首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The chromosomes of the South American marsupial frogs Gastrotheca fissipes, G. ovifera, G. walkeri and Flectonotus pygmaeus were analyzed by means of conventional and various banding techniques. The karyotypes of G. ovifera and G. walkeri are characterized by highly differentiated XY/XX sex chromosomes. Whereas the X chromosomes and autosomes contain large amounts of constitutive heterochromatin, extremely little heterochromatin is located in the Y chromosomes. This is in contrast to all previously known amphibian Y chromosomes and the Y chromosomes of most other vertebrates. In the male meiosis of G. walkeri, the euchromatic segments of the heteromorphic XY chromosomes show the same pairing configuration as the autosomal bivalents. The karyotype of F. pygmaeus is remarkable for the unique presence of telocentric chromosomes and the high frequency of interstitially located chiasmata in the meiotic bivalents. The evolution of the karyotypes and sex chromosomes, the structure of the various classes of heterochromatin and the data obtained from meiotic analyses of the marsupial hylids are discussed.  相似文献   

2.
P Iturra  A Veloso 《Genetica》1988,78(1):25-31
Chromosome banding and meiotic evidence show that XX/XY systems found in two Eupsophus species (Amphibia-Leptodactylidae) represent early stages of sex chromosome differentiation. Pair 14 is heteromorphic in E. migueli males and represents the heterochromosomes. In E. roseus this pair is metacentric and does not show heteromorphism. Paracentromeric constitutive heterochromatin is present in all chromosomes except in the E. migueli and E. roseus metacentric Y chromosomes. Constitutive heterochromatin loss is the structural modification responsible for Y chromosome differentiation. Pericentric inversions may have modified the morphology of the X chromosome of Eupsophus species.  相似文献   

3.
The mitotic and meiotic chromosomes and interphase nuclei of the South American tree-frog Centrolenella antisthenesi were studied with various banding techniques. The karyotype is distinguished by a new category of heteromorphic XY/XX sex chromosomes in an initial stage of differentiation. In diakinesis of male meiosis the XY chromosomes exhibit the same pairing configuration as the autosomal bivalents. Analysis of the chromosomes with DNA base pair-specific fluorochromes revealed that unusual large amounts of brightly labeled AT-rich constitutive heterochromatin are located in the centromeric and pericentromeric regions of all autosomes and in the X chromosome. In most types of interphase cell nuclei the brightly fluorescent heterochromatic regions fuse to very large chromocenters.  相似文献   

4.
Different diploid chromosome numbers have been reported for the tufted deer Elaphodus cephalophus (female, 2n = 46/47; male, 2n = 47/48) in earlier reports. In the present study, chromosomal analysis of seven tufted deer (5 male symbol, 2 female symbol) revealed that the karyotype of these animals contains 48 chromosomes, including a pair of large heteromorphic chromosomes in the male. C-banding revealed these chromosomes to be very rich in constitutive heterochromatin. Chromosome banding and PCR of sex chromosome-linked genes (SRY, ZFX, ZFY) performed on DOP-PCR products of single microdissected X and Y chromosomes confirmed that the large telocentric chromosome without secondary constriction is the X chromosome whereas the subtelocentric chromosome is the Y. The increased size of both, the X and Y chromosome, appears to be at least partially attributable to the presence of substantial amounts of heterochromatin.  相似文献   

5.
P. Iturra  A. Veloso 《Genetica》1986,78(1):25-31
Chromosome banding and meiotic evidence show that XX/XY systems found in two Eupsophus species (Amphibia-Leptodactylidae) represent early stages of sex chromosome differentiation. Pair 14 is heteromorphic in E. migueli males and represents the heterochromosomes. In E. roseus this pair is metacentric and does not show heteromorphism. Paracentromeric constitutive heterochromatin is present in all chromosomes except in the E. migueli and E. roseus metacentric Y chromosomes. Constitutive heterochromatin loss is the structural modification responsible for Y chromosome differentiation. Pericentric inversions may have modified the morphology of the X chromosome of Eupsophus species.Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de ChileDepartamento de Biología Celular y Genética, Facultad de Medicina, Universidad de Chile  相似文献   

