首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Cytochrome c derivatives labeled with a 3-nitrophenylazido group at lysine 13, at lysine 22, or at both residues have been prepared. The interaction of the cytochrome c derivatives with beef heart cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) in the presence of ultrviolet light results in formation of a covalent complex between cytochrome c and the oxidase. Using the lysine 22 derivative, the polypeptide composition of the oxidase is not modified, nor is its catalytic activity, whereas with the lysine 13 derivative, the gel electrophoretic pattern is altered and the catalytic activity of the complex diminished. The data are consisten with a specfic covalent interaction of the lysine 13 derivative of cytochrome c with the polypeptide of molecular weight 23,700 (Subunit II) of cytochrome c oxidase.  相似文献   

2.
We have prepared three different cytochrome c derivatives, each containing a single specifically trifluoroacetylated lysine at residues 13, 55, and 99, respectively. The only modification that affected cytochrome c oxidase (EC 1.9.3.1) activity was that of lysine-13 at the top of the heme crevice. Trifluoroacetylation of lysine-13 increased the apparent Michaelis constant fivefold compared to that of native cytochrome c, but did not affect the maximum velocity. Trifluoroacetylation of lysine-55 at the left side of the cytochrome c molecule did not affect cytochrome oxidase activity in any way, nor did trifluoroacetylation of lysine-99 at the rear of the cytochrome c molecule. This indicates that the cytochrome oxidase binding site on cytochrome c involved only the front of the cytochrome c molecule and those lysines immediately surrounding the heme crevice.  相似文献   

3.
The reduction of cytochrome c by succinate-cytochrome c reductase was studied at very low cytochrome c concentrations where the reaction between cytochrome c1 and cytochrome c was rate limiting. The rate constant for the reaction was found to be independent of ionic strength up to 0.1 M chloride, and to decrease rapidly at higher ionic strength, suggesting that the interaction between cytochrome c1 and cytochrome c was primarily electrostatic. The reaction rates of cytochrome c derivatives modified at single lysine residues to form trifluoroacetylated or trifluoromethylphenylcarbamylated cytochromes c were studied to determine the role of individual lysines in the reaction. None of the modifications affected the reaction at low ionic strength, but at higher ionic strength the reaction rate was substantially decreased by modification of those lysines surrounding the heme crevice, lysine-8, -13, -27, -72, and -79. Modification of lysine-22, -25, -55, -99, and -100 had no effect on the rate. These results indicate that the binding site on cytochrome c for cytochrome c1 overlaps considerably with that for cytochrome oxidase, suggesting that cytochrome c might undergo some type of rotational diffusion during the electron-transport process.  相似文献   

4.
The preparation, purification, and characterization of four new derivatives of cytochrome c trifluoroacetylated at lysines 72, 79, 87, and 88 are reported. The redox reaction rates of these derivatives with cytochrome b5, cytochrome c1 and cytochrome oxidase indicated that the interaction domain on cytochrome c for all three proteins involves the lysines immediately surrounding the heme crevice. Modification of lysines 72, 79, 87 had a large effect on the rate of all three reactions, while modification of lysine 88 had a very small effect. Even though lysines 87 and 88 are adjacent to one another, lysine 87 is at the top left of the heme crevice oriented towards the front of cytochrome c, while lysine 88 is oriented more towards the back. Since the interaction sites for cytochrome c1 and cytochrome oxidase are essentially identical, cytochrome c probably undergoes some type of rotational diffusion during electron transport.  相似文献   

5.
The reaction of cytochrome c with trifluoromethylphenyl isocyanate was carried out under conditions which led to the modification of a small number of the 19 lysines. Extensive ion-exchange chromatography was used to separate and purify six different derivatives, each modified at a single lysine residue, lysines 8, 13, 27, 72, 79, and 100, respectively. The only modifications which affected the activity of cytochrome c with cytochrome oxidase (EC 1.9.3.1) were those of lysines immediately surrounding the heme crevice, lysines 13, 27, 72, and 79, and also lysine 8 at the top of the heme crevice. In each case, the modified cytochrome c had the same maximum velocity as that of native cytochrome c, but an increased Michaelis constant for high affinity phase of the reaction. This supports the hypothesis that the cytochrome oxidase reaction site is located in the heme crevice region, and the highly conserved lysine residues surrounding the heme crevice are important in the binding.  相似文献   

