparently due to negative selection against sequences that differ from the isochore composition.  相似文献   

3.
4.
Summary We present approximately 7.0 kb of composite DNA sequence of a long interspersed middle repetitive element (LINE1) present in high copy number in the rat genome. The family of these repeats, which includes transcribing members, is the rat homologue of the mouse MIF-Bam-R and human Kpn I LINEs. Sequence alignments between speciments from these three species define the length of a putative unidentified open reading frame, and document extensive recombination events that, in conjunction with retroposition, have generated this large family of pseudogenes and pseudogene fragments. Comparative mapping of truncated elements indicates that a specific endonucleolytic activity might bei involved in illegitimate (nonhomologous) recombination events. Sequence divergence analyses provide insights into the origin and molecular evolution of these elements.  相似文献   

5.
We characterized the human endogenous retrovirus (HERV-W) family in humans and primates. In silico expression data indicated that 22 complete HERV-W families from human chromosomes 1-3, 5-8, 10-12, 15, 19, and X are randomly expressed in various tissues. Quantitative real-time RT-PCR analysis of the HERV-W env gene derived from human chromosome 7q21.2 indicated predominant expression in the human placenta. Several copies of repeat sequences (SINE, LINE, LTR, simple repeat) were detected within the complete or processed pseudo HERV-W of the human, chimpanzee, and rhesus monkey. Compared to other regions (5'LTR, Gag, Gag-Pol, Env, 3'LTR), the repeat family has been mainly integrated into the region spanning the 5'LTRs of Gag (1398 bp) and Pol (3242 bp). FISH detected the HERV-W probe (fosWE1) derived from a gorilla fosmid library in the metaphase chromosomes of all primates (five hominoids, three Old World monkeys, two New World monkeys, and one prosimian), but not in Tupaia. This finding was supported by molecular clock and phylogeny data using the divergence values of the complete HERV-W LTR elements. The data suggested that the HERV-W family was integrated into the primate genome approximately 63 million years (Myr) ago, and evolved independently during the course of primate radiation.  相似文献   

6.
Inter-Alu PCR is increasingly useful in human genome mapping studies. One use is the generation of alumorphs, polymorphisms resulting from the presence or absence of inter-Alu PCR products. In this study, we have increased the proportion of the genome that can be analyzed by this technique with the use of long interspersed elements (LINEs). The set of polymorphisms detected by both Alu and LINE primers are referred to as interspersed repetitive sequence variants or IRS-morphs. Since a presence-absence variant may have been the result of a recent Alu or LINE insertion, we analyzed 7 isolated IRS-morphs that were generated, in part, with a primer derived from either a consensus LINE or a young Alu subfamily specific sequence, and observed by Southern blot analysis that these variants resulted from other types of genomic alterations. The use of these primers, however, reduces background from the numerous LINEs and Alu elements in the genome, providing sharp DNA fingerprint profiles. We have demonstrated the potential usefulness of these IRS-morph profiles in human population studies. We compared 12 IRS-morphs from a single amplification reaction from five distinct population groups (Caucasian (northern European descent), Hispanic (Mexican-American), Hindu-Indian, Papua New Guinean, and Greenland Eskimo) and observed that most have variable allelic frequencies among populations. The utilization of additional IRS-morph profiles will perpetuate this technique as a tool for DNA fingerprinting and for the analysis of human populations. Key words : Alu elements, DNA fingerprint, human populations, LINEs, SINEs.  相似文献   

7.
Two major classes of retrotransposons have invaded eukaryotic genomes: the LTR retrotransposons closely resembling the proviral integrated form of infectious retroviruses, and the non-LTR retrotransposons including the widespread, autonomous LINE elements. Here, we review the modeling effects of the latter class of elements, which are the most active in humans, and whose enzymatic machinery is subverted to generate a large series of "secondary" retroelements. These include the processed pseudogenes, naturally present in all eukaryotic genomes possessing non-LTR retroelements, and the very successful SINE elements such as the human Alu sequences which have evolved refined parasitic strategies to efficiently bypass the original "protectionist" cis-preference of LINEs for their own retrotransposition.  相似文献   

