首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 266 毫秒
1.
We have recently purified to near homogeneity the stimulatory GDP/GTP exchange protein for smg p21s (ras p21-like GTP-binding proteins) from bovine brain cytosol. This regulatory protein, named GDP dissociation stimulator (GDS), stimulates the GDP/GTP exchange reaction of smg p21s by stimulating the dissociation of GDP from and the subsequent binding of GTP to them. In this study, we have isolated and sequenced the cDNA of smg p21 GDS from a bovine brain cDNA library by using an oligonucleotide probe designed from the partial amino acid sequence of the purified smg p21 GDS. The cDNA has an open reading frame encoding a protein of 558 amino acids with a calculated Mr value of 61,066, similar to the Mr of 53,000 estimated for the purified smg p21 GDS by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and sucrose density gradient ultracentrifugation. The isolated cDNA is expressed in Escherichia coli, and the encoded protein exhibits smg p21 GDS activity. smg p21 GDS is overall hydrophilic, but there are several short hydrophobic regions. The smg p21 GDS mRNA is present in bovine brain and various rat tissues. smg p21 GDS has low amino acid sequence homology with the yeast CDC25 and SCD25 proteins, which may regulate the GDP/GTP exchange reaction of the yeast RAS2 protein, but not with ras p21 GTPase-activating protein, the inhibitory GDP/GTP exchange proteins (GDP dissociation inhibitor) for smg p25A and rho p21s, and the beta gamma subunits of heterotrimeric GTP-binding proteins such as Gs and Gi.  相似文献   

2.
A novel regulatory protein for smg p25A, a ras p21-like GTP-binding protein, was purified to near homogeneity from bovine brain cytosol. This regulatory protein, designated here as smg p25A GDP dissociation inhibitor (GDI), inhibited the dissociation of GDP, but not of guanosine 5'-(3-O-thio)triphosphate (GTPgamma S), from smg p25A. smg p25A GDI also inhibited the binding of GTPgamma S to the GDP-bound form of smg p25A but not of that to the guanine nucleotide-free form. GDI did not stimulate the GTPase activity of smg p25A and by itself showed neither GTPgammaS-binding nor GTPase activity. GDI was inactive for other ras p21/ras p21-like GTP-binding proteins including c-Ha-ras p21, rhoB p20, and smg p21. The Mr value of GDI was estimated to be about 54,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, about 65,000 from the S value (4.5 S), and about 82,000 by gel filtration. The isoelectric point of GDI was about pH 5.6. The activities of GDI were killed by tryptic digestion or heat boiling. These results indicate that bovine brain cytosol contains a regulatory protein for smg p25A that inhibits the dissociation of GDP from and thereby the subsequent binding of GTP to this protein.  相似文献   

3.
We have recently purified from bovine brain cytosol a novel type of regulatory protein for smg p25A, named smg p25A GDP dissociation inhibitor (GDI), that regulates the GDP/GTP exchange reaction of smg p25A by inhibiting the dissociation of GDP from and thereby the subsequent binding of GTP to it. This smg p25A GDI is inactive for other ras p21/ras p21-like small GTP-binding proteins (G proteins) including c-Ha-ras p21, smg p21, rhoA p21 and rhoB p20. In human platelet membranes, smg p25A was not detected but a G protein with an apparent Mr value of 24,000 (24KG) was recognized by smg p25A GDI and the dissociation of GDP from and the binding of GTP to 24KG were inhibited by smg p25A GDI. The doses of smg p25A GDI necessary for these activities for both 24KG and smg p25A were the same. This 24KG was not recognized by an anti-smg p25A monoclonal antibody. The GDI activity for human platelet 24KG and smg p25A was detected in human platelet cytosol. This human platelet GDI was recognized by an anti-smg p25A GDI polyclonal antibody. These results indicate that there is a 24KG-24KG GDI system similar to a smg p25A-smg p25A GDI system in human platelets.  相似文献   