6.
The preparation, purification, and characterization of four new derivatives of cytochrome c trifluoroacetylated at lysines 72, 79, 87, and 88 are reported. The redox reaction rates of these derivatives with cytochrome b5, cytochrome c1 and cytochrome oxidase indicated that the interaction domain on cytochrome c for all three proteins involves the lysines immediately surrounding the heme crevice. Modification of lysines 72, 79, and 87 had a large effect on the rate of all three reactions, while modification of lysine 88 had a very small effect. Even though lysines 87 and 88 are adjacent to one another, lysine 87 is at the top left of the heme crevice oriented towards the front of cytochrome c, while lysine 88 is oriented more towards the back. Since the interaction sites for cytochrome c1 and cytochrome oxidase are essentially identical, cytochrome c probably undergoes some type of rotational diffusion during electron transport.  相似文献   

7.
Methyl-4-azidobenzoimidate was reacted with horse heart cytochrome c to give a photoaffinity-labeled derivative of this heme protein. The modified cytochrome c bound to cytochrome c-depleted mitochondria with the same Kd as native cytochrome c and restored oxygen uptake to the same extent. Irradiation of cytochrome c-depleted mitochondrial membranes with 3- to 4-fold excess of photoaffinity-labeled cytochrome c over cytochrome c oxidase resulted in covalent binding of the derivative to the membranes. Fractionation of the irradiated mitochondria in the presence of detergents and salts followed by chromatography on an agarose Bio-Gel-A-5m showed that the labeled cytochrome c was bound covalently to succinate-cytochrome c reductase. The covalently bound cytochrome c was active in mediating electron transfer between its reductase and oxidase. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the succinate-cytochrome c reductase containing photoaffinity-labeled 125I-cytochrome c showed that the reductase contained a protein binding site for cytochrome c. It is suggested that cytochrome c1 is the most likely site for the cytochrome c binding in mitochondria in situ.  相似文献   

8.
The binding of cytochrome c to the cytochrome bc1 complex of bovine heart mitochondria was studied. Cytochrome c derivatives, arylazido-labeled at lysine 13 or lysine 22, were prepared and their properties as electron acceptors from the bc1 complex were measured. Mixtures of bc1 complex with cytochrome c derivatives were illuminated with ultraviolet light and afterwards subjected to polyacrylamide gel electrophoresis. The gels were analysed using dual-wavelength scanning at 280 minus 300 and 400 minus 430 nm. It was found that illumination with ultraviolet light in the presence of the lysine 12 derivative produced a diminution of the polypeptide of the bc1 coplex having molecular weight 30 000 (band IV) and formation of a new polypeptide composed of band IV and cytochrome c. Band IV was identified as cytochrome c1, and it was concluded that this hemoprotein interacts with cytochrome c and contains its binding site in complex III of the mitochondrial respiratory chain. Illumination of the bc1 complex in presence of the lysine 22 derivative did not produce changes of the polypeptide pattern.  相似文献   

