首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
c-Jun N-terminal kinases (JNKs) are the exclusive downstream substrates of mitogen-activated protein kinase kinase 7 (MKK7). Recently, we have shown that a single MKK7 splice variant, MKK7γ1, substantially changes the functions of JNKs in naïve PC12 cells. Here we provide evidence that MKK7γ1 blocks NGF-mediated differentiation and sustains proliferation by interfering with the NGF-triggered differentiation programme at several levels: (i) down-regulation of the NGF receptors TrkA and p75; (ii) attenuation of the differentiation-promoting pathways ERK1/2 and AKT; (iii) increase of JNK1 and JNK2, especially the JNK2 54 kDa splice variants; (iv) repression of the cyclin-dependent kinase inhibitor p21WAF1/CIP1, which normally supports NGF-mediated cell cycle arrest; (v) strong induction of the cell cycle promoter CyclinD1, and (vi) profound changes of p53 functions. Moreover, MKK7γ1 substantially changes the responsiveness to stress. Whereas NGF differentiation protects PC12 cells against taxol-induced apoptosis, MKK7γ1 triggers an escape from cell cycle arrest and renders transfected cells sensitive to taxol-induced death. This stress response completely differs from naïve PC12 cells, where MKK7γ1 protects against taxol-induced cell death. These novel aspects on the regulation of JNK signalling emphasise the importance of MKK7γ1 in its ability to reverse basic cellular programmes by simply using JNKs as effectors. Furthermore, our results highlight the necessity for the cells to balance the expression of JNK activators to ensure precise intracellular processes.  相似文献   

2.
Signal transduction is a complex protein signaling process with a rich network of multifunctional interactions that occur in a non‐linear fashion. Mitogen‐activated protein kinase (MAPK) signal transduction pathways regulate diverse cellular processes ranging from proliferation and differentiation to apoptosis. In mammals, out of five, there are three well characterized subfamilies of MAPKs ‐ ERKs (Extracellular signal‐regulated kinases), JNKs (c‐Jun N‐terminal kinases), and P38 kinases, and their activators, are implicated in human diseases and are targets for drug development. Kinase cascades in MAPK pathways mediate the sensing and processing of stimuli. To understand how cells makes decisions, the dynamic interactions of components of signaling cascades are important rather than just creating static maps. Based on enzyme kinetic reactions, we have developed a mathematical model to analyze the impact of the cross‐talks between JNK and P38 kinase cascades. Cross‐talks between JNK and P38 kinase cascades influence the activities of P38 kinases. Responses of the signals should be studied for network of kinase cascades by considering cross‐talks.  相似文献   

3.
4.
5.
6.
Pancreatic ductal epithelial cells (PDECs) were induced to differentiate into insulin-producing cells by hepatocyte growth factor (HGF) in our previous study, but the mechanism through which this induction occurs is still unknown. HGF is a ligand that activates a tyrosine kinase encoded by the c-Met proto-oncogene. This activation is followed by indirect activation of multiple downstream signal transduction pathways (including MAPKs and the PI3K/AKT signaling pathways) that initiate various biological effects. Therefore, we speculated that the differentiation of PDECs is through either the MAPK signaling pathway or the PI3K/AKT signaling pathway. To test this hypothesis, isolated PDECs from adult rats were stimulated by adding HGF to their medium for 28 days. Then, the expression levels of several protein kinases, including MAPKs (ERK1/2, p38, and JNK) and AKT, were determined by Western blotting to determine if specific protein kinases are activated in these pathways. Subsequently, re-isolated from adult rats and cultured PDECs were pre-treated with specific inhibitors of proteins shown to be activated in these signaling pathways; these cells were then induced to differentiate by the addition of HGF. The expression levels of protein kinases were determined by Western blotting, and the differentiation rate of insulin-positive cells was determined by flow cytometry. The change of PDEC differentiation rates were compared between the groups in which cells with or without inhibitors pretreatment to determine the specific signaling pathway(s) that may be involved in HGF-induced differentiation of PDECs. After isolating PDECs and stimulating them with HGF for 28 days, the expression levels of phosphorylated ERK1/2 as well as total and phosphorylated AKT of cultured cells were significantly increased compared to the normal control group (< 0.05), suggesting that the signaling pathways involving ERK1/2 and Akt (MEK-ERK and PI3K-AKT) are activated during HGF-induced PDEC differentiation. MEK1/2 or PI3K inhibitors were separately added to the culture medium of PDECs pre-treated with HGF. These results show that compared to the HGF-treated group, the differentiation rate of insulin-positive cells was significantly decreased in the HGF/LY294002 (PI3K inhibitor) group (13.47 ± 1.57% vs. 33.47 ± 1.34%, < 0.05); however, the differentiation rate of insulin-positive cells was not significantly different in the HGF/PD98059 (MEK1/2 inhibitor) group. These data suggest that HGF induces PDECs to differentiate into insulin-producing cells through the PI3K/AKT signaling pathway.  相似文献   

