首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.

Background

Based upon defining a common reference point, current real-time quantitative PCR technologies compare relative differences in amplification profile position. As such, absolute quantification requires construction of target-specific standard curves that are highly resource intensive and prone to introducing quantitative errors. Sigmoidal modeling using nonlinear regression has previously demonstrated that absolute quantification can be accomplished without standard curves; however, quantitative errors caused by distortions within the plateau phase have impeded effective implementation of this alternative approach.

Results

Recognition that amplification rate is linearly correlated to amplicon quantity led to the derivation of two sigmoid functions that allow target quantification via linear regression analysis. In addition to circumventing quantitative errors produced by plateau distortions, this approach allows the amplification efficiency within individual amplification reactions to be determined. Absolute quantification is accomplished by first converting individual fluorescence readings into target quantity expressed in fluorescence units, followed by conversion into the number of target molecules via optical calibration. Founded upon expressing reaction fluorescence in relation to amplicon DNA mass, a seminal element of this study was to implement optical calibration using lambda gDNA as a universal quantitative standard. Not only does this eliminate the need to prepare target-specific quantitative standards, it relegates establishment of quantitative scale to a single, highly defined entity. The quantitative competency of this approach was assessed by exploiting "limiting dilution assay" for absolute quantification, which provided an independent gold standard from which to verify quantitative accuracy. This yielded substantive corroborating evidence that absolute accuracies of ± 25% can be routinely achieved. Comparison with the LinReg and Miner automated qPCR data processing packages further demonstrated the superior performance of this kinetic-based methodology.

Conclusion

Called "linear regression of efficiency" or LRE, this novel kinetic approach confers the ability to conduct high-capacity absolute quantification with unprecedented quality control capabilities. The computational simplicity and recursive nature of LRE quantification also makes it amenable to software implementation, as demonstrated by a prototypic Java program that automates data analysis. This in turn introduces the prospect of conducting absolute quantification with little additional effort beyond that required for the preparation of the amplification reactions.  相似文献   

2.
Fluorescent monitoring of DNA amplification is the basis of real-time PCR, from which target DNA concentration can be determined from the fractional cycle at which a threshold amount of amplicon DNA is produced. Absolute quantification can be achieved using a standard curve constructed by amplifying known amounts of target DNA. In this study, the mathematics of quantitative PCR are examined in detail, from which several fundamental aspects of the threshold method and the application of standard curves are illustrated. The construction of five replicate standard curves for two pairs of nested primers was used to examine the reproducibility and degree of quantitative variation using SYBER® Green I fluorescence. Based upon this analysis the application of a single, well- constructed standard curve could provide an estimated precision of ±6–21%, depending on the number of cycles required to reach threshold. A simplified method for absolute quantification is also proposed, in which quantitative scale is determined by DNA mass at threshold.  相似文献   

3.

Background

Linear regression of efficiency or LRE introduced a new paradigm for conducting absolute quantification, which does not require standard curves, can generate absolute accuracies of ±25% and has single molecule sensitivity. Derived from adapting the classic Boltzmann sigmoidal function to PCR, target quantity is calculated directly from the fluorescence readings within the central region of an amplification profile, generating 4–8 determinations from each amplification reaction.

Findings

Based on generating a linear representation of PCR amplification, the highly visual nature of LRE analysis is illustrated by varying reaction volume and amplification efficiency, which also demonstrates how LRE can be used to model PCR. Examining the dynamic range of LRE further demonstrates that quantitative accuracy can be maintained down to a single target molecule, and that target quantification below ten molecules conforms to that predicted by Poisson distribution. Essential to the universality of optical calibration, the fluorescence intensity generated by SYBR Green I (FU/bp) is shown to be independent of GC content and amplicon size, further verifying that absolute scale can be established using a single quantitative standard. Two high-performance lambda amplicons are also introduced that in addition to producing highly precise optical calibrations, can be used as benchmarks for performance testing. The utility of limiting dilution assay for conducting platform-independent absolute quantification is also discussed, along with the utility of defining assay performance in terms of absolute accuracy.