4.
A regulatory protein for a liver GTP-binding protein (G protein) with a molecular weight value of 24,000 (24K G), which we have recently purified, was purified to near-homogeneity from rat liver cytosol and characterized. This regulatory protein, designated here as GDP dissociation inhibitor for 24K G (24K G GDI), inhibited the dissociation of GDP from and the subsequent binding of GTP to 24K G. 24K G GDI was inactive for other ras p21/ras p21-like small G proteins including c-Ha-ras p21, rhoB p20, smg p21B, and smg p25A. 24K G was, however, recognized by bovine brain smg p25A GDI which regulated the GDP/GTP exchange reaction of smg p25A. By analyses of sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE), immunoblotting with anti-smg p25A GDI antibody, two-dimensional PAGE, and C4 column chromatography, 24K G GDI showed physical properties very similar to those of smg p25A GDI. The peptide map and the partial amino acid sequences of 24K G GDI were not identical with those of smg p25A GDI. Among the 83 residues, 2 amino acids were different between rat liver 24K G GDI and bovine brain smg p25A GDI. These results indicate that there is a specific regulatory protein for 24K G, 24K G GDI, in rat liver cytosol and that 24K G GDI has close similarity to smg p25A GDI.  相似文献   

5.
A novel regulatory protein for the rho proteins (rhoA p21 and rhoB p20), belonging to a ras p21/ras p21-like small molecular weight (Mr) GTP-binding protein (G protein) superfamily, was purified to near homogeneity from bovine brain cytosol and characterized. This regulatory protein, designated here as GDP dissociation inhibitor (GDI) for the rho proteins (rho GDI), inhibited the dissociation of GDP from rhoB p20 and the binding of guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) to the GDP-bound form of rhoB p20 but not of that to the guanine nucleotide-free form. The Mr value of rho GDI was estimated to be about 27,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and from the S value, indicating that rho GDI is composed of a single polypeptide without a subunit structure. The isoelectric point was about pH 5.7. rho GDI made a complex with the GDP-bound form of rhoB p20 with a molar ratio of 1:1 but not with the GTP gamma S-bound or guanine nucleotide-free form. rho GDI did not stimulate the GTPase activity of rhoB p20 and by itself showed neither GTP gamma S-binding nor GTPase activity. rho GDI was equally active for rhoA p21 and rhoB p20 but was inactive for other ras p21/ras p21-like G proteins including c-Ha-ras p21, smg p25A, and smg p21. rho GDI activity was detected in the cytosol fraction of various rat tissues. These results indicate that, in mammalian tissues, there is a novel type of regulatory protein specific for the rho proteins that interacts with the GDP-bound form of the rho proteins and thereby regulates the GDP/GTP exchange reaction of the rho proteins by inhibiting the dissociation of GDP from and the subsequent binding of GTP to them. Since there is a GTPase-activating protein for the rho proteins stimulating the GTPase activity of the rho proteins in mammalian tissues, the rho proteins appear to be regulated at least by GTPase-activating protein and GDI in a dual manner.  相似文献   

6.
A novel regulatory protein for rhoB p20, a ras p21-like GTP-binding protein (G protein), was partially purified from the cytosol fraction of rabbit intestine. This protein, designated as rhoB p20 GDP dissociation inhibitor (GDI), inhibited the dissociation of GDP from rhoB p20. rhoB p20 GDI also inhibited the binding of guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) to the GDP-bound form of rhoB p20 but not of that to the guanine nucleotide-free form. GDI did not affect the GTPase activity of rhoB p20 and by itself showed no GTP gamma S-binding activity. GDI was inactive for other ras p21/ras p21-like G proteins including c-Ha-ras p21, smg p21 and smg p25A. The Mr value of GDI was estimated to be about 27,000 from the S value. These results indicate that rabbit intestine contains a novel regulatory protein that inhibits the dissociation of GDP from and thereby the subsequent binding of GTP to rhoB p20.  相似文献   

