首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nitric oxide (NO) is a potential contributor to neurotoxicity following overactivation of N-methyl-D-aspartate (NMDA) receptors. In this work we investigated the effect of N-nitro-L-arginine (L-NARG 25, 50, or 100 M), a selective inhibitor of nitric oxide synthase (NOS) -the synthetic enzyme of NO- on quinolinic acid (QUIN 100 M)-induced neurotoxicity (measured as lactate dehydrogenase (LDH) leakage) in rat striatal slices. Oxidative stress was also measured both as lipid peroxidation and as the levels of reduced (GSH) and oxidized (GSSG) glutathione, in an effort to elucidate a possible participation of NO in the toxic mechanisms involved in NMDA receptor-mediated neuronal injury. The action of L-arginine (L-ARG 100 or 200 M), a well-known NO precursor, was also tested on QUIN-induced neurotoxicity and oxidative stress. Results showed that QUIN produced significant changes in both cell damage (177%) and oxidative injury (203% in lipid peroxidation, 68% in GSH, and 123% in GSSG) as compared to control values. All these effects were antagonized by adding L-NARG to the incubation media, whereas L-ARG alone, or in combination with QUIN, significantly enhanced both lipid peroxidation and LDH leakage. Moreover, the protective effects of L-NARG on QUIN-induced lipid peroxidation were reversed by addition of an excess of L-ARG to the media. These findings indicate that NO is probably mediating the mechanism of neurotoxicity produced by QUIN, which may be of potential value to explain the molecular basis of neurodegenerative processes linked to QUIN-mediated NMDA receptor overactivation.  相似文献   

2.

Under pathological conditions, nitric oxide can become a mediator of oxidative cellular damage, generating an unbalance between oxidant and antioxidant systems. The participation of neuronal nitric oxide synthase (nNOS) in the neurodegeneration mechanism has been reported; the activation of N-methyl-d-aspartate (NMDA) receptors by agonist quinolinic acid (QUIN) triggers an increase in nNOS function and promotes oxidative stress. The aim of the present work was to elucidate the participation of nNOS in QUIN-induced oxidative stress in knock-out mice (nNOS?/?). To do so, we microinjected saline solution or QUIN in the striatum of wild-type (nNOS +/+), heterozygote (nNOS+/?), and knock-out (nNOS?/?) mice, and measured circling behavior, GABA content levels, oxidative stress, and NOS expression and activity. We found that the absence of nNOS provides a protection against striatal oxidative damage induced by QUIN, resulting in decreased circling behavior, oxidative stress, and a partial protection reflected in GABA depletion. We have shown that nNOS-derived NO is involved in neurological damage induced by oxidative stress in a QUIN-excitotoxic model.

  相似文献   

3.
Reactive oxygen species and oxidative stress are involved in quinolinic acid (QUIN)-induced neurotoxicity. QUIN, a N-methyl-D-aspartate receptor (NMDAr) agonist and prooxidant molecule, produces NMDAr overactivation, excitotoxic events, and direct reactive oxygen species formation. Copper is an essential metal exhibiting both modulatory effects on neuronal excitatory activity and antioxidant properties. To investigate whether this metal is able to counteract the neurotoxic and oxidative actions of QUIN, we administered copper (as CuSO(4)) intraperitoneally to rats (2.5, 5.0, 7.5, and 10.0 mg/kg) 30 min before the striatal infusion of 1 microliter of QUIN (240 nmol). A 5.0 mg/kg CuSO(4) dose significantly increased the copper content in the striatum, reduced the neurotoxicity measured both as circling behavior and striatal gamma-aminobutyric acid (GABA) depletion, and blocked the oxidative injury evaluated as striatal lipid peroxidation (LP). In addition, copper reduced the QUIN-induced decreased striatal activity of Cu,Zn-dependent superoxide dismutase, and increased the ferroxidase activity of ceruloplasmin in cerebrospinal fluid from QUIN-treated rats. However, copper also produced significant increases of plasma lactate dehydrogenase activity and mortality at the highest doses employed (7.5 and 10.0 mg/kg). These results show that at low doses, copper exerts a protective effect on in vivo QUIN neurotoxicity.  相似文献   

