首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
In the yeast Candida tropicalis, two thiolase isozymes, peroxisomal acetoacetyl-CoA thiolase and peroxisomal 3-ketoacyl-CoA thiolase, participate in the peroxisomal fatty acid β-oxidation system. Their individual contributions have been demonstrated in cells grown on butyrate, with C. tropicalis able to grow in the absence of either one. In the present study, a lack of peroxisomal 3-ketoacyl-CoA thiolase protein resulted in increased expression (up-regulation) of acetoacetyl-CoA thiolase and other peroxisomal proteins, whereas a lack of peroxisomal acetoacetyl-CoA thiolase produced no corresponding effect. Overexpression of the acetoacetyl-CoA thiolase gene did not suppress the up-regulation or the growth retardation on butyrate in cells without peroxisomal 3-ketoacyl-CoA thiolase, even though large amounts of the overexpressed acetoacetyl-CoA thiolase were detected in most of the peroxisomes of butyrate-grown cells. These results provide important evidence of the greater contribution of 3-ketoacyl-CoA thiolase to the peroxisomal β-oxidation system than acetoacetyl-CoA thiolase in C. tropicalis and a novel insight into the regulation of the peroxisomal β-oxidation system.  相似文献   

2.
The n-alkane-assimilating diploid yeast, Candida tropicalis, possesses two acetoacetyl-CoA thiolase (Thiolase I) isozymes encoded by one allele: peroxisomal and cytosolic Thiolase Is encoded by both CT-T1A and CT-T1B. To clarify the function of peroxisomal and cytosolic. Thiolase Is, the site-directed mutation leading Thiolase I ΔC6 without a putative C-terminal peroxisomal targeting signal was introduced on CT-T1A locus in the ct-t1bΔ-null mutant. The C-terminus-truncated Thiolase I was active and solely present in the cytosol. Although the ct-t1aΔ/t1bΔ-null mutants showed mevalonate auxotrophy, the mutants having the C-terminus-truncated Thiolase I did not require mevalonate for growth, as did the strains having cytosolic Thiolase I. These results demonstrated that the presence of Thiolase I in the cytoplasm is indispensable for the sterol synthesis in this yeast. It is of greater interest that peroxisomal and cytosolic Thiolase I isozymes, products of the same genes, play different roles in the respective compartments, although further investigations will be necessary to analyze how to be sorted into peroxisomes and the cytosol.  相似文献   

3.
In the yeast Candida tropicalis, two thiolase isozymes, peroxisomal acetoacetyl-CoA thiolase and peroxisomal 3-ketoacyl-CoA thiolase, participate in the peroxisomal fatty acid beta-oxidation system. Their individual contributions have been demonstrated in cells grown on butyrate, with C. tropicalis able to grow in the absence of either one. In the present study, a lack of peroxisomal 3-ketoacyl-CoA thiolase protein resulted in increased expression (up-regulation) of acetoacetyl-CoA thiolase and other peroxisomal proteins, whereas a lack of peroxisomal acetoacetyl-CoA thiolase produced no corresponding effect. Overexpression of the acetoacetyl-CoA thiolase gene did not suppress the up-regulation or the growth retardation on butyrate in cells without peroxisomal 3-ketoacyl-CoA thiolase, even though large amounts of the overexpressed acetoacetyl-CoA thiolase were detected in most of the peroxisomes of butyrate-grown cells. These results provide important evidence of the greater contribution of 3-ketoacyl-CoA thiolase to the peroxisomal beta-oxidation system than acetoacetyl-CoA thiolase in C. tropicalis and a novel insight into the regulation of the peroxisomal beta-oxidation system.  相似文献   

