首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we show several previously unknown features of p120-catenin in a cadherin–catenin complex that are critical for our understanding of cadherin-based adhesion and signaling. We show that in human epithelial A-431 cells, nearly all p120 molecules engage in high-affinity interaction with E-cadherin–catenin complexes located at the cellular surface. p120 is positioned in proximity to α-catenin in the complex with cadherin. These findings suggest a functional cooperation between p120 and α-catenin in cadherin-based adhesion. A low level of cadherin-free p120 molecules, in contrast, could facilitate p120-dependent signaling. Finally, we present compelling evidence that p120 is a key linker cementing the E-cadherin–catenin complex with the transmembrane protease γ-secretase. The cell–cell contact location of this supercomplex makes it an important candidate for conducting different signals that rely on γ-secretase proteolytic activity.  相似文献   

2.
Vascular endothelial (VE)-cadherin, the major adherens junction adhesion molecule in endothelial cells, interacts with p120-catenin and β-catenin through its cytoplasmic tail. However, the specific functional contributions of the catenins to the establishment of strong adhesion are not fully understood. Here we use bioengineering approaches to identify the roles of cadherin–catenin interactions in promoting strong cellular adhesion and the ability of the cells to spread on an adhesive surface. Our results demonstrate that the domain of VE-cadherin that binds to β-catenin is required for the establishment of strong steady-state adhesion strength. Surprisingly, p120 binding to the cadherin tail had no effect on the strength of adhesion when the available adhesive area was limited. Instead, the binding of VE-cadherin to p120 regulates adhesive contact area in a Rac1-dependent manner. These findings reveal that p120 and β-catenin have distinct but complementary roles in strengthening cadherin-mediated adhesion.  相似文献   

3.

Background

Adherens junctions consist of transmembrane cadherins, which interact intracellularly with p120ctn, ß-catenin and α-catenin. p120ctn is known to regulate cell-cell adhesion by increasing cadherin stability, but the effects of other adherens junction components on cell-cell adhesion have not been compared with that of p120ctn.

Methodology/Principal Findings

We show that depletion of p120ctn by small interfering RNA (siRNA) in DU145 prostate cancer and MCF10A breast epithelial cells reduces the expression levels of the adherens junction proteins, E-cadherin, P-cadherin, ß-catenin and α-catenin, and induces loss of cell-cell adhesion. p120ctn-depleted cells also have increased migration speed and invasion, which correlates with increased Rap1 but not Rac1 or RhoA activity. Downregulation of P-cadherin, β-catenin and α-catenin but not E-cadherin induces a loss of cell-cell adhesion, increased migration and enhanced invasion similar to p120ctn depletion. However, only p120ctn depletion leads to a decrease in the levels of other adherens junction proteins.

Conclusions/Significance

Our data indicate that P-cadherin but not E-cadherin is important for maintaining adherens junctions in DU145 and MCF10A cells, and that depletion of any of the cadherin-associated proteins, p120ctn, ß-catenin or α-catenin, is sufficient to disrupt adherens junctions in DU145 cells and increase migration and cancer cell invasion.  相似文献   

4.
The binding of p120-catenin and β-catenin to the cytoplasmic domain of E-cadherin establishes epithelial cell-cell adhesion. Reduction and loss of catenin expression degrades E-cadherin-mediated carcinoma cell-cell adhesion and causes carcinomas to progress into aggressive states. Since both catenins are differentially regulated and play distinct roles when they dissociate from E-cadherin, evaluation of their expression, subcellular localization and the correlation with E-cadherin expression are important subjects. However, the same analyses are not readily performed on squamous cell carcinomas in which E-cadherin expression determines the disease progression. In the present study, we examined expression and subcellular localization of p120-catenin and β-catenin in oral carcinomas (n = 67) and its implications in the carcinoma progression and E-cadherin expression using immunohitochemistry. At the invasive front, catenin-membrane-positive carcinoma cells were decreased in the dedifferentiated (p120-catenin, P < 0.05; β-catenin, P < 0.05) and invasive carcinomas (p120-catenin, P < 0.01; β-catenin, P < 0.05) and with the E-cadherin staining (p120-catenin, P < 0.01; β-catenin, P < 0.01). Carcinoma cells with β-catenin cytoplasmic and/or nuclear staining were increased at the invasive front compared to the center of tumors (P < 0.01). Although the p120-catenin isoform shift from three to one associates with carcinoma progression, it was not observed after TGF-β, EGF or TNF-α treatments. The total amount of p120-catenin expression was decreased upon co-treatment of TGF-β with EGF or TNF-α. The above data indicate that catenin membrane staining is a primary determinant for E-cadherin-mediated cell-cell adhesion and progression of oral carcinomas. Furthermore, it suggests that loss of p120-catenin expression and cytoplasmic localization of β-catenin fine-tune the carcinoma progression.  相似文献   