9.
R Bisson  B Jacobs  R A Capaldi 《Biochemistry》1980,19(18):4173-4178
Two arylazidocytochrome c derivatives, one modified at lysine-13 and the second modified at lysine-22, were reacted with beef heart cytochrome c oxidase. The lysine-13 modified arylazidocytochrome c was found to cross-link both to the enzyme and with lipid bound to the cytochrome c oxidase complex. The lysine-22 derivative reacted only with lipids. Cross-linking to protein was through subunit II of the cytochrome c oxidase complex, as first reported by Bisson et al. [Bisson, R., Azzi, A., Gutweniger, H., Colonna, R., Monteccuco, C., & Zanotti, A. (1978) J. Biol. Chem. 253, 1874]. Binding studies show that the cytochrome c derivative covalently bound to subunit II was in the high-affinity binding site for the substrate. Evidence is also presented to suggest that cytochrome c bound to the lipid was in the low-affinity binding site [as defined by Ferguson-Miller et al. [Ferguson-Miller, S., Brautigan, D. L., & Margoliash, E. (1976) J. Biol. Chem. 251, 1104]]. Covalent binding of the cytochrome c derivative into the high-affinity binding site was found to inhibit electron transfer even when native cytochrome c was added as a substrate. Inhibition was almost complete when 1 mol of the Lys-13 modified arylazidocytochrome c was covalently bound to the enzyme per cytochrome c oxidase dimer (i.e., congruent to 280 000 daltons). Covalent binding of either derivative with lipid (low-affinity site) had very little effect on the overall electron transfer activity of cytochrome c oxidase. These results are discussed in terms of current theories of cytochrome c-cytochrome c oxidase interactions.  相似文献   

10.
The site of the reaction between horse heart ferrocytochrome c and ferricyanide was investigated by measuring the reaction rate of cytochrome c derivatives specifically modified at single lysine residues to form trifluoroacetyl or trifluoromethylphenylcarbamyl amino groups. Cytochrome c derivatives singly modified at lysines 8, 13, 25, 27, 72, 79, and 87 surrounding the heme crevice had rate constants decreased from that of native cytochrome c by factors of 1.29, 2.03, 1.12, 1.35, 1.46, 1.29, and 1.19, respectively. Modification of a given lysine with the bulky trifluoromethylphenylcarbamyl group caused nearly the same decrease in reaction rate as modification with the trifluoroacetyl group, indicating that the effect was due to removal of an electrostatic interaction between the protonated lysine amino group and ferricyanide. Modification of lysines 22, 55, 99, and 100 at the right side, bottom, and back of cytochrome c had no effect on the reaction rate. These results indicate that the reaction site is located at the exposed edge of the heme and that the electrostatic interaction between ferricyanide and cytochrome c is dominated by the lysine amino groups surrounding the heme crevice, which include lysine 86, in addition to the ones listed above. We have used the specific lysine modification results to estimate the contribution of each lysine amino group to the electrostatic interaction and have developed a semiempirical relation for the total electrostatic interaction.  相似文献   

11.
The reduction of cytochrome c by beef liver sulfite oxidase was found to be strongly inhibited by high ionic strength, indicating the importance of electrostatic interactions to the reaction. The reaction rates of sulfite oxidase with singly trifluoroacetylated or trifluoromethylphenylcarbamylated cytochrome c derivatives were studied to determine the role of individual lysines in the reaction. The reaction rate was decreased by modification of the lysines immediately surrounding the heme crevice, the decreases following the order: Lys 13 greater than Lys 25 congruent to Lys 79 approximately equal to Lys 87 greater than Lys 8 approximately equal to Lys 27 approximately equal to Lys 72. Modification of lysines 22, 55, 88, 99, and 100 had no effect on the reaction rate. These results indicate that the interaction site on cytochrome c for sulfite oxidase is at the heme crevice region, and overlaps considerable with that for cytochrome oxidase.  相似文献   