6.
The chromosomes of the rare South American marsupial frogs Gastrotheca walkeri and G. ovifera were extensively reexamined with various banding techniques. The karyotypes of both species are distinguished by a new category of XY female symbol /XX male symbol female sex chromosomes. The unusual Y chromosomes are characterized by containing the least amount of constitutive heterochromatin in the karyotypes. This is in contrast to all previously known amphibian Y chromosomes and does not fit the evolutionary model of early XY differentiation in vertebrates. In male meiosis, the heteromorphic XY chromosomes of both species still exhibit the same pairing configurations as the autosomes. DNA flow cytometric measurements show the nuclear DNA amount of G. walkeri to be 10.90 pg. The significance of the XY/XX sex chromosomes of these marsupial frogs, the various classes of constitutive heterochromatin detected, and the data obtained from meiotic analyses are discussed in detail.  相似文献   

7.
The mitotic chromosomes of the neotenic (sensu Gould, 1977, and Alberch et al., 1979) salamander Necturus maculosus (Rafinesque) have been examined using a C-band technique to demonstrate the distribution of heterochromatin. The C-banded mitotic chromosomes provide evidence of a highly differentiated XY male/XX female sex chromosome heteromorphism, in which the X and Y chromosomes differ greatly in size and morphology, and in the amount and distribution of C-band heterochromatin. The X chromosome represents one of the largest biarmed chromosomes in the karyotype and is indistinguishable from similar sized autosomes on the basis of C-band heterochromatin. The Y chromosome, on the other hand, is diminutive, morphologically distinct from all other chromosomes of the karyotype, and is composed almost entirely of C-band heterochromatin. The discovery of an X/Y chromosome heteromorphism in this species is consistent with the observation by King (1912) of a heteromorphic spermatogenic bivalent. Karyological and phylogenetic implications are discussed.  相似文献   

8.
The pine woods treefrog, Hyla femoralis, is unique among North American hylid frogs in having a metacentric chromosome 6 and heteromorphic sex chromosomes of the XY/XX type. The X chromosome is distinguished by having a nucleolar organizing region (NOR) in the short arm. The Y chromosome does not possess an NOR. Until the present study, it was not known if the NOR was not present on the Y chromosome or inactive and therefore not detectable by conventional cytogenetic methods like silver staining. Exclusive of its unique features the karyotype of H. femoralis closely resembles those of North American frogs with karyotypes like H. chrysoscelis. We used replication banding and fluorescence in situ hybridization (FISH) with a DNA probe to the 18S + 28S ribosomal genes, which are located at the NOR, to characterize the H. femoralis karyotype. Our analysis revealed that the 18S + 28S ribosomal genes are not present on the Y chromosome, and that the karyotype of H. femoralis was derived from an H. chrysoscelis-like karyotype by relocation of the NOR to the X chromosome from chromosome 6 and either a concurrent or subsequent pericentric inversion of chromosome 6.  相似文献   

9.
The chromosomes and banding patterns of Steindachneridion sp., a large catfish (Pimelodidae), endemic to the Igua?u River, Brazil, were analyzed using conventional (C-, G-banding) and restriction enzyme banding methods. The same diploid number (2n = 56) as in other members of the genus and the family was found but the karyotype displayed an XX/XY sex chromosome system. The X chromosome was the smallest submetacentric, while the Y was the largest chromosome in the karyotype. Meiotic analysis showed 27 autosomal bivalents plus one heteromorphic XY bivalent during spermatogenesis. Sex chromosomes had no particular pattern after C-banding but G- and restriction enzyme bandings showed specific banding characteristics. The present finding represents the first report of a well-differentiated and uncommon sex chromosome system in the catfish family Pimelodidae.  相似文献   