4.
Quinolinic acid (QUIN), a well known excitotoxin that produces a pharmacological model of Huntington's disease in rats and primates, has been shown to evoke degenerative events in nerve tissue via NMDA receptor (NMDAr) overactivation and oxidative stress. In this study, the antioxidant selenium (as sodium selenite) was tested against different markers of QUIN-induced neurotoxicity under both in vitro and in vivo conditions. In the in vitro experiments, a concentration-dependent effect of selenium was evaluated on the regional peroxidative action of QUIN as an index of oxidative toxicity in rat brain synaptosomes. In the in vivo experiments, selenium (0.625 mg per kg per day, i.p.) was administered to rats for 5 days, and 2 h later animals received a single unilateral striatal injection of QUIN (240 nmol/ micro L). Rats were killed 2 h after the induction of lesions with QUIN to measure lipid peroxidation and glutathione peroxidase (GPx) activity in striatal tissue. In other groups, the rotation behavior, GABA content, morphologic alterations, and the corresponding ratio of neuronal damage were all evaluated as additional markers of QUIN-induced striatal toxicity 7 days after the intrastriatal injection of QUIN. Selenium decreased the peroxidative action of QUIN in synaptosomes both from whole rat brain and from the striatum and hippocampus, but not in the cortex. A protective concentration-dependent effect of selenium was observed in QUIN-exposed synaptosomes from whole brain and hippocampus. Selenium pre-treatment decreased the in vivo lipid peroxidation and increased the GPx activity in QUIN-treated rats. Selenium also significantly attenuated the QUIN-induced circling behavior, the striatal GABA depletion, the ratio of neuronal damage, and partially prevented the morphologic alterations in rats. These data suggest that major features of QUIN-induced neurotoxicity are partially mediated by free radical formation and oxidative stress, and that selenium partially protects against QUIN toxicity.  相似文献   

5.
Quinolinic acid is a potent lipid peroxidant in rat brain homogenates   总被引:7,自引:0,他引:7  
In this study, we describe the lipoperoxidative effect of quinolinic acid (QUIN) in vitro. The formation of thiobarbituric acid reactive products (TBA-RP), an index of lipid peroxidation, was measured in rat brain homogenates after incubation at 37°C for 30 min in the presence of QUIN and some structurally and metabolically related compounds such as Kynurenine, Kynurenic acid, Glutamate, Aspartate and Kainate. Concentrations of QUIN in the range of 20 to 80 M increased lipid peroxidation in a concentration-dependent manner from about 15% to about 50%. Kynurenic acid, a compound metabollically related to QUIN that can block its neurotoxic actions in vivo, also inhibited completely the QUIN-induced TBA-RP formation in our system. Lipid fluorescent material, another index of lipid peroxidation was also found increased by 49% after incubation with 40 M QUIN. It is concluded that lipid peroxidation may be a damaging process involved in the neurotoxicity of QUIN.  相似文献   

6.
Sindbis virus (SV) is an alphavirus that causes acute encephalomyelitis in mice. The outcome is determined by the strain of virus and by the age and genetic background of the host. The mortality rates after infection with NSV, a neurovirulent strain of SV, were as follows v: 81% (17 of 21) in BALB/cJ mice; 20% (4 of 20) in BALB/cByJ mice (P < 0.001); 100% in A/J, C57BL/6J, SJL, and DBA mice; and 79% (11 of 14) in immunodeficient scid/CB17 mice. Treatment with Nomega-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthetase (NOS) inhibitor, increased mortality to 100% (P < 0.05) in NSV-infected BALB/cJ mice, to 95% (P < 0.001) in BALB/cByJ mice, and to 100% in scid/CB17 mice. BALB/cJ and BALB/cByJ mice had similar levels of inducible NOS mRNA in their brains, which were not affected by L-NAME or NSV infection. Brain NOS activity was similar in BALB/cJ and BALB/cByJ mice before and after infection and was markedly inhibited by L-NAME. NSV replication in the brains of BALB/cJ mice, BALB/cByJ mice, and mice treated with L-NAME was similar. Treatment of N18 neuroblastoma cells with NO donors S-nitroso-N-acetylpenicillamine or sodium nitroprusside in vitro before infection increased cell viability at 42 to 48 h compared with untreated NSV-infected N18 cells with little effect on virus replication. These data suggest that NO protects mice from fatal encephalitis by a mechanism that does not directly involve the immune response or inhibition of virus growth but rather may enhance survival of the infected neuron until the immune response can control virus replication.  相似文献   