Conclusions

Founded on the ability to exploit lambda gDNA as a universal quantitative standard, LRE provides the ability to conduct absolute quantification using few resources beyond those needed for sample preparation and amplification. Combined with the quantitative and quality control capabilities of LRE, this kinetic-based approach has the potential to fundamentally transform how real-time qPCR is conducted.  相似文献   

4.
目的建立SYBR GreenⅠ荧光染料实时定量RT-PCR方法,测定实验动物等来源的EV71病毒RNA。方法运用EV71VP1保守区引物,优化real time RT-PCR条件,运用NASBA方法扩增EV71病毒RNA,计算拷贝数,经10倍系列稀释做出标准曲线,作为EV71病毒RNA定量检测的外标准品。结果应用Qiagen公司QuantiTect SYBR Green RT-PCR Kit,该标准品可精确定量到100copies/μL,PCR扩增效率达到99.5%。结论 SYBRGreenⅠ荧光染料实时定量PCR法测定EV71病毒RNA拷贝数的方法敏感性高、稳定性好,可用于EV71病毒RNA载量的定量测定。  相似文献   

5.
Polymerase chain reaction (PCR) is a sensitive and rapid method for the diagnosis of canine Leishmania infection and can be performed on a variety of biological samples, including peripheral blood, lymph node, bone marrow and skin. Standard PCR requires electrophoretic analysis of the amplification products and is usually not suitable for quantification of the template DNA (unless competitor-based or other methods are developed), being of reduced usefulness when accurate monitoring of target DNA is required. Quantitative real-time PCR allows the continuous monitoring of the accumulation of PCR products during the amplification reaction. This allows the identification of the cycle of near-logarithmic PCR product generation (threshold cycle) and, by inference, the relative quantification of the template DNA present at the start of the reaction. Since the amplification product are monitored in "real-time" as they form cycle-by-cycle, no post-amplification handling is required. The absolute quantification is performed according either to an internal standard co-amplified with the sample DNA, or to an external standard curve obtained by parallel amplification of serial known concentrations of a reference DNA sequence. From the quantification of the template DNA, an estimation of the relative load of parasites in the different samples can be obtained. The advantages compared to standard and semi-quantitative PCR techniques are reduction of the assay's time and contamination risks, and improved sensitivity. As for standard PCR, the minimal components of the quantitative PCR reaction mixture are the DNA target of the amplification, an oligonucleotide primer pair flanking the target sequence, a suitable DNA polymerase, deoxynucleotides, buffer and salts. Different technologies have been set up for the monitoring of amplification products, generally based on the use of fluorescent probes. For instance, SYBR Green technology is a non-specific detection system based on a fluorescent dsDNA intercalator and it is applicable to all potential targets. TaqMan technology is more specific since performs the direct assessment of the amount of amplified DNA using a fluorescent probe specific for the target sequence flanked by the primer pair. This probe is an oligonucleotide labelled with a reporter dye (fluorescent) and a quencher (which absorbs the fluorescent signal generated by the reporter). The thermic protocol of amplification allows the binding of the fluorescent probe to the target sequence before the binding of the primers and the starting of the polymerization by Taq polymerase. During polymerization, 5'-3' exonuclease activity of Taq polymerase digests the probe and in this way the reporter dye is released from the probe and a fluorescent signal is detected. The intensity of the signal accumulates at the end of each cycle and is related to the amount of the amplification product. In recent years, quantitative PCR methods based either on SYBR Green or TaqMan technology have been set up for the quantification of Leishmania in mouse liver, mouse skin and human peripheral blood, targeting either single-copy chromosomal or multi-copy minicircle sequences with high sensitivity and reproducibility. In particular, real-time PCR seems to be a reliable, rapid and noninvasive method for the diagnosis and follow up of visceral leishmaniasis in humans. At present, the application of real-time PCR for research and clinical diagnosis of Leishmania infection in dogs is still foreseable. As for standard PCR, the high sensitivity of real-time PCR could allow the use of blood sampling that is less invasive and easily performed for monitoring the status of the dogs. The development of a real-time PCR assay for Leishmania infantum infection in dogs could support the standard and optimized serological and PCR methods currenly in use for the diagnosis and follow-up of canine leishmaniasis, and perhaps prediction of recurrences associated with tissue loads of residual pathogens after treatment. At this regard, a TaqMan Real Time PCR method developed for the quantification of Leishmania infantum minicircle DNA in peripheral blood of naturally infected dogs sampled before and at different time points after the beginning of a standard antileishmanial therapy will be illustrated.  相似文献   