12.
The isolated complexes of ferricytochrome c with cytochrome c oxidase, cytochrome c reductase (cytochrome bc1 or complex III), and cytochrome c1 (a subunit of cytochrome c reductase) were investigated by the method of differential chemical modification (Bosshard, H.R. (1979) Methods Biochem. Anal. 25, 273-301). By this method the chemical reactivity of each of the 19 lysyl side chains of horse cytochrome c was compared in free and in complexed cytochrome c and binding sites were deduced from altered chemical reactivities of particular lysyl side chains in complexed cytochrome c. The most important findings follow. 1. The binding sites on cytochrome c for cytochrome c oxidase and cytochrome c reductase, defined in terms of the involvement of particular lysyl residues, are indistinguishable. The two oxidation-reduction partners of cytochrome c interact at the front (exposed heme edge) and top left part of the molecule, shielding mainly lysyl residues 8, 13, 72 + 73, 86, and 87. The chemical reactivity of lysyl residues 22, 39, 53, 55, 60, 99, and 100 is unaffected by complex formation while the remaining lysyl residues in positions 5, 7, 25, 27, 79, and 88 are somewhat less reactive in the complexed molecule. 2. When bound to cytochrome c reductase or to the isolated cytochrome c1 subunit of the reductase the same lysyl side chains of cytochrome c are shielded. This indicates that cytochrome c binds to the c1 subunit of the reductase during the electron transfer process.  相似文献   

13.
Seven cytochromes c, in which individual lysines have been modified to the propylthiobimane derivatives, have been prepared. These derivatives were also converted to the porphyrin cytochromes c by treatment with HF. The properties of both types of modified proteins were studied in their reactions with cytochrome c oxidase. The results show that lysines 25, 27, 60, 72, and 87 do not contribute a full charge to the binding interaction with the oxidase. These five residues, with the exception of the lysine-60 derivative, on the front surface of the protein and contain the solvent-accessible edge of the heme prosthetic group. By contrast, lysines 8 and 13 at the top of the front surface do contribute a full charge to the binding interaction with the oxidase. The removal of the positive charge on any one lysine weakens the binding to cytochrome c oxidase by at least 1 kcal (1 cal = 4.1868 J). The presence of bimane at lysines 13 and 87 clearly forces the separation of the cytochrome c and oxidase, but this does not occur with the other complexes. The bimane-modified lysine-13 protein, and to a lesser extent that modified at lysine 8, show the interesting effect of enhanced complex formation with cytochrome c oxidase when subjected to pressure, possibly because of entrapment of water at the newly created interface of the complex. Our observations indicate that the two proteins of the cytochrome c - cytochrome oxidase complex have preferred, but not obligatory, spatial orientations and that interaction occurs without either protein losing significant portions of its hydration shell.  相似文献   