4.
Eukaryotic thiolases are essential enzymes located in three different compartments (peroxisome, mitochondrion, and cytosol) that can display catabolic or anabolic functions. They are responsible for the thiolytic cleavage of oxidized acyl-CoA (thiolase I; EC 2.3.1.16) and the synthesis or degradation of acetoacetyl-CoA (thiolase II; EC 2.3.1.9). Phylogenetic analysis of eukaryotic thiolase sequences showed that they form six distinct clusters, one of them highly divergent, which are in good correlation with their class and subcellular location. When analyzed together with a representative sample of prokaryotic thiolases, all eukaryotic thiolase groups emerged close to proteobacterial sequences. Metazoan cytosolic thiolase II was related to α-proteobacterial sequences, suggesting a mitochondrial origin. Unexpectedly, cytosolic thiolases from green plants and fungi as well as at least one member of all eukaryotic peroxisomal and mitochondrial thiolases had δ-proteobacteria as closest relatives. Our analysis suggests that these eukaryotic peroxisomal and mitochondrial thiolases may have been acquired from δ-proteobacteria prior to the ancestor of all known eukaryotes.  相似文献   

5.
The presence of two types of thiolases, acetoacetyl-CoA thiolase and 3-ketoacyl-CoA thiolase, was demonstrated in peroxisomes of n-alkane-grown Candida tropicalis [Kurihara, T., Ueda, M., & Tanaka, A. (1989) J. Biochem. 106, 474-478], while acetoacetyl-CoA thiolase was also shown to be present in cytosol. The activity of the enzyme in cytosol was constant irrespective of culture conditions, while the peroxisomal enzyme was inducibly synthesized in the alkane-grown yeast cells. These results indicate that peroxisomal acetoacetyl-CoA thiolase participates in alkane degradation, while the cytosolic enzyme is associated with other fundamental metabolic processes, probably sterol biosynthesis, because this enzyme can catalyze the first step of the sterol biosynthesis. 3-Hydroxy-3-methylglutaryl (HMG)-CoA reductase, a key regulatory enzyme of sterol biosynthesis, was found to be localized exclusively in microsomes of the alkane-grown yeast cells. These results suggest that yeast peroxisomes do not contribute to sterol biosynthesis, unlike the case of mammalian cells.  相似文献   

6.
T Kurihara  M Ueda  A Tanaka 《FEBS letters》1988,229(1):215-218
Two kinds of 3-ketoacyl-CoA thiolases were found in the peroxisomes of Candida tropicalis cells grown on n-alkanes (C10-C13). One was a typical acetoacetyl-CoA thiolase specific only to acetoacetyl-CoA, while another was 3-ketoacyl-CoA thiolase showing high activities on the longer chain substrates. A high level of the latter thiolase activity in alkane-grown cells was similar to that of other enzymes constituting the fatty acid beta-oxidation system in yeast peroxisomes. These facts suggest that the complete degradation of fatty acids to acetyl-CoA is carried out in yeast peroxisomes by the cooperative contribution of acetoacetyl-CoA thiolase and 3-ketoacyl-CoA thiolase.  相似文献   

7.
Two types of thiolases are involved in the synthesis and catabolism of fatty acids; acetyl-CoA acetyltransferase (AT) which catalyzes the formation of acetoacetyl-CoA from acetyl-CoA by transferring an acetyl group from one acetyl-CoA molecule to another, and 3-ketoacyl-CoA thiolase which catalyzes a reversible thiolytic cleavage of 3-ketoacyl-CoA into acetyl-CoA and acyl-CoA. Although many mammalian thiolases have been characterized in detail, no thiolases from insects have been functionally characterized to date. Here we report first characterization of an insect AT gene, Osat1, from the pheromone gland of the adzuki bean borer moth Ostrinia scapulalis (Lepidoptera; Crambidae). Osat1 encodes a 41.2 kDa protein comprising 396 amino acid residues (OsAT1), which possesses structural features of the thiolase family. An Osat1 homologue of Bombyx mori (Bmat1) was cloned through exploration of an EST library of the silkworm. Subsequent survey of the genome database revealed that B. mori has at least six Osat1 homologues, among which Bmat1 was most closely related to Osat1. We expressed recombinant OsAT1 using a baculovirus expression system, and verified that OsAT1 catalyzes the formation of acetoacetyl-CoA from acetyl-CoA. Osat1 was expressed in all adult tissues examined. These results indicate that OsAT1 is a functional AT ubiquitously expressed in O. scapulalis tissues.  相似文献   