5.
Involvement of the Tyrosine Kinase Fer in Cell Adhesion   总被引:9,自引:2,他引:7       下载免费PDF全文
The Fer protein belongs to the fes/fps family of nontransmembrane receptor tyrosine kinases. Lack of success in attempts to establish a permanent cell line overexpressing it at significant levels suggested a strong negative selection against too much Fer protein and pointed to a critical cellular function for Fer. Using a tetracycline-regulatable expression system, overexpression of Fer in embryonic fibroblasts was shown to evoke a massive rounding up, and the subsequent detachment of the cells from the substratum, which eventually led to cell death. Induction of Fer expression coincided with increased complex formation between Fer and the cadherin/src-associated substrate p120cas and elevated tyrosine phosphorylation of p120cas. β-Catenin also exhibited clearly increased phosphotyrosine levels, and Fer and β-catenin were found to be in complex. Significantly, although the levels of α-catenin, β-catenin, and E-cadherin were unaffected by Fer overexpression, decreased amounts of α-catenin and β-catenin were coimmunoprecipitated with E-cadherin, demonstrating a dissolution of adherens junction complexes. A concomitant decrease in levels of phosphotyrosine in the focal adhesion-associated protein p130 was also observed. Together, these results provide a mechanism for explaining the phenotype of cells overexpressing Fer and indicate that the Fer tyrosine kinase has a function in the regulation of cell-cell adhesion.  相似文献   

6.
E-cadherin is highly phosphorylated within its β-catenin–binding region, and this phosphorylation increases its affinity for β-catenin in vitro. However, the identification of key serines responsible for most cadherin phosphorylation and the adhesive consequences of modification at such serines have remained unknown. In this study, we show that as few as three serines in the β-catenin–binding domain of E-cadherin are responsible for most radioactive phosphate incorporation. These serines are required for binding to β-catenin and the mutual stability of both E-cadherin and β-catenin. Cells expressing a phosphodeficient (3S>A) E-cadherin exhibit minimal cell–cell adhesion due to enhanced endocytosis and degradation through a lysosomal compartment. Conversely, negative charge substitution at these serines (3S>D) antagonizes cadherin endocytosis and restores wild-type levels of adhesion. The cadherin kinase is membrane proximal and modifies the cadherin before it reaches the cell surface. Together these data suggest that E-cadherin phosphorylation is largely constitutive and integral to cadherin–catenin complex formation, surface stability, and function.  相似文献   

7.
Adherens junction (AJ) is a specialized cell-cell junction structure that plays a role in mechanically connecting adjacent cells to resist strong contractile forces and to maintain tissue structure, particularly in the epithelium. AJ is mainly comprised of cell adhesion molecules cadherin and nectin and their associating cytoplasmic proteins including β-catenin, α-catenin, p120ctn, and afadin. Our series of studies have revealed that nectin first forms cell-cell adhesion and then recruits cadherin to form AJ. The recruitment of cadherin by nectin is mediated by the binding of α-catenin and p120ctn to afadin. Recent studies showed that PLEKHA7 binds to p120ctn, which is associated with E-cadherin, and maintains the integrity of AJ in epithelial cells. In this study, we showed that PLEKHA7 bound to afadin in addition to p120ctn and was recruited to the nectin-3α-based cell-cell adhesion site in a manner dependent on afadin, but not on p120ctn. The binding of PLEKHA7 to afadin was required for the proper formation of AJ, but not for the formation of tight junction, in EpH4 mouse mammary gland epithelial cells. These results indicate that PLEKHA7 plays a cooperative role with nectin and afadin in the proper formation of AJ in epithelial cells.  相似文献   