14.
J E Long  B Durham  M Okamura  F Millett 《Biochemistry》1989,28(17):6970-6974
The role of specific lysine residues in facilitating electron transfer from Rhodobacter sphaeroides cytochrome c2 to the Rb. sphaeroides reaction center was studied by using six cytochrome c2 derivatives each labeled at a single lysine residue with a carboxydinitrophenyl group. The reaction of native cytochrome c2 at low ionic strength has a fast phase with a half-time of 0.6 microseconds that has been assigned to the reaction of bound cytochrome c2 [Overfield, R.E., Wraight, C.A., & DeVault, D. (1979) FEBS Lett. 105, 137]. Modification of lysine-55 did not affect the half-time of this phase but decreased the apparent binding constant by a factor of 2. The derivatives modified at lysines-10, -88, -95, -97, -99, -105, and -106 surrounding the heme crevice did not show any detectable fast phase but only slow second-order phases due to the reaction of solution cytochrome c2. These lysines thus appear to be involved in binding cytochrome c2 to the reaction center in an optimal orientation for electron transfer. The involvement of lysines-95 and -97 is especially significant, since they are located in an extra loop comprising residues 89-98 that is not present in eukaryotic cytochrome c. The reactions of horse cytochrome c derivatives modified at single lysine amino groups with trifluoroacetyl or [(trifluoromethyl)phenyl]carbamoyl were also studied. The derivatives modified at lysines-22, -55, -88, and -99 far removed from the heme crevice had nearly the same half-times for the fast phase as native cytochrome c, 6 microseconds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Binding to cytochrome c oxidase induces a conformational change in the cytochrome c molecule. This conformational change has been characterized by comparing the binding of native cytochrome c and chemically modified cytochrome c derivatives to bovine cytochrome c oxidase by using absorption, circular dichroism (CD), and magnetic circular dichroism (MCD) spectroscopy. The following derivatives were analyzed: (i) cytochrome c modified at all 19 lysine residues to yield the (N epsilon-acetimidyl)19 cytochrome c, (N epsilon-isopropyl)19 cytochrome c, and (N epsilon,N epsilon-dimethyl)19 cytochrome c; (ii) cytochrome c in which Met65 and Met80 are converted to the methionine sulfoxide; (iii) cytochrome c with a single break in the polypeptide chain at Arg38 or Gly37. The derivatives bind to cytochrome c oxidase at a ratio of one heme c per heme aa3. The association constants are similar to that of native cytochrome c except for (N epsilon-isopropyl)19 and (N epsilon,N epsilon-dimethyl)19 cytochromes c, which bind respectively four times and six times less strongly. The derivatives are good substrates for the cytochrome c oxidase reaction. The spectral changes accompanying the binding of the modified cytochromes c to cytochrome c oxidase are quite different from the spectral changes observed with native cytochrome c. The different optical absorption and MCD changes are explained by a polarity change around the exposed heme edge in the cytochrome c-cytochrome c oxidase complex. The CD changes indicate a conformational rearrangement restricted to the surface area surrounding the exposed heme edge. The rearrangement may involve a movement of the evolutionarily conserved Phe82 out of the vicinity of the heme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The oxidation of ferrocytochrome c mediated by cytochrome c oxidase was investigated in the presence of ferricytochrome c, trifluoroacetyl-cytochrome c, the heme fragments Hse65-[1-65] and Hse80-[1-80] and their respective porphyrin derivatives, as well as carboxymethylated apoprotein and related fragments, polycations, salts and neutral additives. The inhibition of the redox reaction by salts and neutral molecules, even if in theoretical agreement with their effect on electrostatic interactions, may alternatively be interpreted in terms of hydrophobicity. The latter can account for the inhibitory properties of trifluoroacetylated ferricytochrome c, similar to those of ferricytochrome c. On the assumption that the inhibitory properties of some of the investigated derivatives monitor their binding affinities to the cytochrome c oxidase at the cytochrome c binding sites, the experimental results do not confirm a primarily electrostatic character for the cytochrome c/cytochrome c oxidase association process. Strong indication was found that the cytochrome c C-terminal sequence is critically involved in the complex formation. Conformational studies by circular dichroism measurements and IR spectroscopy in solution and in solid state respectively, show that some of the derivatives examined may possibly acqkuire in the binding process to the oxidase, as secondary structure similar to that present in the native cytochrome c.  相似文献   

17.
A method for simultaneous purification of cytochrome c reductase and cytochrome c oxidase using a cytochrome c affinity column is presented. Cytochrome c from Saccharomyces cerevisiae was linked to an activated thiol-Sepharose gel via its Cys-102 residue located far from the lysine residues on the front side of the molecule, responsible for the interaction with the reductase and oxidase. In previously reported affinity chromatography techniques these lysine residues most probably reacted with the column. Cytochrome c oxidase and reductase from bovine heart mitochondria bind specifically to the affinity column and can be recovered separately at different ionic strength in the elution buffer. The enzymes are highly pure and active.  相似文献   