10.
In mammalian male gametogenesis the sex chromosomes are distinctive in both gene activity and epigenetic strategy. At first meiotic prophase the heteromorphic X and Y chromosomes are placed in a separate chromatin domain called the XY body. In this process, X,Y chromatin becomes highly phosphorylated at S139 of H2AX leading to the repression of gonosomal genes, a process known as meiotic sex chromosome inactivation (MSCI), which has been studied best in mice. Post-meiotically this repression is largely maintained. Disturbance of MSCI in mice leads to harmful X,Y gene expression, eventuating in spermatocyte death and sperm heterogeneity. Sperm heterogeneity is a characteristic of the human male. For this reason we were interested in the efficiency of MSCI in human primary spermatocytes. We investigated MSCI in pachytene spermatocytes of seven probands: four infertile men and three fertile controls, using direct and indirect in situ methods. A considerable degree of variation in the degree of MSCI was detected, both between and within probands. Moreover, in post-meiotic stages this variation was observed as well, indicating survival of spermatocytes with incompletely inactivated sex chromosomes. Furthermore, we investigated the presence of H3K9me3 posttranslational modifications on the X and Y chromatin. Contrary to constitutive centromeric heterochromatin, this heterochromatin marker did not specifically accumulate on the XY body, with the exception of the heterochromatic part of the Y chromosome. This may reflect the lower degree of MSCI in man compared to mouse. These results point at relaxation of MSCI, which can be explained by genetic changes in sex chromosome composition during evolution and candidates as a mechanism behind human sperm heterogeneity.  相似文献   

11.
Plethodontid salamanders in the genus Oedipina are characterized by a strongly heteromorphic sex-determining pair of X/Y chromosomes. The telocentric X chromosome and the subtelocentric Y chromosome are clearly distinguished from the autosomes and their behavior during meiosis can be sequentially followed in squash preparations of spermatocytes. In Oedipina the sex chromosomes are not obscured by an opaque sex vesicle during early meiotic stages, making it possible to observe details of sex bivalent structure and behavior not directly visible in other vertebrate groups. The sex chromosomes can first be distinguished from autosomal bivalents at the conclusion of zygotene, with X and Y synapsed only along a short segment at their non-centromeric ends, forming a bivalent that contrasts sharply with the completely synapsed autosomes. During pachytene, the XY bivalent becomes progressively shortened and more compact, disappearing as a visible structure when pachytene progresses into the diffuse stage of male meiosis. Diplotene bivalents gradually emerge from the diffuse nuclei, presumably by the return of the loops of chromatin into their respective chromomeres. During early diplotene, the X/Y bivalent is clearly visible with a single chiasma within the synapsed segment. This chiasma is terminalized by first meiotic metaphase with the X and Y appearing either in end-to-end synaptic contact or as univalents separated at opposite poles relative to the equatorially distributed autosomal bivalents. In C-banded preparations, the Y is entirely heterochromatic while the X contains a large centromeric C-band and another block of heterochromatin located at the telomeric end, in the region of synapsis with the Y. We find no cytological evidence of dosage compensation, such as differential staining of the X chromosomes or Barr bodies, in mitotic or interphase cells from female animals.  相似文献   

12.
Heteromorphic sex chromosomes are common in eukaryotes and largely ubiquitous in birds and mammals. The largest number of multiple sex chromosomes in vertebrates known today is found in the monotreme platypus (Ornithorhynchus anatinus, 2n?=?52) which exhibits precisely 10 sex chromosomes. Interestingly, fish, amphibians, and reptiles have sex determination mechanisms that do or do not involve morphologically differentiated sex chromosomes. Relatively few amphibian species carry heteromorphic sex chromosomes, and when present, they are frequently represented by only one pair, either XX:XY or ZZ:ZW types. Here, in contrast, with several evidences, from classical and molecular cytogenetic analyses, we found 12 sex chromosomes in a Brazilian population of the smoky jungle frog, designated as Leptodactylus pentadactylus Laurenti, 1768 (Leptodactylinae), which has a karyotype with 2n?=?22 chromosomes. Males exhibited an astonishing stable ring-shaped meiotic chain composed of six X and six Y chromosomes. The number of sex chromosomes is larger than the number of autosomes found, and these data represent the largest number of multiple sex chromosomes ever found among vertebrate species. Additionally, sequence and karyotype variation data suggest that this species may represent a complex of species, in which the chromosomal rearrangements may possibly have played an important role in the evolution process.  相似文献   