8.
In their progression from the basal to upper differentiated layers of the epidermis, keratinocytes undergo significant structural changes, including establishment of close intercellular contacts. An important but so far unexplored question is how these early structural events are related to the biochemical pathways that trigger differentiation. We show here that β-catenin, γ-catenin/plakoglobin, and p120-Cas are all significantly tyrosine phosphorylated in primary mouse keratinocytes induced to differentiate by calcium, with a time course similar to that of cell junction formation. Together with these changes, there is an increased association of α-catenin and p120-Cas with E-cadherin, which is prevented by tyrosine kinase inhibition. Treatment of E-cadherin complexes with tyrosine-specific phosphatase reveals that the strength of α-catenin association is directly dependent on tyrosine phosphorylation. In parallel with the biochemical effects, tyrosine kinase inhibition suppresses formation of cell adhesive structures, and causes a significant reduction in adhesive strength of differentiating keratinocytes. The Fyn tyrosine kinase colocalizes with E-cadherin at the cell membrane in calcium-treated keratinocytes. Consistent with an involvement of this kinase, fyn-deficient keratinocytes have strongly decreased tyrosine phosphorylation levels of β- and γ-catenins and p120-Cas, and structural and functional abnormalities in cell adhesion similar to those caused by tyrosine kinase inhibitors. Whereas skin of fyn−/− mice appears normal, skin of mice with a disruption in both the fyn and src genes shows intrinsically reduced tyrosine phosphorylation of β-catenin, strongly decreased p120-Cas levels, and important structural changes consistent with impaired keratinocyte cell adhesion. Thus, unlike what has been proposed for oncogene-transformed or mitogenically stimulated cells, in differentiating keratinocytes tyrosine phosphorylation plays a positive role in control of cell adhesion, and this regulatory function appears to be important both in vitro and in vivo.  相似文献   

9.
Rac1 GTPase is hyperactivated in tumors and contributes to malignancy. Rac1 disruption of junctions requires its effector PAK1, but the precise mechanisms are unknown. Here, we show that E-cadherin is internalized via micropinocytosis in a PAK1–dependent manner without catenin dissociation and degradation. In addition to internalization, PAK1 regulates E-cadherin transport by fine-tuning Rab small GTPase function. PAK1 phosphorylates a core Rab regulator, RabGDIβ, but not RabGDIα. Phosphorylated RabGDIβ preferentially associates with Rab5 and Rab11, which is predicted to promote Rab retrieval from membranes. Consistent with this hypothesis, Rab11 is activated by Rac1, and inhibition of Rab11 function partially rescues E-cadherin destabilization. Thus, Rac1 activation reduces surface cadherin levels as a net result of higher bulk flow of membrane uptake that counteracts Rab11-dependent E-cadherin delivery to junctions (recycling and/or exocytosis). This unique small GTPase crosstalk has an impact on Rac1 and PAK1 regulation of membrane remodeling during epithelial dedifferentiation, adhesion, and motility.  相似文献   

10.
Cadherin-mediated adhesion depends on the association of its cytoplasmic domain with the actin-containing cytoskeleton. This interaction is mediated by a group of cytoplasmic proteins: α-and β- or γ- catenin. Phosphorylation of β-catenin on tyrosine residues plays a role in controlling this association and, therefore, cadherin function. Previous work from our laboratory suggested that a nonreceptor protein tyrosine phosphatase, bound to the cytoplasmic domain of N-cadherin, is responsible for removing tyrosine-bound phosphate residues from β-catenin, thus maintaining the cadherin–actin connection (Balsamo et al., 1996). Here we report the molecular cloning of the cadherin-associated tyrosine phosphatase and identify it as PTP1B. To definitively establish a causal relationship between the function of cadherin-bound PTP1B and cadherin-mediated adhesion, we tested the effect of expressing a catalytically inactive form of PTP1B in L cells constitutively expressing N-cadherin. We find that expression of the catalytically inactive PTP1B results in reduced cadherin-mediated adhesion. Furthermore, cadherin is uncoupled from its association with actin, and β-catenin shows increased phosphorylation on tyrosine residues when compared with parental cells or cells transfected with the wild-type PTP1B. Both the transfected wild-type and the mutant PTP1B are found associated with N-cadherin, and recombinant mutant PTP1B binds to N-cadherin in vitro, indicating that the catalytically inactive form acts as a dominant negative, displacing endogenous PTP1B, and rendering cadherin nonfunctional. Our results demonstrate a role for PTP1B in regulating cadherin-mediated cell adhesion.  相似文献   