7.
We have previously purified from bovine brain cytosol a novel regulatory protein for smg p25A, a ras p21-like GTP-binding protein. This protein, named smg p25A GDP dissociation inhibitor (GDI), regulates the GDP/GTP exchange reaction of smg p25A by inhibiting the dissociation of GDP from and thereby the subsequent binding of GTP to it. We have also previously found that smg p25A is mainly localized in presynaptic plasma membranes and vesicles and moderately in presynaptic cytosol in rat brain synapses. In this paper, we have studied the possible involvement of smg p25A GDI in the localization of smg p25A in the cytosol, plasma membranes, and vesicles in rat brain synapses. Both the GDP- and GTP-bound forms of smg p25A bound to the synaptic membranes and vesicles. smg p25A GDI inhibited the binding of the GDP-bound form of smg p25A, but not that of the GTP-bound form, to the synaptic membranes and vesicles. Moreover, smg p25A GDI induced the dissociation of the GDP-bound form, but not that of the GTP-bound form, of both endogenous and exogenous smg p25As from the synaptic membranes and vesicles. smg p25A GDI made a complex with the GDP-bound form of smg p25A with a molar ratio of 1:1, but not with the GTP-bound or guanine nucleotide-free form. These results suggest that smg p25A reversibly binds to synaptic plasma membranes and vesicles and that this reversible binding is regulated by its specific GDI.  相似文献   

8.
smg p25A is a ras p21-like small GTP-binding protein which is implicated in the regulated secretory processes. We have recently found that bovine brain smg p25A is geranylgeranylated at its C-terminal region. In this study, we examined the function(s) of the C-terminal region of smg p25A. Limited proteolysis of bovine brain smg p25A with Achromobacter protease I produced an N-terminal fragment and a C-terminal tail. The Mrs of intact smg p25A, the N-terminal fragment, and the C-terminal tail were estimated to be about 24,000, 20,000, and less than 2,000, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The N-terminal fragment contained the consensus amino acid sequences for GDP/GTP-binding and GTPase activities and showed these activities with kinetic properties similar to those of the intact protein but did not bind to plasma membranes or phosphatidylserine-linked Affigel under conditions in which the intact protein bound to them. The C-terminal tail neither contained the consensus amino acid sequences for GDP/GTP-binding and GTPase activities nor bound to plasma membranes or phosphatidylserine-linked Affigel. The GDP/GTP exchange protein specific for smg p25A, named GDP dissociation inhibitor (GDI), made a complex with the GDP-bound form of the intact smg p25A at a molar ratio of 1:1 and thereby inhibited its GDP/GTP exchange reaction but neither made a complex with the N-terminal fragment or the C-terminal tail nor affected the GDP/GTP exchange reaction of the N-terminal fragment. We expressed smg p25A in Escherichia coli and purified it to near homogeneity. This bacterial protein was not geranylgeranylated. Bacterial smg p25A did not bind to plasma membranes or phosphatidylserine-linked Affigel. smg p25A GDI neither made a complex with bacterial smg p25A nor affected its GDP/GTP exchange reaction. These results suggest that the N-terminal region of smg p25A has GDP/GTP-binding and GTPase activities but lacks the ability to interact with membranes and smg p25A GDI, that the C-terminal region of smg p25A plays important roles in its interaction with membranes and smg p25A GDI, and that some modifications of the C-terminal region, such as geranylgeranylation, which are absent in bacterial smg p25A, are important for these interactions.  相似文献   