6.
实时荧光定量PCR (FQ-PCR)标准曲线法准确定量基因表达的关键在于标准品与待检样本的扩增效率是否一致. 为检测DNA标准品与样本cDNA扩增效率的一致性,探讨定量用标准品的最佳制备方法,本研究以脂肪酸结合蛋白5(Fabp5)、过氧化物酶体增殖活化受体α (Ppar-α)及β肌动蛋白(β-Actin)的3个基因为对象,分别采用质粒纯化法、PCR产物直接纯化法、PCR产物凝胶回收法制备DNA标准品,10倍梯度稀释后用FQ PCR制作标准曲线. 并以10倍梯度稀释的样本cDNA标准曲线的参数为对照,进行比较分析. 结果表明,不同方法制备的DNA标准品的扩增效率差异较大,并且与cDNA的扩增效率不一致,不能对cDNA样本进行准确定量. 另外,虽然目的基因在cDNA样本中的拷贝未知,不能对基因表达水平进行绝对定量,但因不同cDNA样本的同一基因的扩增效率一致, 可对基因的表达进行准确的相对定量.  相似文献   

7.
Adenoviruses 40 and 41 have been recognized as important etiological agents of gastroenteritis in children. A real-time PCR method (TaqMan assay) was developed for rapid quantification of adenovirus 40 (Ad40) by amplifying an 88 bp sequence from the hexon gene. To establish a quantification standard curve, a 1090 bp hexon region of Ad40 was amplified and cloned into the pGEM-T Vector. A direct correlation was observed between the fluorescence threshold cycle number (Ct) and the starting quantity of Ad40 hexon gene. The quantification was linear over 6-log units and the amplification efficiency averaged greater than 95%. Seeding studies using various environmental matrices (including sterile water, creek water, brackish estuarine water, ocean water, and secondary sewage effluent) suggest that this method is applicable to environmental samples. However, real-time PCR was sensitive to inhibitors present in the environmental samples. Lower efficiency of PCR amplification was found in secondary sewage effluent and creek waters. Application of the method to fecal contaminated waters successfully quantified the presence of Ad40. The sensitivity of the real-time PCR is comparable to the traditional nested PCR assay for environmental samples. In addition, the real-time PCR assay offers the advantage of speed and insensitivity to contamination during PCR set up. The real-time PCR assay developed in this study is suitable for quantitative determination of Ad40 in environmental samples and represents a considerable advancement in pathogen quantification in aquatic environments.  相似文献   

8.
Wilhelm J  Pingoud A  Hahn M 《BioTechniques》2001,30(5):1052-6, 1058, 1060 passim
In quantitative real-time PCR assays, fluorophor-labeled oligonucleotide probes are employed to generate sequence-specific signals for the quantitative evaluation. Whereas TaqMan probes have to be hydrolyzed during PCR by the endonucleolytic activity of Taq DNA polymerase to generate a signal, the hybridization probes in LightCycler assays must not be hydrolyzed. In this study, we demonstrate for four different targets that the probes are degraded during PCR by Taq DNA polymerase. Signal yield, quality of amplification curves, and accuracy of quantitative measurements can be improved using the Stoffel fragment lacking an endonucleolytic activity and TaqStart antibody suppressing the formation of nonspecific products, without laborious efforts to optimize the amplification protocol.  相似文献   

9.
High and comparable efficiency values are the key for reliable quantification of target genes from environmental samples using real-time PCR. Therefore it was the aim of this study to investigate if PCR amplification efficiencies of plasmid DNA used for the calculation of standard curves (i) remain constant along a logarithmic scale of dilutions and (ii) if these values are comparable to those of DNA extracted from environmental samples. It could be shown that comparable efficiency values within the standards cannot be achieved using log scale serial dilutions and a comparison of gene copy numbers from DNA extracted from environmental samples and standard DNA extracted from plasmids is only possible in a very small interval.  相似文献   

10.
Real-time PCR is being used increasingly as the method of choice for mRNA quantification, allowing rapid analysis of gene expression from low quantities of starting template. Despite a wide range of approaches, the same principles underlie all data analysis, with standard approaches broadly classified as either absolute or relative. In this study we use a variety of absolute and relative approaches of data analysis to investigate nocturnal c-fos expression in wild-type and retinally degenerate mice. In addition, we apply a simple algorithm to calculate the amplification efficiency of every sample from its amplification profile. We confirm that nocturnal c-fos expression in the rodent eye originates from the photoreceptor layer, with around a 5-fold reduction in nocturnal c-fos expression in mice lacking rods and cones. Furthermore, we illustrate that differences in the results obtained from absolute and relative approaches are underpinned by differences in the calculated PCR efficiency. By calculating the amplification efficiency from the samples under analysis, comparable results may be obtained without the need for standard curves. We have automated this method to provide a means of streamlining the real-time PCR process, enabling analysis of experimental samples based upon their own reaction kinetics rather than those of artificial standards.  相似文献   