7.
Hydrogen-deuterium exchange measurements represent a powerful approach to investigating changes in conformation and conformational mobility in proteins. Here, we examine p38α MAP kinase (MAPK) by hydrogen-exchange (HX) mass spectrometry to determine whether changes in conformational mobility may be induced by kinase phosphorylation and activation. Factors influencing sequence coverage in the HX mass spectrometry experiment, which show that varying sampling depths, instruments, and peptide search strategies yield the highest coverage of exchangeable amides, are examined. Patterns of regional deuteration in p38α are consistent with tertiary structure and similar to deuteration patterns previously determined for extracellular-signal-regulated kinase (ERK) 2, indicating that MAPKs are conserved with respect to the extent of local amide HX. Activation of p38α alters HX in five regions, which are interpreted by comparing X-ray structures of unphosphorylated p38α and X-ray structures of phosphorylated p38γ. Conformational differences account for altered HX within the activation lip, the P + 1 site, and the active site. In contrast, HX alterations are ascribed to activation-induced effects on conformational mobility, within substrate-docking sites (αF-αG, β7-β8), the C-terminal core (αE), and the N-terminal core region (β4-β5, αL16, αC). Activation also decreases HX in a 3-10 helix at the C-terminal extension of p38α. Although this helix in ERK2 forms a dimerization interface that becomes protected from HX upon activation, analytical ultracentrifugation shows that this does not occur in p38α because both unphosphorylated and diphosphorylated forms are monomeric. Finally, HX patterns in monophosphorylated p38α are similar to those in unphosphorylated kinase, indicating that the major activation lip remodeling events occur only after diphosphorylation. Importantly, patterns of activation-induced HX show differences between p38α and ERK2 despite their similarities in overall deuteration, suggesting that although MAPKs are closely related with respect to primary sequence and tertiary structure, they have distinct mechanisms for dynamic control of enzyme function.  相似文献   

8.
This study was conducted to evaluate the efficacy of hesperetin in regulating interleukin-1β (IL-1β)-induced production of the matrix metalloproteinase (MMP)-3 and IL-6 in human synovial cell line, SW982. Treatment with hesperetin at 1 or 10 μM significantly (< 0.05) inhibited IL-1β-induced MMP-3 and IL-6 production when measured by enzyme-linked immunosorbent assay (ELISA). The effects of hesperetin on the activation of mitogen-activated protein kinases (MAPKs) were also examined in SW982 cells by ELISA assay. IL-1β-induced JNK activation was inhibited by hesperetin. These results suggest that hesperetin reduces the production of MMP and IL-6 in SW982 synovial cells by inhibiting JNK.  相似文献   