9.
We have recently purified from bovine brain cytosol to near homogeneity a GDP/GTP exchange protein for smg p25A, named smg p25A GDI, that inhibits the dissociation of GDP from and the subsequent binding of GTP to smg p25A. In the present study, we made an antiserum against smg p25A GDI and studied its tissue distribution in rat and its subcellular distribution in rat cerebrum by use of this antiserum. smg p25A GDI was found in secretory cells with both regulated and constitutive secretion types. Since smg p25A was previously found in only secretory cells with a regulated secretion type, this result suggests that small GTP-binding proteins different from smg p25A but recognized by smg p25A GDI are present in secretory cells with a constitutive secretion type, and that smg p25A GDI is involved in both regulated and constitutive secretory processes. In subcellular fractionation analysis of rat cerebrum, smg p25A GDI was mostly found in the cytosol fraction of neuron body and synaptosome. In synaptosome, it was mainly found in the synaptic cytosol.  相似文献   

10.
The smg-25A/rab3A protein (smg p25A), a member of the small GTP-binding protein superfamily, has a C-terminal structure of Cys-Ala-Cys which is post-translationally processed: both cysteine residues are geranylgeranylated followed by the carboxyl methylation of the C-terminal cysteine residue. We reported previously that this posttranslational processing is essential for the interactions of smg p25A with membrane and its inhibitory GDP/GTP exchange protein, named smg p25A GDP dissociation inhibitor (GDI). In this study, we examined which posttranslational modification of smg p25A is necessary for these interactions. The smg p25A which was not posttranslationally processed was produced in Escherichia coli and purified. This protein was then geranylgeranylated at both of the 2 cysteine residues by use of a bovine brain geranylgeranyltransferase in a cell-free system (recombinant smg p25A-GG). By use of this recombinant smg p25A-GG, its membrane-binding activity and its sensitivity to smg p25A GDI were compared with those of the fully posttranslationally processed form of bovine brain smg p25A (smg p25A-GG-Me) and the posttranslationally unprocessed form of bacterial smg p25A (recombinant smg p25A). The membrane-binding activity and sensitivity to smg p25A GDI were similar between the recombinant smg p25A-GG and smg p25A-GG-Me, although recombinant smg p25A lacked both activities. These results indicate that the geranylgeranyl moiety of smg p25A is essential and sufficient for its interactions with membrane and smg p25A GDI and that the methyl moiety is not essential for these interactions.  相似文献   

11.
Evidence is accumulating that rho p21, a ras p21-related small GTP-binding protein (G protein), regulates the actomyosin system. The actomyosin system is known to be essential for cell motility. In the present study, we examined the action of rho p21, its inhibitory GDP/GTP exchange protein (named rho GDI), its stimulatory GDP/GTP exchange protein (named smg GDS), and Clostridium botulinum ADP-ribosyltransferase C3, known to selectively ADP-ribosylate rho p21 and to impair its function, in cell motility (chemokinesis) of Swiss 3T3 cells. We quantitated the capacity of cell motility by measuring cell tracks by phagokinesis. Microinjection of the GTP gamma S-bound active form of rhoA p21 or smg GDS into Swiss 3T3 cells did not affect cell motility, but microinjection of rho GDI into the cells did inhibit cell motility. This rho GDI action was prevented by comicroinjection of rho GDI with the GTP gamma S-bound form of rhoA p21 but not with the same form of rhoA p21 lacking the C-terminal three amino acids which was not posttranslationally modified with lipids. The rho GDI action was not prevented by Ki-rasVal-12 p21 or any of the GTP gamma S-bound form of other small GTP-binding proteins including rac1 p21, G25K, and smg p21B. Among these small G proteins, rhoA p21, rac1 p21, and G25K are known to be substrates for rho GDI. The rho GDI action was not prevented by comicroinjection of rho GDI with smg GDS. Microinjection of C3 into Swiss 3T3 cells also inhibited cell motility. These results indicate that the rho GDI-rho p21 system regulates cell motility, presumably through the actomyosin system.  相似文献   