7.
We studied the dose-response characteristics and the temporal profile of inhibition of brain nitric oxide (NO) synthase (NOS) elicited by i.v. administration of the NOS inhibitor nitro-l-arginine methyl ester (L-NAME). L-NAME was administered i.v. in awake rats equipped with a venous cannula. L-NAME was injected in cumulative doses of 5, 10, 20 and 40 mg/kg and rats were sacrificed 30 min after the last dose. NOS catalytic activity was assayed in forebrain cytosol as the conversion of [3H]l-arginine into [3H]l-citrulline. L-NAME attenuated brain NOS activity in a dose-dependent manner but enzyme activity could not be inhibited by more than 50%. After a single 20 mg/kg injection of L-NAME the inhibition of brain NOS activity was time dependent and reached a stable level at 2 hrs (52% of vehicle). Inhibition after a single injection was still present at 96 hrs, albeit to a lower magnitude. We conclude that intravenous administration of L-NAME in rats at concentrations commonly used in physiological experiments leads to a dose and time-dependent but partial inhibition of brain NOS catalytic activity. The finding that the inhibition persists for several days after a single administration is consistent with the hypothesis that nitro-L-arginine, the active principle of L-NAME, binds to NOS irreversibly.  相似文献   

8.
9.
To determine the role of nitric oxide (NO) in acute renal failure (ARF), we have studied the time course change activities to activity of nitric oxide synthase (NOS) isoform activities, both calcium dependent and independent NOS, in experimental ischemic ARF. We have also analyzed change activities to activity of the NOS activities in both renal cortex and medulla. Male SD rats (n = 5) were inducted to ARF by ischemia-reperfusion injury and divided into the following groups; Control group (sham operation), Day 0 group, (measurement performed on that day of operation), Day 1 group, (measurement performed one day after induction of ARF), Day 3 group and Day 7 group. Measurement of NOS activity was based on the following principles; NO is synthesized from arginine by nitric oxide synthase (NOS) and NO is converted to NO2 /NO3 (NOx) by oxidation. Detection of the final metabolite of NO, NOx was done using flow injection method (Griess reaction). The results were, (1) calcium dependent NOS activity in the cortex and medulla decreased, however it increased in the recovery period in the renal cortex (Cortex; Control, 0.941 ± 0.765, D0, 0.382 ± 0.271, D1, 0.118 ± 0.353, D3, 2.030 ± 0.235, D7, 3.588 ± 2.706, Medulla; Control, 1.469 ± 0.531, D0, 0.766 ± 0.156, D1, 0.828 ± 0.187, D3, 2.078 ± 0.094, D7, 1.289 ± 0.313 mol NOx produced/mg protein/30 min). (2) On the other hand, iNOS activity increased in the early phase of ARF, both in the cortex and medulla, but returned to control values during the recovery phase in cortex and was maintained at higher levels in the medulla (Cortex; Control, 0.333 ± 0.250, D0, 0.583 ± 0.428, D1, 1.167 ± 0.262, D3, 0.250 ± 0.077, D7, 0.452 ± 0.292, Medulla; Control, 0.139 ± 0.169, D0, 0.279 ± 0.070, D1, 1.140 ± 0.226, D3, 0.452 ± 0.048, D7, 0.625 ± 0.048 mol NOx produced/mg protein/30 min). These findings suggest that the role of NOS in ARF are different for the different NOS isoforms and have anatomic heterogeneity.  相似文献   