8.
9.
Two genes encoding acetoacetyl-CoA thiolase (thiolase I; EC 2.3.1.9), whose localization in peroxisomes was first found with an n-alkane-utilizing yeast, Candida tropicalis, were isolated from the lambda EMBL3 genomic DNA library prepared from the yeast genomic DNA. Nucleotide sequence analysis revealed that both genes contained open reading frames of 1209 bp corresponding to 403 amino acid residues with methionine at the N-terminus, which were named as thiolase IA and thiolase IB. The calculated molecular masses were 41,898 Da for thiolase IA and 41,930 Da for thiolase IB. These values were in good agreement with the subunit mass of the enzyme purified from yeast peroxisomes (41 kDa). There was an extremely high similarity between these two genes (96% of nucleotides in the coding regions and 98% of amino acids deduced). From the amino acid sequence analysis of the purified peroxisomal enzyme, it was shown that thiolase IA and thiolase IB were expressed in peroxisomes at an almost equal level. Both showed similarity to other thiolases, especially to Saccharomyces uvarum cytosolic acetoacetyl-CoA thiolase (65% amino acids of thiolase IA and 64% of thiolase IB were identical with this thiolase). Considering the evolution of thiolases, the C. tropicalis thiolases and S. uvarum cytosolic acetoacetyl-CoA thiolase are supposed to have a common origin. It was noticeable that the carboxyl-terminal regions of thiolases IA and IB contained a putative peroxisomal targeting signal, -Ala-Lys-Leu-COOH, unlike those of other thiolases reported hitherto.  相似文献   

10.
11.
The sub-cellular location of enzymes of fatty acid β-oxidation in plants is controversial. In the current debate the role and location of particular thiolases in fatty acid degradation, fatty acid synthesis and isoleucine degradation are important. The aim of this research was to determine the sub-cellular location and hence provide information about possible functions of all the putative 3-ketoacyl-CoA thiolases (KAT) and acetoacetyl-CoA thiolases (ACAT) in Arabidopsis. Arabidopsis has three genes predicted to encode KATs, one of which encodes two polypeptides that differ at the N-terminal end. Expression in Arabidopsis cells of cDNAs encoding each of these KATs fused to green fluorescent protein (GFP) at their C-termini showed that three are targeted to peroxisomes while the fourth is apparently cytosolic. The four KATs are also predicted to have mitochondrial targeting sequences, but purified mitochondria were unable to import any of the proteins in vitro. Arabidopsis also has two genes encoding a total of five different putative ACATs. One isoform is targeted to peroxisomes as a fusion with GFP, while the others display no targeting in vivo as GFP fusions, or import into isolated mitochondria. Analysis of gene co-expression clusters in Arabidopsis suggests a role for peroxisomal KAT2 in β-oxidation, while KAT5 co-expresses with genes of the flavonoid biosynthesis pathway and cytosolic ACAT2 clearly co-expresses with genes of the cytosolic mevalonate biosynthesis pathway. We conclude that KATs and ACATs are present in the cytosol and peroxisome, but are not found in mitochondria. The implications for fatty acid β-oxidation and for isoleucine degradation in mitochondria are discussed.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

12.
Acetoacetyl-CoA specific thiolases catalyse the cleavage of acetoacetyl-CoA into two molecules of acetyl-CoA and the synthesis (reverse reaction) of acetoacetyl-CoA. The formation of acetoacetyl-CoA is the first step in cholesterol and ketone body synthesis. In this report we describe the identification of a novel acetoacetyl-CoA thiolase and its purification from isolated rat liver peroxisomes by column chromatography. The enzyme, which is a homotetramer with a subunit molecular mass of 42 kDa, could be distinguished from the cytosolic and mitochondrial acetoacetyl-CoA thiolases by its chromatographic behaviour, kinetic characteristics and partial internal amino-acid sequences. The enzyme did not catalyse the cleavage of medium or long chain 3-oxoacyl-CoAs. The enzyme cross-reacted with polyclonal antibodies raised against cytosolic acetoacetyl-CoA thiolase. The latter property was exploited to confirm the peroxisomal localization of the novel thiolase in subcellular fractionation experiments. The peroxisomal acetoacetyl-CoA thiolase most probably catalyses the first reaction in peroxisomal cholesterol and dolichol synthesis. In addition, its presence in peroxisomes along with the other enzymes of the ketogenic pathway indicates that the ketogenic potential of peroxisomes needs to be re-evaluated.  相似文献   