11.
p120 catenin regulates the activity of the Rho family guanosine triphosphatases (including RhoA and Rac1) in an adhesion-dependent manner. Through this action, p120 promotes a sessile cellular phenotype when associated with epithelial cadherin (E-cadherin) or a motile phenotype when associated with mesenchymal cadherins. In this study, we show that p120 also exerts significant and diametrically opposing effects on tumor cell growth depending on E-cadherin expression. Endogenous p120 acts to stabilize E-cadherin complexes and to actively promote the tumor-suppressive function of E-cadherin, potently inhibiting Ras activation. Upon E-cadherin loss during tumor progression, the negative regulation of Ras is relieved; under these conditions, endogenous p120 promotes transformed cell growth both in vitro and in vivo by activating a Rac1–mitogen-activated protein kinase signaling pathway normally activated by the adhesion of cells to the extracellular matrix. These data indicate that both E-cadherin and p120 are important regulators of tumor cell growth and imply roles for both proteins in chemoresistance and targeted therapeutics.  相似文献   

12.
We examined intercadherin interactions in epithelial A-431 cells producing endogenous E-cadherin and recombinant forms of E-cadherin tagged either by myc or by flag epitopes. Three distinct E-cadherin complexes were found. The first is a conventional E-cadherin–catenin complex consisting of one E-cadherin molecule linked either to β-catenin/α-catenin or to plakoglobin/α-catenin dimers. The second is a lateral E-cadherin complex incorporating two E-cadherin– catenin conventional complexes combined in parallel fashion via dimerization of the NH2-terminal extracellular domain of E-cadherin. The third complex is likely to contain two E-cadherin–catenin conventional complexes derived from two opposing cells and arranged in an antiparallel fashion. Formation of the antiparallel but not lateral complex strictly depends on extracellular calcium and E-cadherin binding to catenins. Double amino acid substitution Trp156Ala/Val157Gly within the extracellular NH2-terminal E-cadherin domain completely abolished both lateral and antiparallel inter–E-cadherin association. These data support an idea that the antiparallel complex has the adhesion function. Furthermore, they allow us to suggest that antiparallel complexes derive from lateral dimers and this complex process requires catenins and calcium ions.  相似文献   

13.
The downregulation of E-cadherin function has fundamental consequences with respect to cancer progression, and occurs as part of the epithelial–mesenchymal transition (EMT). In this study, we show that the expression of the Discosoma sp. red fluorescent protein (DsRed)-tagged cadherin cytoplasmic domain in cells inhibited the cell surface localization of endogenous E-cadherin, leading to morphological changes, the inhibition of junctional assembly and cell dissociation. These changes were associated with increased cell migration, but were not accompanied by the down-regulation of epithelial markers and up-regulation of mesenchymal markers. Thus, these changes cannot be classified as EMT. The cadherin cytoplasmic domain interacted with β-catenin or plakoglobin, reducing the levels of β-catenin or plakoglobin associated with E-cadherin, and raising the possibility that β-catenin and plakoglobin sequestration by these constructs induced E-cadherin intracellular localization. Accordingly, a cytoplasmic domain construct bearing mutations that weakened the interactions with β-catenin or plakoglobin did not impair junction formation and adhesion, indicating that the interaction with β-catenin or plakoglobin was essential to the potential of the constructs. E-cadherin–α-catenin chimeras that did not require β-catenin or plakoglobin for their cell surface transport restored cell–cell adhesion and junction formation.  相似文献   