10.
Many individuals with cardiovascular diseases undergo periodic exercise conditioning with or with out medication. Therefore, this study investigated the interaction of exercise training and chronic nitric oxide synthase (NOS) inhibitor (Nitro-L-Arginine Methyl Ester, L-NAME) treatment on blood pressure and its correlation with aortic nitric oxide (NO), antioxidant defense system and oxidative stress parameters in rats. Fisher 344 rats were divided into four groups: (1) sedentary control, (2) exercise training (ET) for 8 weeks, (3) L-NAME (10 mg/kg, subcutaneous for 8 weeks) and (4) ET + L-NAME. Blood pressure (BP) was monitored weekly for 8 weeks with tail-cuff method. The animals were sacrificed 24 h after last treatments and thoracic aortic rings were isolated and analyzed. Exercise conditioning resulted in a significant increase in respiratory exchange ratio (RER), aortic NO production, NO synthase activity and inducible iNOS protein expression. Training significantly enhanced aortic GSH levels, GSH/GSSG ratio and up-regulation of aortic CuZn-SOD, Mn-SOD, catalase (CAT) glutathione peroxidase (GSH-Px) activity and protein expression and significantly decreased aortic lipid peroxidation. Chronic L-NAME administration resulted in a significant depletion of aortic NO, NOS activity, endothelial (eNOS) and iNOS protein expression, GSH level, GSH/GSSG ratio, down-regulation of aortic antioxidant enzyme activities and protein expressions. Aortic xanthine oxidase (XO) activity significantly increased with increased lipid peroxidation and protein oxidation after L-NAME administration. The biochemical changes were accompanied by increased in BP. Interaction of training and chronic NOS inhibitor treatment resulted in normalization of BP and aortic antioxidant enzyme activity and protein expression, up-regulation of aortic GSH/GSSG ratio, NO levels, Mn-SOD protein expression, depletion of GSSG, protein oxidation and lipid peroxidation. The data suggest that training attenuated the oxidative injury caused by chronic NOS inhibitor treatment by up-regulating the NO and antioxidant systems and lowering the BP in rats.  相似文献   

11.
Summary This study examined whether picolinic acid (PIC) inhibits quinolinic acid (QUIN) — induced excitotoxicity through zinc chelation. Injection of QUIN into the nucleus basalis magnocellularis significantly depleted cortical choline acetyltransferase activity 7 days post injection and PIC inhibited this response. Zinc augmented the QUIN- but not NMDA-induced response. When PIC was co-administered with zinc, PIC failed to attenuate the QUIN-induced response. The inhibition of QUIN — induced cholinergic toxicity by PIC may involve chelation of zinc.  相似文献   

12.
Selenium (Se) is a crucial element exerting antioxidant and neuroprotective effects in different toxic models. It has been suggested that Se acts through selenoproteins, of which thioredoxin reductase (TrxR) is relevant for reduction of harmful hydroperoxides and maintenance of thioredoxin (Trx) redox activity. Of note, the Trx/TrxR system remains poorly studied in toxic models of degenerative disorders. Despite previous reports of our group have demonstrated a protective role of Se in the excitotoxic/pro-oxidant model induced by quinolinic acid (QUIN) in the rat striatum (Santamaría et al., 2003, 2005), the precise mechanism(s) by which Se is inducing protection remains unclear. In this work, we characterized the time course of protective events elicited by Se as pretreatment (Na(2)SO(3), 0.625 mg/kg/day, i.p., administered for 5 consecutive days) in the toxic pattern produced by a single infusion of QUIN (240 nmol/μl) in the rat striatum, to further explore whether TrxR is involved in the Se-induced protection and how is regulated. Se attenuated the QUIN-induced early reactive oxygen species formation, lipid peroxidation, oxidative damage to DNA, loss of mitochondrial reductive capacity and morphological alterations in the striatum. Our results also revealed a novel pattern in which QUIN transiently stimulated an early TrxR cellular localization/distribution (at 30 min and 2 h post-lesion, evidenced by immunohistochemistry), to further stimulate a delayed protein activation (at 24 h) in a manner likely representing a compensatory response to the oxidative damage in course. In turn, Se induced an early stimulation of TrxR activity and expression in a time course that "matches" with the reduction of the QUIN-induced oxidative damage, suggesting that the Trx/TrxR system contributes to the resistance of nerve tissue to QUIN toxicity.  相似文献   