13.
Properties of peroxisomal 3-ketoacyl-coA thiolase from rat liver   总被引:9,自引:0,他引:9  
Peroxisomal 3-ketoacyl-CoA thiolase has a molecular weight of 89,000 and consists of 2 polypeptide chains of identical size. The enzyme has no interchain disulfide bonds and is reversibly dissociated to an inactive monomer in the cold. Mitochondrial 3-ketoacyl-CoA thiolase and acetoacetyl-CoA specific thiolase have molecular weights of 154,000 and 149,000, respectively. They each consist of 4 polypeptide chains of identical size. Peroxisomal thiolase and mitochondrial 3-ketoacyl-CoA thiolase operate by a ping-pong mechanism. The catalytic properties, including substrate specificity, of the peroxisomal enzyme were compared to those of mitochondrial 3-ketoacyl-CoA thiolase.  相似文献   

14.
15.
Thiolase (acetyl-coenzyme A [CoA] acetyltransferase, E.C. 2.3.1.19) from Clostridium acetobutylicum ATCC 824 has been purified 70-fold to homogeneity. Unlike the thiolase in Clostridium pasteurianum, this thiolase has high relative activity throughout the physiological range of internal pH of 5.5 to 7.0, indicating that change in internal pH during acid production is not an important factor in the regulation of this thiolase. In the condensation direction, the thiolase is inhibited by micromolar levels of CoA, and this may be an important factor in modulating the net condensation of acetyl-CoA to acetoacetyl-CoA. Other cofactors and metabolites that were tested and shown to be inhibitors are ATP and butyryl-CoA. The native enzyme consists of four 44,000-molecular-weight subunits. The kinetic binding mechanism is ping-pong. The Km value for acetyl-CoA is 0.27 mM at 30°C and pH 7.4. The Km values for sulfhydryl-CoA and acetoacetyl-CoA are, respectively, 0.0048 and 0.032 mM at 30°C and pH 8.0. The active site apparently contains a sulfhydryl group, but unlike other thiolases, this thiolase is relatively stable in the presence of 5,5′-dithiobis(2-nitrobenzoic acid). Studies of thiolase specific activity under various types of continuous fermentations show that regulation of this enzyme at both the genetic and enzyme levels is important.  相似文献   

16.
Reactions that generate and remove acetoacetyl-CoA and acetoacetate were measured in mitochondria and cytosol of rat liver. The activities surveyed include acetoacetyl-CoA hydrolase, acetoacetyl-glutathione hydrolase, acetoacetyl-CoA:glutathione acyl transferase, 3-ketothiolases I and II, 3-hydroxy-3-methylglutaryl-CoA lyase and synthase, and acetoacetyl-CoA synthetase. Phosphocellulose chromatography shows that cytosol contains at least four acetoacetyl-CoA hydrolase activities, two of which do not coincide with 3-ketothiolases or 3-hydroxy-3-methylglutaryl-CoA lyase, while mitochondria contain at least three acetoacetyl-CoA hydrolase activities that overlap partially or completely with 3-ketothiolases and 3-hydroxy-3-methyl-glutaryl-CoA lyase. Two of the mitochondrial acetoacetyl-CoA hydrolase activities are not found in cytosol. Cytosol contains at least two and mitochondrial extracts at least six acetoacetyl-glutathione hydrolase activities. Mitochondria and cytosol both contain two isozymes of 3-ketoacyl-CoA thiolase (thiolases Ia and Ib). Chain length specificities show that the mitochondrial and cytosolic forms of thiolase Ia differ from each other. We report a new isozyme of 3-ketoacyl-CoA thiolase (thiolase I) in rat liver cytosol.  相似文献   