9.
The c-Jun N-terminal kinases (JNKs) are a subfamily of the mitogen-activated protein kinases (MAPKs). The JNKs are encoded by three separate genes (jnk1, jnk2, and jnk3), which are spliced alternatively to create 10 JNK isoforms that are either p46 or p54 in size. In this study, we found that the p52 form of JNK emerged in human leukemia MOLT-4 or U937 cells following X-irradiation or heat treatment. The accumulation of p52 coincided with the reduction of p54 JNK. On the other hand, the amounts of p46 JNK did not change by X-irradiation. Induction of the p52 form of JNK also paralleled the appearance of the active form of caspase-3 and was suppressed by a caspase-specific inhibitor, Ac-DEVD-CHO, but not by Ac-YVAD-CHO. In vitro cleavage assays indicated that recombinant human JNK1beta2 and JNK2beta2 were cleaved by caspase-3, and that the mutation of aspartic acid at position 413 of JNK1beta2 or 410 of JNK2beta2 to alanine abolished the cleavage. Altogether, our results demonstrated that p54 JNKs, at least JNK1beta2 and JNK2beta2, were new selective targets of caspases in JNK splicing variants, and suggested that the p52 form could serve as a marker of apoptosis.  相似文献   

10.
A novel series of indole/indazole-aminopyrimidines was designed and synthesized with an aim to achieve optimal potency and selectivity for the c-Jun kinase family or JNKs. Structure guided design was used to optimize the series resulting in a significant potency improvement. The best compound (17) has IC50 of 3 nM for JNK1 and 20 nM for JNK2, with greater than 40-fold selectivity against other kinases with good physicochemical and pharmacokinetic properties.  相似文献   

11.
12.
13.
A sequence of intermittent interruptions of oxygen supply (i.e., postconditioning, Postcon) at reoxygenation reduces oxidant-induced cardiomyocyte loss. This study tested the hypothesis that prevention of cardiomyocyte apoptosis by Postcon is mediated by mitogen-activated protein kinases pathways. Primary cultured neonatal rat cardiomyocytes were exposed to 3 h hypoxia followed by 6 h of reoxygenation. Cardiomyocytes were postconditioned by three cycles each of 5 min reoxygenation and 5 min hypoxia after prolonged hypoxia. Relative to hypoxia alone, reoxygenation stimulated expression of JNKs and p38 kinases, corresponding to increased activity of JNKs (phospho-c-Jun) and p38 (phospho-ATF2). The level of TNFα in cell lysates, activity of cytosolic caspases-8, -3, expression of Bax and the number of apoptotic cardiomyocytes were increased while expression of Bcl-2 was decreased with reoxygenation. Consistent with an attenuation in generation of superoxide anions detected by lucigenin-enhanced chemiluminescence at early period of reoxygenation, treatment of cardiomyocytes with Postcon further reduced expression and activity of JNKs and p38 kinases, level of TNFα, the frequency of apoptotic cells and expression of Bax. However, the inhibitory effects of Postcon on these changes were lost when its application was delayed by 5 min after the start of reoxygenation. Addition of a JNK/p38 stimulator, anisomycin into cardiomyocytes at the beginning of reoxygenation eliminated protection by Postcon. These data suggest that 1) hypoxia/reoxygenation elicits cardiomyocyte apoptosis in conjunction with expression and activation of JNK and p38 kinases, release of TNFα, activation of caspases, and an increase in imbalance of pro-/anti-apoptotic proteins; 2) Postcon attenuates cardiomyocyte apoptosis, potentially mediated by inhibiting JNKs/p-38 signaling pathways and reducing TNFα release and caspase expression.  相似文献   