11.
The dinoflagellate Prorocentrum minimum was successfully detected using loop-mediated isothermal amplification (LAMP) and real-time fluorescence quantitative PCR (RTFQ-PCR). Both specificity and sensitivity testing in the two methods have been validated. In the LAMP assay, the specific ladder-like pattern of bands only appeared in those templates containing P. minimum. The sensitivity of LAMP was tenfold higher than conventional PCR. In RTFQ-PCR assay, only positive amplifications were detected from those samples containing P. minimum. RTFQ-PCR can detect 0.1 cells and 10 pg of DNA within 40 cycles, showing its high sensitivity. Cells could be quantified according to standard curves in agreement with the quantification by standard microscopy counting methods. The LAMP method therefore is appropriate for on-the-spot testing because of its rapidity and simplification, and the RTFQ-PCR is fit for laboratory testing owing to its accurate quantification. The two methods are of significance in forecasting red tides.  相似文献   

12.
Quantitative real-time PCR (qPCR), as an important quantitative technique for nucleic acids, has been widely used in many fields including clinical diagnosis, molecular biology, and cancer research. However, non-specific amplification products are still a frequent problem in qPCR. In this study, we investigated the effects of QDs on real-time amplification based on either SYBR Green I or EvaGreen. It was found that QDs could raise the amplification sensitivity and thus enhance the efficiency using SYBR Green I detection system. In the case of EvaGreen detection systems, addition of QDs also led to a better correlation coefficient than without QDs. EvaGreen-based system gave sharper peaks for melting curves than SYBR Green I. The experiments indicated that the polymerase activity could be partially blocked by QDs at the pre-PCR temperatures, resulting in the improvement of PCR specificity. These results indicated that CdTe QDs could be used as a descent qPCR enhancer. Good amplification fidelity in QDs-facilitated qPCR was also a plus that has not been reported elsewhere.  相似文献   

13.
Rapid competitive PCR using melting curve analysis for DNA quantification.   总被引:5,自引:0,他引:5  
S Al-Robaiy  S Rupf  K Eschrich 《BioTechniques》2001,31(6):1382-6, 1388
A rapid competitive PCR method was developed to quantify DNA on the LightCycler. It rests on the quantitative information contained in the melting curves obtained after amplification in the presence of SYBR Green I. Specific hybridization probes are not required. Heterologous internal standards sharing the same primer binding sites and having different melting temperatures to the natural PCR products were used as competitors. After a co-amplification of known amounts of the competitor with a DNA-containing sample, the target DNA can be quantified from the ratio of the melting peak areas of competitor and target products. The method was developed using 16S rDNA fragments from Streptococcus mutans and E. coli and tested against existing PCR-based DNA quantification procedures. While kinetic analysis of real-time PCR is well established for the quantification of pure nucleic acids, competitive PCR on the LightCycler based on an internal standardization was found to represent a rapid and sensitive alternative DNA quantification method for analysis of complex biological samples that may contain PCR inhibitors.  相似文献   

14.
Real-time PCR data analysis for quantification has been the subject of many studies aimed at the identification of new and improved quantification methods. Several analysis methods have been proposed as superior alternatives to the common variations of the threshold crossing method. Notably, sigmoidal and exponential curve fit methods have been proposed. However, these studies have primarily analyzed real-time PCR with intercalating dyes such as SYBR Green. Clinical real-time PCR assays, in contrast, often employ fluorescent probes whose real-time amplification fluorescence curves differ from those of intercalating dyes. In the current study, we compared four analysis methods related to recent literature: two versions of the threshold crossing method, a second derivative maximum method, and a sigmoidal curve fit method. These methods were applied to a clinically relevant real-time human herpes virus type 6 (HHV6) PCR assay that used a minor groove binding (MGB) Eclipse hybridization probe as well as an Epstein-Barr virus (EBV) PCR assay that used an MGB Pleiades hybridization probe. We found that the crossing threshold method yielded more precise results when analyzing the HHV6 assay, which was characterized by lower signal/noise and less developed amplification curve plateaus. In contrast, the EBV assay, characterized by greater signal/noise and amplification curves with plateau regions similar to those observed with intercalating dyes, gave results with statistically similar precision by all four analysis methods.  相似文献   