13.
Many individuals with cardiac diseases undergo periodic physical conditioning with or without medication to improve cardiovascular health. Therefore, this study investigated the interaction of physical training and chronic nitric oxide synthase (NOS) inhibitor (nitro-L-arginine methyl ester, L-NAME) treatment on blood pressure (BP), cardiac vascular endothelial factor (VEGF) gene expression, and nitric oxide (NO) systems in rats. Fisher 344 rats were divided into four groups and treated as follows: (1) sedentary control, (2) exercise training (ET) for 8 weeks, (3) L-NAME (10mg/kg, s.c. for 8 weeks), and (4) ET+L-NAME. BP was monitored with tail-cuff method. The animals were sacrificed 24h after last treatments and hearts were isolated and analyzed. Physical conditioning significantly increased respiratory exchange ratio, cardiac NO levels, NOS activity, endothelial eNOS, and inducible iNOS protein expression as well as VEGF gene expression. Training also caused depletion of cardiac malondialdehyde (MDA) levels indicating the beneficial effects of the training. Chronic L-NAME administration resulted in a depletion of cardiac NO level, NOS activity, and eNOS, nNOS, and iNOS protein expressions, as well as VEGF gene expression (2-fold increase in VEGF mRNA). Chronic L-NAME administration also enhanced cardiac MDA levels indicating cardiac oxidative injury. These biochemical changes were accompanied by increases in BP after L-NAME administration. Interaction of training and NOS inhibitor treatment resulted in normalization of BP and up-regulation of cardiac VEGF gene expression. The data suggest that physical conditioning attenuated the oxidative injury caused by chronic NOS inhibition by up-regulating the cardiac VEGF and NO levels and lowering the BP in rats.  相似文献   

14.
We tested the contribution of reactive oxygen species (ROS), reactive nitrogen species (RNS) and the 2 integrin CD18 to neutrophil-mediated myotube injury. Human myotubes were cultured with human neutrophils in the presence or absence of inhibitors directed against ROS, RNS, and CD18. Muscle injury was assessed by a 51Cr release assay. The inclusion of superoxide dismutase (50–500 U/ml) in the culture medium did not affect myotube injury. A significant protective effect was provided by including catalase (600–2400 U/ml), deferoxamine (1–2 mM), or anti-CD18 antibody (10 g/ml) in the culture medium. S-Ethylisothiourea (500–1000 M), an inhibitor of nitric oxide synthase (NOS), significantly increased myotube injury and reduced nitric oxide (NO) in cultures consisting of only myotubes. In conclusion, neutrophil-mediated skeletal muscle injury appears to be largely dependent on CD18-mediated neutrophil adhesion and iron-dependent hydroxyl radical production. In addition, skeletal muscle NOS activity may protect skeletal muscle against the injury caused by neutrophils.This project was supported by The University of Toledo DeArce Memorial Fund and the National Institutes of Health AR47599-01  相似文献   

15.
In rabbits and rodents, nitric oxide (NO) is generally considered to be critical for ovulation. In monovulatory species, however, the importance of NO has not been determined, nor is it clear where in the preovulatory cascade NO may act. The objectives of this study were (1) to determine if nitric oxide synthase (NOS) enzymes are regulated by luteinizing hormone (LH) and (2) to determine if and where endogenous NO is critical for expression of genes essential for the ovulatory cascade in bovine granulosa cells in serum-free culture. Time– and dose–response experiments demonstrated that LH had a significant stimulatory effect on endothelial NOS (NOS3) mRNA abundance, but in a prostaglandin-dependent manner. NO production was stimulated by LH before a detectable increase in NOS3 mRNA levels was observed. Pretreatment of cells with the NOS inhibitor L-NAME blocked the effect of LH on the epidermal growth factor (EGF)-like ligands epiregulin and amphiregulin, as well as prostaglandin–endoperoxide synthase-2 mRNA abundance and protein levels. Similarly, EGF treatment increased mRNA encoding epiregulin, amphiregulin, and the early response gene EGR1, and this was inhibited by pretreatment with L-NAME. Interestingly, pretreatment with L-NAME had no effect on either ERK1/2 or AKT activation. Taken together, these results suggest that endogenous NOS activity is critical for the LH-induced ovulatory cascade in granulosa cells of a monotocous species and acts downstream of EGF receptor activation but upstream of the EGF-like ligands.  相似文献   