14.
Role of MAPKs in development and differentiation: lessons from knockout mice   总被引:11,自引:0,他引:11  
The ERK, p38MAPK, JNK mitogen-activated protein kinases (MAPKs) are intracellular signaling pathways that play a pivotal role in many essential cellular processes such as proliferation and differentiation. These cascades are activated by a large variety of stimuli and display a high degree of homology. So far, seven MAPK isoforms have been invalidated in mice leading to the discovery of their important functions in development and differentiation. As we could expect because of their multiple and specific properties in vitro, knockout (KO) of MAPK pathways leads to distinct phenotypes in mice. Surprisingly, into a given cascade, KOs of the various isoforms assign specific non-redundant biological functions to each isoform, without compensation by the others. These results emphasize the notion that, although initiated by the same external stimuli, these intracellular cascades activate kinase isoforms each with its own specific role.  相似文献   

15.
16.
Treatment of pancreatic acinar cells by hydrogen sulphide has been shown to induce apoptosis. However, a potential role of mitogen-activated protein kinases (MAPKs) in this apoptotic pathway remains unknown. The present study examined the role of MAPKs in H2S-induced apoptosis in mouse pancreatic acinar cells. Pancreatic acinar cells were treated with 10 μM NaHS (a donor of H2S) for 3 hrs. For the evaluation of the role of MAPKs, PD98059, SP600125 and SB203580 were used as MAPKs inhibitors for ERK1/2, JNK1/2 and p38 MAPK, respectively. We observed activation of ERK1/2, JNK1/2 and p38 when pancreatic acini were exposed to H2S. Moreover, H2S-induced ERK1/2, JNK1/2 and p38 activation were blocked by pre-treatment with their corresponding inhibitor in a dose-dependent manner. H2S-induced apoptosis led to an increase in caspase 3 activity and this activity was attenuated when caspase 3 inhibitor were used. Also, the cleavage of caspase 3 correlated with that of poly-(ADP-ribose)-polymerase (PARP) cleavage. H2S treatment induced the release of cytochrome c , smac from mitochondria into the cytoplasm, translocation of Bax into mitochondria and decreased the protein level of Bcl-2. Inhibition of ERK1/2 using PD98059 caused further enhancement of apoptosis as evidenced by annexin V staining, while SP600125 and SB203580 abrogated H2S-induced apoptosis. Taken together, the data suggest that activation of ERKs promotes cell survival, whereas activation of JNKs and p38 MAP kinase leads to H2S-induced apoptosis.  相似文献   

17.
Context: The “free fatty acid receptors” (FFARs) GPR40, GPR41, and GPR43 regulate various physiological homeostases, and are all linked to activation of extracellular signal-regulated kinases (ERK)1/2.

Objective: Investigation of coupling of FFARs to two other mitogen-activated protein kinases (MAPKs) sometimes regulated by G protein-coupled receptors (GPCRs), c-Jun N-terminal kinase (JNK) and p38MAPK, and characterization of signaling proteins involved in the regulation of FFAR-mediated ERK1/2 activation.

Methods: FFARs were recombinantly expressed, cells challenged with the respective agonist, and MAPK activation quantitatively determined using an AlphaScreen SureFire assay. Inhibitors for signaling proteins were utilized to characterize ERK1/2 pathways.

Results: Propionate-stimulated GPR41 strongly coupled to ERK1/2 activation, while the coupling of linoleic acid-activated GPR40 and acetate-activated GPR43 was weaker. JNK and p38MAPK were weakly activated by FFARs. All three receptors activated ERK1/2 fully or partially via Gi/o and Rac. PI3K was relevant for GPR40- and GPR41-mediated ERK1/2 activation, and Src was essential for GPR40- and GPR43-induced activation. Raf-1 was not involved in the GPR43-triggered activation.