15.
Lin CH  Chen YC  Pan TM 《PloS one》2011,6(12):e29101
Quantitative real-time PCR (qPCR) is the gold standard for the quantification of specific nucleic acid sequences. However, a serious concern has been revealed in a recent report: supercoiled plasmid standards cause significant over-estimation in qPCR quantification. In this study, we investigated the effect of plasmid DNA conformation on the quantification of DNA and the efficiency of qPCR. Our results suggest that plasmid DNA conformation has significant impact on the accuracy of absolute quantification by qPCR. DNA standard curves shifted significantly among plasmid standards with different DNA conformations. Moreover, the choice of DNA measurement method and plasmid DNA conformation may also contribute to the measurement error of DNA standard curves. Due to the multiple effects of plasmid DNA conformation on the accuracy of qPCR, efforts should be made to assure the highest consistency of plasmid standards for qPCR. Thus, we suggest that the conformation, preparation, quantification, purification, handling, and storage of standard plasmid DNA should be described and defined in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to assure the reproducibility and accuracy of qPCR absolute quantification.  相似文献   

16.
Detection, identification and quantification of plant pathogens are the cornerstones of preventive plant disease management. To detect multiple pathogens in a single assay, DNA array technology currently is the most suitable technique. However, for sensitive detection, polymerase chain reaction (PCR) amplification before array hybridization is required. To evaluate whether DNA array technology can be used to simultaneously detect and quantify multiple pathogens, a DNA macroarray was designed and optimized for accurate quantification over at least three orders of magnitude of the economically important vascular wilt pathogens Verticillium albo-atrum and Verticillium dahliae. A strong correlation was observed between hybridization signals and pathogen concentrations for standard DNA added to DNA from different origins and for infested samples. While accounting for specific criteria like amount of immobilized detector oligonucleotide and controls for PCR kinetics, accurate quantification of pathogens was achieved in concentration ranges typically encountered in horticultural practice. Subsequently, quantitative assessment of other tomato pathogens (Fusarium oxysporum, Fusarium solani, Pythium ultimum and Rhizoctonia solani) in environmental samples was performed using DNA array technology and correlated to measurements obtained using real-time PCR. As both methods of quantification showed a very high degree of correlation, the reliability and robustness of the DNA array technology is shown.  相似文献   

17.
18.

Background

Real-Time quantitative PCR is an important tool in research and clinical settings. Here, we describe two new approaches that broaden the scope of real-time quantitative PCR; namely, run-internal mini standard curves (RIMS) and direct real-time relative quantitative PCR (drqPCR). RIMS are an efficient alternative to traditional standard curves and provide both run-specific and target-specific estimates of PCR parameters. The drqPCR enables direct estimation of target ratios without reference to conventional control samples.

Methodology/Principal Findings

In this study, we compared RIMS-based drqPCR with classical quantifications based on external standard curves and the “comparative Ct method”. Specifically, we used a raw real-time PCR dataset as the basis for more than two-and-a-half million simulated quantifications with various user-defined conditions. Compared with classical approaches, we found that RIMS-based drqPCR provided superior precision and comparable accuracy.

Conclusions/Significance

The obviation of referencing to control samples is attractive whenever unpaired samples are quantified. This may be in clinical and research settings; for instance, studies on chimerism, TREC quantifications, copy number variations etc. Also, lab-to-lab comparability can be greatly simplified.  相似文献   

19.
实时定量PCR技术及其应用   总被引:45,自引:0,他引:45  
实时定量PCR(Real—time Quantitative Polymerase Chain Reaction,RQ—PCR)技术是20世纪90年代中期发展起来的一种新型核酸定量技术。该技术具有实时监测、快速、灵敏、精确等特点,是对原有PCR技术的革新,扩大了PCR的应用范围。本文综述了RQ—PCR技术的原理、RQ—PCR仪、RQ—PCR实时定量检测系统及其应用。  相似文献   

20.
粪便中肠球菌SYBR GreenI荧光定量PCR检测方法的建立   总被引:2,自引:0,他引:2  
目的利用SYBR GreenI荧光定量PCR方法,建立肠球菌实时荧光PCR检测方法,并初步应用于粪便中肠球菌的检测。方法根据GenBank发表的肠球菌23S rRNA基因序列的保守区域设计合成特异性的引物;利用构建的质粒标准品绘制两种标准曲线,构建基因拷贝数、细菌数为分析指标的定量分析模型并初步应用于粪便标本的检测分析。结果所建立的SYBR GreenI荧光定量PCR方法检测灵敏度可达7个拷贝数/reaction。粪便样本根据实时荧光定量PCR方法所得的理论数值与培养菌值之间差异无显著性(P>0.05)。非炎性腹泻标本中菌数与健康成人标本中菌数差异无显著性(P>0.05)。灵敏度曲线所得的数值大于菌数标准曲线,可能由于DNA提取过程中存在部分的损失。检测粪便标本结果显示SYBR GreenI荧光定量PCR方法较平板计数法敏感、快捷、简便。结论本研究建立了一种灵敏、特异、简便易行的肠球菌定量检测方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号