12.
In the present studies, we have purified a novel small Mr GTP-binding protein, designated as smg p21, to near homogeneity from bovine brain crude membranes, isolated the complementary DNA (cDNA) of this protein from a bovine brain cDNA library, determined the complete nucleotide and deduced amino acid sequences, and characterized the kinetic properties. The cDNA of smg p21 has an open reading frame encoding a protein of 184 amino acids with a calculated Mr of 20,987. The Mr of purified smg p21 is estimated to be about 22,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Homology search indicates that smg p21 is a novel protein with the consensus amino acid sequences for GTP/GDP-binding and GTPase domains but shares about 55% amino acid sequence homology with the human c-Ha-ras protein. Moreover, smg p21 has the same putative effector domain as the Ha-, Ki-, and N-ras proteins at the same position and the same consensus C-terminal sequence as in these ras proteins. Consistent with these structural properties, smg p21 binds specifically [35S] guanosine 5'-(3-O-thio)triphosphate (GTP gamma S), GTP, and GDP with a Kd value for GTP gamma S of about 40 nM. smg p21 binds about 0.7 mol of GTP gamma S/mol of protein. [35S]GTP gamma S-binding to smg p21 is inhibited by pretreatment with N-ethylmaleimide.smg p21 hydrolyzes GTP to liberate Pi with a turnover number of about 0.007 min-1. These kinetic properties of smg p21 are similar to those of the c-ras proteins. These results suggest that smg p21 is a novel GTP-binding protein exerting action(s) similar or antagonistic to that (those) of the ras proteins.  相似文献   

13.
Bovine brain smg p25A, a guanine nucleotide-binding protein with a Mr of about 25,000, bound specifically GTP, guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) and GDP. The initial velocities of the binding of GTP gamma S to GDP-bound smg p25A and the dissociation of GDP from this protein increased by decreasing Mg2+ concentrations or increasing NaCl concentrations. The initial velocity of the binding of GTP gamma S to GDP-free smg p25A was not affected by changing Mg2+ concentrations. These results indicate that the dissociation of GDP from smg p25A limits the binding of GTP to this protein, and suggest that there is a protein stimulating the dissociation of GDP from smg p25A and thereby stimulating the binding of GTP to this protein in mammalian tissues. In fact, the protein stimulating the dissociation of GDP, but not of GTP gamma S, from smg p25A was detected in bovine brain cytosol.  相似文献   

14.
We have purified a novel GTP-binding protein (G protein) with a Mr of about 24,000 to homogeneity from bovine brain membranes (Kikuchi, A., Yamashita, T., Kawata, M., Yamamoto, K., Ikeda, K., Tanimoto, T., and Takai, Y. (1988) J. Biol. Chem. 263, 2897-2904). In the present studies, we have isolated and sequenced the cDNA of this G protein from a bovine brain cDNA library using oligonucleotide probes designed from the partial amino acid sequences. The cDNA of the G protein has an open reading frame encoding a protein of 220 amino acids with a calculated Mr of 24,954. This G protein is designated as the smg-25A protein (smg p25A). The amino acid sequence deduced from the smg-25A cDNA contains the consensus sequences of GTP-binding and GTPase domains. smg p25A shares about 28 and 44% amino acid homology with the ras and ypt1 proteins, respectively. In addition to this cDNA, we have isolated two other homologous cDNAs encoding G proteins of 219 and 227 amino acids with calculated Mr values of 24,766 and 25,975, respectively. These G proteins are designated as the smg-25B and smg-25C proteins (smg p25B and smg p25C), respectively. The amino acid sequences deduced from the three smg-25 cDNAs are highly homologous with one another in the overall sequences except for C-terminal 32 amino acids. Moreover, three smg p25s have a consensus C-terminal sequence, Cys-X-Cys, which is different from the known C-terminal consensus sequences of the ras and ypt1 proteins, Cys-X-X-X and Cys-Cys, respectively. These results together with the biochemical properties of smg p25A described previously indicate that three smg p25s constitute a novel G protein family.  相似文献   