8.
Comparative analysis of processed pseudogenes in the mouse and human genomes   总被引:16,自引:0,他引:16  
Pseudogenes are important resources in evolutionary and comparative genomics because they provide molecular records of the ancient genes that existed in the genome millions of years ago. We have systematically identified approximately 5000 processed pseudogenes in the mouse genome, and estimated that approximately 60% are lineage specific, created after the mouse and human diverged. In both mouse and human genomes, similar types of genes give rise to many processed pseudogenes. These tend to be housekeeping genes, which are highly expressed in the germ line. Ribosomal-protein genes, in particular, form the largest sub-group. The processed pseudogenes in the mouse occur with a distinctly different chromosomal distribution than LINEs or SINEs - preferentially in GC-poor regions. Finally, the age distribution of mouse-processed pseudogenes closely resembles that of LINEs, in contrast to human, where the age distribution closely follows Alus (SINEs).  相似文献   

9.
10.
The genomic organization of the gene encoding rat aspartyl-tRNA synthetase (AspRS), a class II aminoacyl-tRNA synthetase (aaRS), was determined. A single active gene and several pseudogenes were isolated from a rat genomic DNA library and characterized. The active DRS1 gene encoding the rat AspRS spans approximately 60 kb and is divided into 16 exons. Exons 8–16, encoding the nt-binding domain of the synthetase, are clustered in the 3′-region of the gene, whereas exons 3, 4, and 5, encoding the anticodon-binding domain are separated by large introns (up to 15 kb) containing LINE sequences. One of the pseudogenes, ΨDRSI, has a nt sequence 93% identical to that of the complete cDNA sequence of rat AspRS but several stop codons interrupt the coding sequence, thus identifying ΨDRS1 to an inactive processed pseudogene. Two repetitive elements from the LINE family are inserted into ΨDRS1. Calculation of nt substitution rates suggests that ΨDRS1 sequences arose approximately 27 Myr ago. The other pseudogene, ΨDRS2, should be more ancient. Taken together, these results clearly demonstrate that the AspRS gene family is composed of only one active gene. The availability of the gene structure of AspRS could help to clarify molecular evolution of class II aaRS.  相似文献   

11.
This study examines the intragenomic spread of the human endogenous retrovirus family HERV-W from insertions present within the draft sequence of the human genome. Identification of shared diagnostic differences and phylogenetic analyses revealed the existence of three main subfamilies. The average divergence between sequences for each of the subfamilies suggests that most of the HERV-W elements were inserted within the genome during a short period of evolutionary time. Each one of the subfamilies consists of two types of insertions, the expected proviral sequences and other sequences resembling the structure of processed retrogenes. These HERV-W retrosequences extend from the R region of the 5' long-terminal repeat (LTR) to the R region of the 3' LTR (as viral genomic RNAs), end in poly(A) 3' tails, and are flanked by direct repeats longer than the proviral integrations. Furthermore, several of the HERV-W retrosequences are 5'-truncated at different sites. I suggest the involvement of the L1 machinery in these integrations and discuss the characteristic features of the evolutionary history of HERV-W, with emphasis on the putative impact of HERV-W retrosequence integrations on the mammalian genome.  相似文献   

12.
Long interspersed elements (LINEs) are transposable elements that proliferate within eukaryotic genomes, having a large impact on eukaryotic genome evolution. LINEs mobilize via a process called retrotransposition. Although the role of the LINE-encoded protein(s) in retrotransposition has been extensively investigated, the participation of host-encoded factors in retrotransposition remains unclear. To address this issue, we examined retrotransposition frequencies of two structurally different LINEs—zebrafish ZfL2-2 and human L1—in knockout chicken DT40 cell lines deficient in genes involved in the non-homologous end-joining (NHEJ) repair of DNA and in human HeLa cells treated with a drug that inhibits NHEJ. Deficiencies of NHEJ proteins decreased retrotransposition frequencies of both LINEs in these cells, suggesting that NHEJ is involved in LINE retrotransposition. More precise characterization of ZfL2-2 insertions in DT40 cells permitted us to consider the possibility of dual roles for NHEJ in LINE retrotransposition, namely to ensure efficient integration of LINEs and to restrict their full-length formation.  相似文献   