Conclusion: The results demonstrate a novel role of Rac in GPCR-mediated ERK1/2 signaling, and that GPCRs belonging to the same family can regulate ERK1/2 activation by different receptor-specific mechanisms.  相似文献   

18.
BACKGROUND INFORMATION: Many studies indicate that innate immunity in invertebrates can be modulated by a cytokine network like in vertebrates. In molluscs, the immune response is carried out by circulating haemocytes and soluble haemolymph factors. In the present study, the effects of heterologous TNFalpha (tumour necrosis factor alpha) on cell signalling and function in the haemocytes of the bivalve Mytilus galloprovincialis Lam. were investigated. RESULTS AND CONCLUSIONS: Addition of TNFalpha in the absence of haemolymph serum [in ASW (artificial sea water)] induced cellular stress, as indicated by lysosomal destabilization, and decreased phagocytosis; on the other hand, in the presence of serum, TNFalpha did not affect lysosomal stability and even stimulated phagocytosis. TNFalpha induced rapid phosphorylation of the stress-activated p38 and JNK (c-Jun N-terminal kinase) MAPKs (mitogen-activated protein kinases); both effects were persistent in ASW but transient in serum. Activation of p38 and JNKs in mediating the effects of TNFalpha was confirmed by the use of specific MAPK inhibitors. Moreover, flow cytometric analysis indicated that TNFalpha in the presence of serum induced transient phosphatidylserine exposure on the haemocyte surface, evaluated as annexin V binding; in ASW, the cytokine resulted in a stable increase in the percentage of both annexin- and propidium iodide-positive cells, indicating possible apoptotic/necrotic processes. The results indicate that TNFalpha can affect the function of bivalve haemocytes through conserved transduction pathways involving stress-activated MAPKs and suggest that the haemocyte response to the cytokine is influenced by soluble haemolymph components.  相似文献   

19.

Objective

To determine protein kinase C (PKC), c-Jun NH2-Terminal Kinase (JNK) and P38 mitogen-activated protein kinases (p38MAPK) expression levels and effects of their respective inhibitors on proliferation of human bladder smooth muscle cells (HBSMCs) when physiologically stretched in vitro.

Materials and methods

HBSMCs were grown on silicone membrane and stretch was applied under varying conditions; (equibiaxial elongation: 2.5%, 5%, 10%, 15%, 20%, 25%), (frequency: 0.05, 0.1, 0.2, 0.5, 1 Hz). Optimal physiological stretch was established by assessing proliferation with 5-Bromo-2-deoxyuridine (BrdU) assay and flow cytometry. PKC, JNK and p38 expression levels were analyzed by Western blot. Specificity was maintained by employing specific inhibitors; (GF109203X for PKC, SP600125 for JNK and SB203580 for p38MAPK), in some experiments.

Results

Optimum proliferation was observed at 5% equibiaxial stretch (BrdU: 0.837 ± 0.026 (control) to 1.462 ± 0.023)%, (P < 0.05) and apoptotic cell death rate decreased from 16.4 ± 0.21% (control) to 4.5 ± 0.13% (P < 0.05) applied at 0.1 Hz. Expression of PKC was upregulated with slight increase in JNK and no change in p38MAPK after application of stretch. Inhibition had effects on proliferation (1.075 ± 0.024, P < 0.05 GF109203X); (1.418 ± 0.021, P > 0.05 SP600125) and (1.461 ± 0.01, P > 0.05 SB203580). These findings show that mechanical stretch can promote magnitude-dependent proliferative modulation through PKC and possibly JNK but not via p38MAPK in hBSMCs.  相似文献   

20.
Hee-Jin Ahn 《FEBS letters》2009,583(17):2922-386
FGF2 has been shown to enhance proliferation and maintain differentiation potential in hMSCs during in vitro propagation. In this study, we investigated the role of mitogen-activated protein kinase in the functions of FGF2 in hMSCs. We demonstrated that FGF2 induces the transient activation of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated protein kinase or p38 protein kinase. SP600125 and a dominant negative JNK1 significantly reduced the FGF2-enhanced proliferation of hMSCs. Treatment with SP600125 also diminished the activity of FGF2 in the maintenance of adipogenic and osteogenic differentiation potential. These results suggest that JNK signaling is involved in the FGF2-induced stimulation of the proliferation and the maintenance of differentiation potential in hMSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号