16.
We recently reported that chronic nicotine impairs reflex chronotropic activity in female rats. Here, we sought evidence to implicate nitric oxide synthase (NOS) and/or heme oxygenase (HO) in the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate to increases (phenylephrine) or decreases (sodium nitroprusside) in blood pressure were generated in conscious female rats treated with nicotine or saline in absence and presence of pharmacological modulators of NOS or HO activity. Compared with saline-treated rats, nicotine (2 mg/kg/day i.p., for 14 days) significantly reduced the slopes of baroreflex curves, a measure of baroreflex sensitivity (BRS). Findings that favor the involvement of NOS inhibition in the nicotine effect were (i) NOS inhibition (N ω-Nitro-L-arginine methyl ester, L-NAME) reduced BRS in control rats but failed to do so in nicotine-treated rats, (ii) L-arginine, NO donor, reversed the BRS inhibitory effect of nicotine. Alternatively, HO inhibition (zinc protoporphyrin IX, ZnPP) had no effect on BRS in nicotine- or control rats and failed to reverse the beneficial effect of L-arginine on nicotine-BRS interaction. Similar to female rats, BRS was reduced by L-NAME, but not ZnPP, in male rats and the L-NAME effect was not accentuated after concomitant administration of nicotine. Baroreflex dysfunction caused by nicotine in female rats was blunted after supplementation with hemin (HO inducer) but not tricarbonyldichlororuthenium(II) dimer (CORM-2), a carbon monoxide (CO) releasing molecule, or bilirubin, the breakdown product of heme catabolism. The facilitatory effect of hemin was abolished upon simultaneous treatment with L-NAME or 1H-[1], [2], [4] oxadiazolo[4,3-a] quinoxalin-1-one (inhibitor of soluble guanylate cyclase, sGC). The activities of HO and NOS in brainstem tissues were also significantly increased by hemin. Thus, the inhibition of NOS, but not HO, accounts for the baroreflex depressant of chronic nicotine. Further, hemin alleviates the nicotine effect through a mechanism that is NOS/sGC but not CO or bilirubin-dependent.  相似文献   

17.
The nature of the action of the nitric oxide synthase (NOS) inhibitor NG-nitro-L-arginine methyl ester (L-NAME) on hormone release from isolated islets was investigated. We found that glucose-induced insulin release was potentiated by L-NAME in the absence or presence of diazoxide, a potent channel opener, as well as in the presence of diazoxide plus a depolarizing concentration of K+. At a low, physiological glucose concentration L-NAME did not influence insulin secretion induced by K+ but inhibited glucagon secretion. L-arginine-induced insulin release was potentiated by L-NAME. This potentiation was observed also in the presence of K+ plus diazoxide. Further, glucagon release induced by L-arginine as well as by L-arginine plus K+ and diazoxide was suppressed by L-NAME. The results strongly suggest that the L-NAME-induced potentiation of insulin secretion in response to glucose or L-arginine as well as the inhibitory effects on glucagon secretion are largely mediated by L-NAME directly suppressing islet NOS activity. Hence NO apparently affects insulin and glucagon secretion independently of membrane depolarization events.  相似文献   

18.

Background

Increased expression of nitric oxide synthase (NOS) and an increase in plasma nitrite plus nitrate (NOx) have been reported in patients with pulmonary fibrosis, suggesting that nitric oxide (NO) plays an important role in its development. However, the roles of the entire NO and NOS system in the pathogenesis of pulmonary fibrosis still remain to be fully elucidated. The aim of the present study is to clarify the roles of NO and the NOS system in pulmonary fibrosis by using the mice lacking all three NOS isoforms.

Methods

Wild-type, single NOS knockout and triple NOS knockout (n/i/eNOS−/−) mice were administered bleomycin (BLM) intraperitoneally at a dose of 8.0 mg/kg/day for 10 consecutive days. Two weeks after the end of the procedure, the fibrotic and inflammatory changes of the lung were evaluated. In addition, we evaluated the effects of long-term treatment with isosorbide dinitrate, a NO donor, on the n/i/eNOS−/− mice with BLM-induced pulmonary fibrosis.