14.
ZO-1, a 220-kD peripheral membrane protein consisting of an amino-terminal half discs large (dlg)-like domain and a carboxyl-terminal half domain, is concentrated at the cadherin-based cell adhesion sites in non-epithelial cells. We introduced cDNAs encoding the full-length ZO-1, its amino-terminal half (N-ZO-1), and carboxyl-terminal half (C-ZO-1) into mouse L fibroblasts expressing exogenous E-cadherin (EL cells). The full-length ZO-1 as well as N-ZO-1 were concentrated at cadherin-based cell–cell adhesion sites. In good agreement with these observations, N-ZO-1 was specifically coimmunoprecipitated from EL transfectants expressing N-ZO-1 (NZ-EL cells) with the E-cadherin/α, β catenin complex. In contrast, C-ZO-1 was localized along actin stress fibers. To examine the molecular basis of the behavior of these truncated ZO-1 molecules, N-ZO-1 and C-ZO-1 were produced in insect Sf9 cells by recombinant baculovirus infection, and their direct binding ability to the cadherin/catenin complex and the actin-based cytoskeleton, respectively, were examined in vitro. Recombinant N-ZO-1 bound directly to the glutathione-S-transferase fusion protein with α catenin, but not to that with β catenin or the cytoplasmic domain of E-cadherin. The dissociation constant between N-ZO-1 and α catenin was ~0.5 nM. On the other hand, recombinant C-ZO-1 was specifically cosedimented with actin filaments in vitro with a dissociation constant of ~10 nM. Finally, we compared the cadherin-based cell adhesion activity of NZ-EL cells with that of parent EL cells. Cell aggregation assay revealed no significant differences among these cells, but the cadherin-dependent intercellular motility, i.e., the cell movement in a confluent monolayer, was significantly suppressed in NZ-EL cells. We conclude that in nonepithelial cells, ZO-1 works as a cross-linker between cadherin/catenin complex and the actin-based cytoskeleton through direct interaction with α catenin and actin filaments at its amino- and carboxyl-terminal halves, respectively, and that ZO-1 is a functional component in the cadherin-based cell adhesion system.  相似文献   

15.
p120cas is a tyrosine kinase substrate implicated in ligand-induced receptor signaling through the epidermal growth factor, platelet-derived growth factor, and colony-stimulating factor receptors and in cell transformation by Src. Here we report that p120 associates with a complex containing E-cadherin, alpha-catenin, beta-catenin, and plakoglobin. Furthermore, p120 precisely colocalizes with E-cadherin and catenins in vivo in both normal and Src-transformed MDCK cells. Unlike beta-catenin and plakoglobin, p120 has at least four isoforms which are differentially expressed in a variety of cell types, suggesting novel means of modulating cadherin activities in cells. In Src-transformed MDCK cells, p120, beta-catenin, and plakoglobin were heavily phosphorylated on tyrosine, but the physical associations between these proteins were not disrupted. Association of p120 with the cadherin machinery indicates that both Src and receptor tyrosine kinases cross talk with proteins important for cadherin-mediated cell adhesion. These results also strongly suggest a role for p120 in cell adhesion.  相似文献   

16.
17.
Cadherin-catenin interactions play an important role in cadherin-mediated adhesion. Here we present strong evidence that in the cadherin-catenin complex α-catenin contributes to the binding strength of another catenin, p120, to the same complex. Specifically, we found that a β-catenin-uncoupled cadherin mutant interacts much more weakly with p120 than its full-size counterpart and that it is rapidly endocytosed from the surface of A-431 cells. We also showed that p120 overexpression stabilizes this mutant on the cell surface. Examination of the α-catenin-deficient MDA-MB-468 cells and their derivates in which α-catenin was reintroduced showed that α-catenin reinforces E-cadherin-p120 association. Finally, a cross-linking analysis of the cadherin-catenin complex indicated that a large loop located in the middle of the p120 arm-repeat domain is in close spatial vicinity to the amino-terminal VH1 domain of α-catenin. The six amino acid-long extension of this loop, caused by an alternative splicing, weakens p120 binding to cadherin. The data suggest that α-catenin-p120 contact within the cadherin-catenin complex can regulate cadherin trafficking.  相似文献   