13.
14.
Nonallelic homologous recombination (NAHR), occurring between low-copy repeats (LCRs) >10 kb in size and sharing >97% DNA sequence identity, is responsible for the majority of recurrent genomic rearrangements in the human genome. Recent studies have shown that transposable elements (TEs) can also mediate recurrent deletions and translocations, indicating the features of substrates that mediate NAHR may be significantly less stringent than previously believed. Using >4 kb length and >95% sequence identity criteria, we analyzed of the genome-wide distribution of long interspersed element (LINE) retrotransposon and their potential to mediate NAHR. We identified 17 005 directly oriented LINE pairs located <10 Mbp from each other as potential NAHR substrates, placing 82.8% of the human genome at risk of LINE–LINE-mediated instability. Cross-referencing these regions with CNVs in the Baylor College of Medicine clinical chromosomal microarray database of 36 285 patients, we identified 516 CNVs potentially mediated by LINEs. Using long-range PCR of five different genomic regions in a total of 44 patients, we confirmed that the CNV breakpoints in each patient map within the LINE elements. To additionally assess the scale of LINE–LINE/NAHR phenomenon in the human genome, we tested DNA samples from six healthy individuals on a custom aCGH microarray targeting LINE elements predicted to mediate CNVs and identified 25 LINE–LINE rearrangements. Our data indicate that LINE–LINE-mediated NAHR is widespread and under-recognized, and is an important mechanism of structural rearrangement contributing to human genomic variability.  相似文献   

15.
Non-LTR retrotransposons comprise significant portion of the plants genome. Their complete characterization is thus necessary if the sequenced genome is to be annotated correctly. The long and short interspersed nucleotide repetitive elements (LINE and SINE) may be responsible for alteration in the expression mechanism of neighboring genes, the complete identification of these elements in the rice genome is essential in order studying their putative functional interactions with the plant genes and its role in genome composition. The main emphasis of this work is to assemble a comprehensive dataset of nonLTR (LINEs and SINEs) and the map of completely inserted LINEs and SINE type of retroelement by both intact ends (3' and 5' ends). The assembled information and work may help for further research in this direction.  相似文献   

16.
17.
Linear chromosomes shorten in every round of replication. In Drosophila, telomere-specialized long interspersed retrotransposable elements (LINEs) belonging to the jockey clade offset this shortening by forming head-to-tail arrays at Drosophila telomere ends. As such, these telomeric LINEs have been considered adaptive symbionts of the genome, protecting it from premature decay, particularly as Drosophila lacks a conventional telomerase holoenzyme. However, as reviewed here, recent work reveals a high degree of variation and turnover in the telomere-specialized LINE lineages across Drosophila. There appears to be no absolute requirement for LINE activity to maintain telomeres in flies, hence the suggestion that the telomere-specialized LINEs may instead be neutral or in conflict with the host, rather than adaptive.  相似文献   

18.
Belancio VP  Whelton M  Deininger P 《Gene》2007,390(1-2):98-107
LINE-1 (L1) is the only active, autonomous, non-LTR, human retroelement. There are about 5 × 105 L1 copies in the human genome, the majority of which are truncated at their 5′ ends. Both truncated and full-length L1 insertions contain a polyadenylation (polyA) signal at their 3′ ends. A typical polyA site consists of the three main cis-acting elements: a conserved hexamer, cleavage site, and a GU-rich downstream region. A newly inserted L1 copy contains the conserved AATAAA hexamer at the end of its sequence. However, the GU-rich downstream region has to be provided by the neighboring genomic sequences and therefore it would vary for every L1 copy. Using northern blot analysis of transiently transfected L1 expression vectors we demonstrate that L1 element contain sequence that allow efficient polyadenylation at the L1 3′ end upon retrotransposition into a new genomic location independent of the base composition downstream of the insertion site. The strategy of polyadenylation at the 3′ end of L1 parallels the approach the element employs at its 5′UTR by having an unusual internal polymerase II promoter, making new insertions less dependent on the properties of the flanking sequences at the new locus.  相似文献   

19.
Transposable elements contribute significantly to plant genome evolution in myriad ways, ranging from local insertional mutations to global effects exerted on genome size through accumulation. Differential accumulation and deletion of transposable elements may profoundly affect genome size, even among members of the same genus. One example is that of Gossypium (cotton), where much of the 3-fold genome size variation is due to differential accumulation of one gypsy-like LTR retrotransposon, Gorge3. Copia and non-LTR LINE retrotransposons are also major components of the Gossypium genome, but unlike Gorge3, their extant copy numbers do not correlate with genome size. In the present study, we describe the nature and timing of transposition for copia and LINE retrotransposons in Gossypium. Our findings indicate that copia retrotransposons have been active in each lineage since divergence from a common ancestor, and that they have proliferated in a punctuated manner. However, the evolutionary history of LINEs contrasts markedly with that of the copia retrotransposons. Although LINEs have also been active in each lineage, they have accumulated in a stochastically regular manner, and phylogenetic analysis suggests that extant LINE populations in Gossypium are dominated by ancient insertions. Interestingly, the magnitude of transpositional bursts in each lineage corresponds directly with extant estimated copy number.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号