13.
C. Halfer 《Genetica》1983,61(2):131-137
The analysis of inter-strain heterochromatin polymorphism in mitotic chromosomes of Drosophila melanogaster was extended to some stocks characterized by chromosomal mutations. In particular, the present investigation aims to compare, in the same cell, the quinacrine banding of two different Y chromosomes of male hybrids derived from crosses using special stocks. A direct comparison of homologous heteromorphic chromosomes in F1 hybrids provided additional evidence of differences in the fluorescence pattern of the Y chromosome, as well as in the length of the heterochromatin segment of the X chromosome.  相似文献   

14.
15.
The order Monotremata, comprising the platypus and two species of echidna (Australian and Nuigini) is the only extant representative of the mammalian subclass Prototheria, which diverged from subclass Theria (marsupials and placental mammals) 150–200 million years ago. The 2n=63, 64 karyotype (newly described here) of the Nuigini echidna is almost identical in morphology and G-band pattern to that of the Australian echidna, from which it diverged about a million years ago. The karyotype of the platypus (2n=52) has several features in common with those of the echidna species; six pairs of large autosomes, many pairs of small (but not micro-) chromosomes, and a series of small unpaired chromosomes which form a multivalent at meiosis. Comparison of the G-band patterns of platypus and echidna autosomes reveals considerable homology. Chromomycin banding demonstrates GC-rich heterochromatin at the centromeres of many platypus and echidna chromosomes, and at the nucleolar organizing regions; some of this heterochromatin C-bands weakly in platypus (but not echidna) spreads. Late replication banding patterns resemble G-banding patterns and confirm the homologies between the species. Striking heteromorphism between chromosomes of some of the large autosomal pairs can be accounted for in the echidna by differences in amount of chromomycin-bright, late replicating heterochromatin. The sex chromosomes in all three species also bear striking homology, despite the difference in sex determination mechanism between platypus (XX/XY) and the echidna species (X1X1X2X2/X1X2Y). The platypus X and echidna X1 each represent about 5.8% of haploid chromosome length, and are G-band identical. Y chromosomes are similar between species, and are largely homologous to the X (or X1).  相似文献   

16.
The karyotype of the marsupial frog Gastrotheca riobambae is characterized by exceptionally highly differentiated XY/XX sex chromosomes. The 18S and 28S ribosomal RNA genes were found only in the nucleolus organizer region (NOR) of the X chromosome by in situ hybridization, silver staining and mithramycin banding. This amphibian species therefore exhibits a sex-specific difference in the number of ribosomal RNA genes of about 2()1(). This constitutes an extremely rare situation in the karyotype of vertebrates. Examination of various somatic tissues from female animals showed that the NORs on both X chromosomes are always active. The results are discussed in relation to the apparent absence of dosage compensation for sexlinked genes in the Amphibia.  相似文献   