18.
We have previously shown that culturing HepG2 cells in pH 6.6 culture medium increases the c‐Src‐dependent tyrosine phosphorylation of β‐catenin and induces disassembly of adherens junctions (AJs). Here, we investigated the upstream mechanism leading to this pH 6.6‐induced modification of E‐cadherin. In control cells cultured at pH 7.4, E‐cadherin staining was linear and continuous at cell–cell contact sites. Culturing cells at pH 6.6 was not cytotoxic, and resulted in weak and discontinuous junctional E‐cadherin staining, consistent with the decreased levels of E‐cadherin in membrane fractions. pH 6.6 treatment activated c‐Src and Fyn kinase and induced tyrosine phosphorylation of p120 catenin (p120ctn) and E‐cadherin. Inhibition of Src family kinases by PP2 attenuated the pH 6.6‐induced tyrosine phosphorylation of E‐cadherin and p120ctn, and prevented the loss of these proteins from AJs. In addition, E‐cadherin was bound to Hakai and ubiquitinated. Furthermore, pH 6.6‐induced detachment of E‐cadherin from AJs was blocked by pretreatment with MG132 or NH4Cl, indicating the involvement of ubiquitin‐proteasomal/lysosomal degradation of E‐cadherin. An early loss of p120ctn prior to E‐cadherin detachment from AJs was noted, concomitant with a decreased association between p120ctn and E‐cadherin at pH 6.6. PP2 pretreatment prevented the dissociation of these two proteins. In conclusion, pH 6.6 activated Src kinases, resulting in tyrosine phosphorylation of E‐cadherin and p120ctn and a weakening of the association of E‐cadherin with p120ctn and contributing to the instability of E‐cadherin at AJs. J. Cell. Biochem. 108: 851–859, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
p120cas(CAS) is a tyrosine kinase substrate whose phosphorylation has been implicated in cell transformation by Src and in ligand-induced signaling through the EGF, PDGF, and CSF-1 receptors. More recently, CAS has been shown to associate with E-cadherin and its cofactors (catenins), molecules that are involved in cell adhesion. Although both CAS and β-catenin contain armadillo repeat domains (Arm domains), the amino acid identity between these proteins in this region is only 22%, and it is not yet clear whether CAS will emulate other catenins by associating with other members of the cadherin family. Here we report that in addition to binding E-cadherin, wild-type CAS associated with N-cadherin and P-cadherin. Transient transfection of cloned CAS isoforms into MDCK epithelial cells indicated that CAS1 and CAS2 isoforms are equally capable of binding to E-cadherin even though these cells preferentially express CAS2 isoforms. In addition, CAS colocalized with N-cadherin in NIH3T3 cells and analysis of CAS mutantsin vivoindicated that the CAS–N-cadherin interaction requires an intact CAS Arm domain. The data suggest that CAS–cadherin interactions in general are dictated by the conserved armadillo repeats and are not heavily influenced by sequences added outside the Arm domain by alternative splicing. Interestingly, overexpression of CAS in NIH3T3 cells induced a striking morphological phenotype characterized by the presence of long dendrite-like processes. This branching phenotype was specific for CAS, since (i) overexpression of the stucturally similar β-catenin had little effect on cell morphology, and (ii) the branching was abolished by deletions in the CAS Arm domain. Our data indicate that, like other catenins, CAS is a cofactor for multiple members of the cadherin family. However, the dramatically distinct phenotype exhibited by fibroblasts overexpressing CAS, versus β-catenin, support recent data suggesting that these catenins have fundamentally different and possibly opposing roles in cadherin complexes.  相似文献   

20.
E-cadherin is a member of the cadherin family of Ca2+-dependent cell-cell adhesion molecules. p120-Catenin and δ-catenin are known to bind to similar juxtamembrane regions of E-cadherin, and p120-catenin is known to stabilize E-cadherin. However, the function of competition between p120-catenin and δ-catenin for E-cadherin has not been fully explained. In this report, we show that cells overexpressing δ-catenin contain less p120-catenin than control cells at the cell-cell interface and that this causes the relocalization of p120-catenin from the plasma membrane to the cytosol. We show that successful binding by one to E-cadherin adversely affects the stability of the other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号