Results

The histopathological findings, collagen content and the total cell number in bronchoalveolar lavage fluid were the most severe/highest in the n/i/eNOS−/− mice. Long-term treatment with the supplemental NO donor in n/i/eNOS−/− mice significantly prevented the progression of the histopathological findings and the increase of the collagen content in the lungs.

Conclusions

These results provide the first direct evidence that a lack of all three NOS isoforms led to a deterioration of pulmonary fibrosis in a BLM-treated murine model. We speculate that the entire endogenous NO and NOS system plays an important protective role in the pathogenesis of pulmonary fibrosis.  相似文献   

19.

Background

The efficacy of Phosphodiesterase 5 (PDE5) inhibitors to re-establish endothelial function is reduced in diabetic patients. Recent evidences suggest that therapy with PDE5 inhibitors, i.e. sildenafil, may increase the expression of nitric oxide synthase (NOS) proteins in the heart and cardiomyocytes. In this study we analyzed the effect of sildenafil on endothelial cells in insulin resistance conditions in vitro.

Methodology/Principal Findings

Human umbilical vein endothelial cells (HUVECs) were treated with insulin in presence of glucose 30 mM (HG) and glucosamine 10 mM (Gluc-N) with or without sildenafil. Insulin increased the expression of PDE5 and eNOS mRNA assayed by Real time-PCR. Cytofluorimetric analysis showed that sildenafil significantly increased NO production in basal condition. This effect was partially inhibited by the PI3K inhibitor LY 294002 and completely inhibited by the NOS inhibitor L-NAME. Akt-1 and eNOS activation was reduced in conditions mimicking insulin resistance and completely restored by sildenafil treatment. Conversely sildenafil treatment can counteract this noxious effect by increasing NO production through eNOS activation and reducing oxidative stress induced by hyperglycaemia and glucosamine.

Conclusions/Significance

These data indicate that sildenafil might improve NOS activity of endothelial cells in insulin resistance conditions and suggest the potential therapeutic use of sildenafil for improving vascular function in diabetic patients.  相似文献   

20.
The objective of this study was to assess the effects of nitric oxide (NO) on heparin-induced capacitation in vitro of fresh bull sperm, through the addition of Nω-nitro-l-arginine methyl ester (L-NAME, a NO-synthesis inhibitor) and l-arginine (L-Arg, a NO-synthesis precursor) to the capacitation medium. In Experiment 1, different concentrations of L-NAME (0.1, 1, 10 mM) and of L-Arg (10 mM) were added to the capacitation medium. Sperm motility and vigor were subjectively appraised using direct light microscopy; sperm membrane integrity was examined using a 2% Trypan blue solution while the concentration of nitrate/nitrite (NO3/NO2) was determined by using the Griess method over a 5 h capacitation period. The addition of 10 mM L-NAME has inhibited NO synthesis, sperm progressive motility, sperm vigor and sperm membrane integrity (P < 0.05) as compared to control. The addition of 10 mM L-Arg to the capacitation medium increased all variables evaluated in comparison to the control (P < 0.05). In Experiment 2, mitochondrial activity was assessed through the MTT test (3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), and sperm capacitation was assessed through the test of penetration in homologous oocytes after addition of the 10 mM L-NAME, and of the 10 mM L-Arg. The addition of 10 mM L-NAME caused mitochondrial activity (40%) and the percentage of oocytes penetrated (77%) to decrease in relation to the control (P < 0.05). After addition of 0.6 mM L-Arg + 10 mM L-NAME, partial reversal of mitochondrial activity did occur (only 20%). The addition of 10 mM L-Arg increased the percentage of oocytes penetrated as compared to control (21%) (P < 0.05). These results indicate that: (1) NO is involved in control of progressive sperm motility, vigor, membrane integrity, and mitochondrial activity along the period of heparin-induced capacitation of fresh bovine sperm via NOS/NO; (2) adequate L-Arg/NO concentrations into the capacitation medium can potentiate heparin action or act independently for increasing the number or the quality of capacitated sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号