17.
The karyotype of the spiny eel (Mastacembelus aculeatus) has highly evolved heteromorphic sex chromosomes. X and Y chromosomes differ from each other in the distribution of heterochromatin blocks. To characterize the repetitive sequences in these heterochromatic regions, we microdissected the X chromosome, constructed an X chromosome library, amplified the genomic DNA using PCR and isolated a repetitive sequence DNA family by screening the library. All family members were clusters of two simple repetitive monomers, MaSRS1 and MaSRS2. We detected a conserved 5S rDNA gene sequence within monomer MaSRS2; thus, tandem-arranged MaSRS1s and MaSRS2s may co-compose 5S rDNA multigenes and NTSs in M. aculeatus. FISH analysis revealed that MaSRS1 and MaSRS2were the main components of the heterochromatic regions of the X and Y chromosomes. This finding contributes additional data about differentiation of heteromorphic sex chromosomes in lower vertebrates.  相似文献   

18.
The differentiation of sex chromosomes is thought to be interrupted by relatively frequent sex chromosome turnover and/or occasional recombination between sex chromosomes (fountain-of-youth model) in some vertebrate groups as fishes, amphibians, and lizards. As a result, we observe the prevalence of homomorphic sex chromosomes in these groups. Here, we provide evidence for the loss of sex chromosome heteromorphism in the Amazonian frogs of the genus Engystomops, which harbors an intriguing history of sex chromosome evolution. In this species complex composed of two named species, two confirmed unnamed species, and up to three unconfirmed species, highly divergent karyotypes are present, and heteromorphic X and Y chromosomes were previously found in two species. We describe the karyotype of a lineage estimated to be the sister of all remaining Amazonian Engystomops (named Engystomops sp.) and perform chromosome painting techniques using one probe for the Y chromosome and one probe for the non-centromeric heterochromatic bands of the X chromosome of E. freibergi to compare three Engystomops karyotypes. The Y probe detected the Y chromosomes of E. freibergi and E. petersi and one homolog of chromosome pair 11 of Engystomops sp., suggesting their common evolutionary origin. The X probe showed no interspecific hybridization, revealing that X chromosome heterochromatin is strongly divergent among the studied species. In the light of the phylogenetic relationships, our data suggest that sex chromosome heteromorphism may have occurred early in the evolution of the Amazonian Engystomops and have been lost in two unnamed but confirmed candidate species.Subject terms: Cytogenetics, Evolutionary genetics  相似文献   

19.
Arrangement of centromeres in mouse cells   总被引:17,自引:4,他引:17  
Applying a staining procedure which reveals constitutive heterochromatin to cytological preparations of the mouse (Mus musculus), one detects heterochromatin pieces at the centromeric areas of all chromosomes except the Y. The Y chromosome is somewhat heteropyenotic in general but possesses no intensely stained centromeric heterochromatin. The arrangement of the centromeric heterochromatin in interphase cells is apparently specific for a given cell type. In meiotic prophase, centromeric heterochromatin may form clusters among bivalents. From the location of the centromeric heterochromatin of the X chromosome in the sex bivalent, it is concluded that the association between the X and Y (common end) in meiosis is limited to the distal portions of the sex elements.  相似文献   

20.
Neotropical fishes have a low rate of chromosome differentiation between sexes. The present study characterizes the first meiotic analysis of sex chromosomes in the order Gymnotiformes. Gymnotus pantanal - females had 40 chromosomes (14m/sm, 26st/a) and males had 39 chromosomes (15m/sm, 24st/a), with a fundamental number of 54 - showed a multiple sexual determination chromosome system of the type X(1)X(1)X(2)X(2)/X(1)X(2)Y. The heterochromatin is restricted to centromeres of all chromosomes of the karyotype. The meiotic behavior of sex chromosomes involved in this system in males is from a trivalent totally pared in the pachytene stage, with a high degree of similarity. The cells of metaphase II exhibit 19 and 20 chromosomes, normal disjunction of sex chromosomes and the formation of balanced gametes with 18 + Y and 18 + X(1)X(2) chromosomes, respectively. The small amount of heterochromatin and repetitive DNA involved in this system and the high degree of chromosome similarity indicated a recent origin of the X(1)X(1)X(2)X(2)/X(1)X(2)Y system in G. pantanal and suggests the existence of a simple ancestral system with morphologically undifferentiated chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号