17.
The peroxisomal 3-ketoacyl-CoA thiolase B (Thb) gene was previously identified as a direct target gene of PPARalpha, a nuclear hormone receptor activated by hypolipidemic fibrate drugs. To better understand the role of ThB in hepatic lipid metabolism in mice, Sv129 wild-type and Thb null mice were fed or not the selective PPARalpha agonist Wy14,643 (Wy).Here, it is shown that in contrast to some other mouse models deficient for peroxisomal enzymes, the hepatic PPARalpha signaling cascade in Thb null mice was normal under regular conditions. It is of interest that the hypotriglyceridemic action of Wy was reduced in Thb null mice underlining the conclusion that neither thiolase A nor SCPx/SCP2 thiolase can fully substitute for ThB in vivo. Moreover, a significant increased in the expression of lipogenic genes such as Stearoyl CoA Desaturase-1 (SCD1) was observed in Thb null mice fed Wy. Elevation of Scd1 mRNA and protein levels led to higher SCD1 activity, through a molecular mechanism that is probably SREBP1 independent. In agreement with higher SCD1, enrichment of liver mono-unsaturated fatty acids of the n-7 and n-9 series was found in Thb null mice fed Wy.Overall, we show that the reduced peroxisomal β-oxidation of fat observed in Thb null mice fed Wy is associated with enhanced hepatic lipogenesis, through the combined elevation of microsomal SCD1 protein and activity. Ultimately, not only the amount but also the quality of the hepatic fatty acid pool is modulated upon the deletion of Thb.  相似文献   

18.
The breakdown of fatty acids, performed by the β-oxidation cycle, is crucial for plant germination and sustainability. β-Oxidation involves four enzymatic reactions. The final step, in which a two-carbon unit is cleaved from the fatty acid, is performed by a 3-ketoacyl-CoA thiolase (KAT). The shortened fatty acid may then pass through the cycle again (until reaching acetoacetyl-CoA) or be directed to a different cellular function. Crystal structures of KAT from Arabidopsis thaliana and Helianthus annuus have been solved to 1.5 and 1.8 Å resolution, respectively. Their dimeric structures are very similar and exhibit a typical thiolase-like fold; dimer formation and active site conformation appear in an open, active, reduced state. Using an interdisciplinary approach, we confirmed the potential of plant KATs to be regulated by the redox environment in the peroxisome within a physiological range. In addition, co-immunoprecipitation studies suggest an interaction between KAT and the multifunctional protein that is responsible for the preceding two steps in β-oxidation, which would allow a route for substrate channeling. We suggest a model for this complex based on the bacterial system.  相似文献   

19.
It is generally admitted that the ascomycete yeasts of the subphylum Saccharomycotina possess a single fatty acid ß-oxidation pathway located exclusively in peroxisomes, and that they lost mitochondrial ß-oxidation early during evolution. In this work, we showed that mutants of the opportunistic pathogenic yeast Candida lusitaniae which lack the multifunctional enzyme Fox2p, a key enzyme of the ß-oxidation pathway, were still able to grow on fatty acids as the sole carbon source, suggesting that C. lusitaniae harbored an alternative pathway for fatty acid catabolism. By assaying 14Cα-palmitoyl-CoA consumption, we demonstrated that fatty acid catabolism takes place in both peroxisomal and mitochondrial subcellular fractions. We then observed that a fox2Δ null mutant was unable to catabolize fatty acids in the mitochondrial fraction, thus indicating that the mitochondrial pathway was Fox2p-dependent. This finding was confirmed by the immunodetection of Fox2p in protein extracts obtained from purified peroxisomal and mitochondrial fractions. Finally, immunoelectron microscopy provided evidence that Fox2p was localized in both peroxisomes and mitochondria. This work constitutes the first demonstration of the existence of a Fox2p-dependent mitochondrial β-oxidation pathway in an ascomycetous yeast, C. lusitaniae. It also points to the existence of an alternative fatty acid catabolism pathway, probably located in peroxisomes, and functioning in a Fox2p-independent manner.  相似文献   

20.
In Candida tropicalis cells grown on n-alkanes (C10-C13), the levels of the activities of the enzymes related to fatty acid β—oxidation—acyl-CoA oxidase, enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and 3-ketoacyl-CoA thiolase—were found to be higher than those in cells grown on glucose, indicating that these enzymes were induced by alkanes. The enzymes were first confirmed to be localized only in peroxisomes, while none of these enzymes nor acyl-CoA dehydrogenase, which is known to participate in the initial step of mitochondrial β-oxidation in mammalian cells, were detected in yeast mitochondria under the conditions employed.

The significance of the peroxisomal β-oxidation system in the metabolism of alkanes by the yeast was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号