15.
Evidence is accumulating that smg p25A, a small GTP-binding protein, may be involved in the regulated secretory processes of mammalian cells. The SEC4 protein is known to be required for constitutive secretion in yeast cells. We show here that the mammalian GDP dissociation inhibitor (GDI), which was identified by its action on smg p25A, is active on the yeast SEC4 protein in inhibiting the GDP/GTP exchange reaction and is capable of forming a complex with the GDP-bound form of the SEC4 protein but not with the GTP-bound form. These results together with our previous findings that smg p25A GDI is found in mammalian cells with both regulated and constitutive secretion types suggest that smg p25A GDI plays a role in both regulated and constitutive secretory processes, although smg p25A itself may be involved only in regulated secretory processes. These results also suggest that a GDI for the SEC4 protein is present in yeast cells.  相似文献   

16.
The smg-21 GTP-binding protein (smg p21) has the same effector domain as the ras proteins (ras p21s) and is identical with the proteins of the rap1A and Krev-1 genes. In this paper, two proteins stimulating the GTPase activity of smg p21 are partially purified from bovine brain cytosol. These proteins, designated as smg p21 GTPase-activating protein (GAP) 1 and 2, are separated from a c-ras p21 GAP described previously by column chromatographies. smg p21 GAP1 and -2 stimulate the GTPase activity of only smg p21 but not that of c-Ha-ras p21 or the rho and smg-25A GTP-binding proteins. smg p21 GAP1 or -2 does not stimulate the dissociation of guanosine 5'-3-O-(thio)triphosphate or GDP from smg p21. smg p21 GAP1 or -2 themselves do not have GTP/GDP binding or GTPase activity. The Mr values of smg p21 GAP1 and -2 are estimated to be 250-400 x 10(3) and 80-100 x 10(3) by gel filtration and sucrose density gradient ultracentrifugation, respectively. The activity of smg p21 GAP1 and -2 is killed by tryptic digestion or heat boiling. These results indicate that bovine brain contains two smg p21 GAPs in addition to c-ras p21 GAP.  相似文献   

17.
We have purified to near homogeneity a Mr 22,000 GTP-binding protein from human platelet membranes and identified it as the smg-21 gene product (smg p21), having the same putative effector domain as the ras gene products, which we have purified to near homogeneity from bovine brain membranes and characterized. This purified human platelet smg p21 was phosphorylated by cyclic AMP-dependent protein kinase. About one mol of phosphate was maximally incorporated into one mol of the protein. Only serine residue was phosphorylated. Both the guanosine 5'-(3-O-thio)-triphosphate (GTP gamma S)-bound and GDP-bound forms were phosphorylated with the same reaction velocity. The phosphorylation of smg p21 affected neither its GTP gamma S-binding nor GTPase activity. Human platelet smg p21 was not phosphorylated by protein kinase C. A Mr 24,000 GTP-binding protein partially purified from human platelet membranes was not phosphorylated by cyclic AMP-dependent protein kinase or protein kinase C.  相似文献   

18.
We have previously purified a GDP/GTP exchange protein for smg p21A and -B, members of a ras p21/ras p21-like small GTP-binding protein superfamily. This regulatory protein, named smg p21 GDP dissociation stimulator (GDS), stimulates the dissociation of both GDP and GTP from and the subsequent binding of both GDP and GTP to smg p21s. We show here that smg p21 GDS forms a complex with both the GDP- and GTP-bound forms of smg p21B at a molar ratio of about 1:1. Both the GDP- and GTP-bound forms of smg p21B bound to membranes. smg p21 GDS inhibited this binding and moreover induced the dissociation of the prebound smg p21B from the membranes. These results indicate that smg p21 GDS stoichiometrically interacts with smg p21B and thereby regulates its GDP/GTP exchange reaction and its translocation between membranes and cytoplasm.  相似文献   