18.
The interaction of the Rhodospirillum rubrum cytochrome bc1 complex with R. rubrum cytochrome c2 and horse cytochrome c was studied using specific lysine modification and ionic strength dependence methods. In order to define the reaction domain on cytochrome c2, several fractions consisting of mixtures of singly labeled carboxydintrophenyl-cytochrome c2 derivatives were employed. Fraction A consisted of a mixture of derivatives modified at lysines 58, 81, and 109 on the back of cytochrome c2, while fractions C1, C2, C3, and C4 were mixtures of singly labeled derivatives modified at lysines 9, 13, 75, 86, and 88 on the front of cytochrome c2 surrounding the heme crevice. The rate of the reaction of fraction A was found to be nearly the same as that of native cytochrome c2. However, the rate constants of fractions C1-C4 were found to be more than 20-fold smaller than that of native cytochrome c2. These results indicate that lysine residues surrounding the heme crevice of cytochrome c2 are involved in electrostatic interactions with carboxylate groups at the binding site on the cytochrome bc1 complex. Since the same domain is involved in the reaction with the photosynthetic reaction center, cytochrome c2 must undergo some type of rotational or translational diffusion during electron transport in R. rubrum. The reaction rates of horse heart cytochrome c derivatives modified at single lysine amino groups with trifluoroacetyl or trifluoromethylphenylcarbamoyl were also measured. Modification of lysines 8, 13, 25, 27, 72, 79, and 87 surrounding the heme crevice was found to significantly lower the rate of the reaction, while modification of lysines in other regions had no effect. This indicates that the reaction of horse cytochrome c also involves the heme crevice domain.  相似文献   

19.
In order to define the interaction domain on Rhodospirillum rubrum cytochrome c2 for the photosynthetic reaction center, positively charged lysine amino groups on cytochrome c2 were modified to form negatively charged carboxydinitrophenyl lysines. The reaction mixture was separated into six different fractions by ion exchange chromatography on carboxymethylcellulose and sulfopropyl-Sepharose. Peptide mapping studies indicated that fraction A consisted of a mixture of singly labeled derivatives modified at lysines 58, 81, and 109 on the back of cytochrome c2. Fractions C1, C2, C3, and C4 were found to be mixtures of singly labeled derivatives modified at lysines 9, 13, 75, 86, and 88 on the front of cytochrome c2 surrounding the heme crevice. The photooxidation of the carboxydinitrophenyl-cytochrome c2 derivatives by reaction centers purified from R. rubrum was measured following excitation with a laser pulse. The second-order rate constant of fraction A modified at backside lysines was found to be 2.3 X 10(7) M-1 s-1, nearly the same as that of native cytochrome c2, 2.6 X 10(7) M-1 s-1. However, the rate constants of fractions C1-C4 were found to be 6 to 12-fold smaller than that of native cytochrome c2. These results indicate that lysines surrounding the heme crevice of cytochrome c2 are involved in electrostatic interactions with carboxylate groups at the binding site of the reaction center. The reaction rates of horse heart cytochrome c derivatives modified at single lysine amino groups with trifluoroacetyl or trifluoromethylphenylcarbamoyl were also measured. Modification of lysines 8, 13, 25, 27, 72, 79, or 87 surrounding the heme crevice was found to significantly lower the rate of reaction, while modification of lysines in other regions had no effect. This indicates that the reaction of horse heart cytochrome c with the reaction center also involves the heme crevice domain.  相似文献   

20.
The preparation, purification and characterization of the three singly, three doubly and one triply substituted derivatives of cytochrome c modified by pyridoxal phosphate (PLP) at lysine residues are reported. The PLP positions in PLP derivatives were determined by the amino acid analysis and sequence of PLP peptides. The results identified the lysine at position 86 in one of the singly substituted, lysine 79 in the other singly substituted and lysines 86 and 79 in the third doubly substituted cytochrome c derivatives. The area surrounding phenylalanine 82 forms the predominant PLP binding site on the cytochrome c molecule. The visible, CD and proton NMR spectra, the full intensity of the conformation-sensitive 695 nm band and the oxidation-reduction properties provide evidence to confirm the conclusion that singly and doubly substituted PLP cytochromes c retain the native conformation. The ability to restore both succinate and ascorbate/TMPD oxidation in cytochrome c-depleted mitochondria decreases in the order: native cytochrome c greater than PLP-Lys-79-cytochrome c greater than PLP-Lys-86-cytochrome c greater than PLP-Lys-79,86-cytochrome c greater than triply substituted derivative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号