19.
We have separated multiple small Mr GTP-binding proteins (G proteins) from bovine brain membranes by several column chromatographies and purified to near homogeneity four of them, including a novel Mr 24,000 G protein (smg p25A), a novel Mr 22,000 G protein (smg p21), the rho protein (rho p20), and the c-Ki-ras protein (c-Ki-ras p21). Among these small Mr G proteins, only smg p21 is phosphorylated stoichiometrically by cAMP-dependent protein kinase (protein kinase A), and c-Ki-ras p21 is phosphorylated to a small extent by protein kinase A in a cell-free system. None of smg p25A, rho p20, and other partially purified small Mr G proteins is phosphorylated by protein kinase A. Neither smg p21 nor other small Mr G proteins are phosphorylated by protein kinase C. About 1 mol of phosphate is maximally incorporated into 1 mol of smg p21 by protein kinase A. Only serine residue(s) are phosphorylated. The guanosine 5'-3-O-(thio) triphosphate (GTP gamma S)-bound and GDP-bound forms of smg p21 are phosphorylated with the same reaction velocity. The phosphorylation of smg p21 affects neither its GTP gamma S-binding nor GTPase activity. smg p21 is found in human platelets, and this human platelet smg p21 is also phosphorylated by protein kinase A at the same site(s) as bovine brain smg p21 in a cell-free system. When intact human platelets are stimulated by prostaglandin E1 known to elevate the cAMP level, four proteins with apparent Mr values of 240,000, 50,000, 24,000, and 22,000 are phosphorylated. These four proteins are also phosphorylated by the action of dibutyryl cAMP but not by the action of thrombin, Ca2+ ionophore A23187, or 12-O-tetradecanoylphorbol-13-acetate. Among the four proteins, the Mr 22,000 protein is identified as smg p21. The site(s) of phosphorylation of smg p21 by protein kinase A in a cell-free system are identical to that phosphorylated in response to prostaglandin E1 in intact platelets. These results indicate that among many small Mr G proteins, smg p21 is selectively phosphorylated by protein kinase A and that this G protein is also phosphorylated by this protein kinase in response to prostaglandin E1 in intact human platelets.  相似文献   

20.
Novel regulatory proteins for smg p21A and -B, ras p21-like GTP-binding proteins (G proteins) having the same putative effector domain as ras p21s, were purified to near homogeneity from bovine brain cytosol and characterized. These regulatory proteins, designated as GDP dissociation stimulator (GDS) 1 and -2, stimulated the dissociation of both [3H]GDP and [35S] guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) from smg p21s to the same extent. smg p21 GDS1 and -2 also stimulated the binding of [35S]GTP gamma S to the GDP-bound form of smg p21s but not that to the guanine nucleotide-free form. These actions of smg p21 GDS1 and -2 were specific for smg p21s and inactive for other ras p21/ras p21-like G proteins including c-Ha-ras p21, rhoB p20, and smg p25A. Neither smg p21 GDS1 nor -2 stimulated the GTPase activity of smg p21s and by itself showed [35S]GTP gamma S-binding or GTPase activity. smg p21 GDS1 and -2 showed very similar physical and kinetic properties and were indistinguishable by peptide map analysis. The Mr values of smg p21 GDS1 and -2 were estimated to be about 53,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and from the S values, indicating that smg p21 GDS1 and -2 are composed of a single polypeptide without a subunit structure. smg p21 GDS1 and -2 were distinguishable from GTPase activating proteins (GAPs) for the ras and rho proteins, and smg p21B, and GDP dissociation inhibitors for smg p25A and the rho proteins previously identified in bovine brain cytosol. These results indicate that bovine brain contains regulatory proteins for smg p21s that stimulate the dissociation of GDP from and thereby the subsequent binding of GTP to smg p21s in addition to smg p21 GAP. It is likely that the conversion from the GDP-bound inactive form of smg p21s to the GTP-bound active form is regulated by smg p21 GDS and that its reverse reaction is regulated by smg p21 GAP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号