首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aims

Both Rheum palmatum and R. tanguticum are important but endangered medicinal plants endemic to China. In this study, we aimed to (i) investigate the level and pattern of genetic variability within/among populations of those species; (ii) evaluate genetic differentiation between both species and its relationships and ascertain whether both species are consistent with their current taxonomical treatment as separate species; and (iii) discuss the implications for the effective conservation of two species.

Methods

Total 574 individuals from 30 populations of R. palmatum and R. tanguticum were collected, covering the entire distribution range of two species in China. The genetic variation within and among 30 populations was evaluated using inter-simple sequence repeat (ISSR) markers.

Important Findings

Twelve selected ISSR primers generated a total of 175 fragments, 173 (98.86%) of which were polymorphic. The Nei''s gene diversity (H) and Shannon''s index (I) of both species were high at species level (H = 0.3107, I = 0.4677 for R. palmatum; H = 0.2848, I = 0.4333 for R. tanguticum). But for both species, the genetic diversity was low at population level, and average within-population diversity of R. palmatum was H = 0.1438, I = 0.2151, and that of R. tanguticum was H = 0.1415, I = 0.2126. The hierarchical AMOVA revealed high levels of among-population genetic differentiation in both species, in line with the gene differentiation coefficient and the limited among-population gene flow (R. palmatum: Φst = 0.592, Gst = 0.537, Nm = 0.432; R. tanguticum: Φst = 0.567, Gst = 0.497, Nm = 0.507). By contrast, only 6.52% of the total genetic variance was partitioned between R. palmatum and R. tanguticum. Bayesian analysis, UPGMA cluster analysis, and PCoA analysis all demonstrated the similar results. A significant isolation-by-distance pattern was revealed in R. palmatum (r = 0.547, P = 0.010), but not in R. tanguticum (r = 0.241, P = 0.100). Based on these results, effective conservation strategies were proposed for these two species. The small molecular variance between R. palmatum and R. tanguticum revealed that they had a common ancestor, and we considered that these two species might not be good species.  相似文献   

2.
Sinopodophyllum hexandrum is an important medicinal plant whose genetic diversity must be conserved because it is endangered. The Qinling Mts. are a S. hexandrum distribution area that has unique environmental features that highly affect the evolution of the species. To provide the reference data for evolutionary and conservation studies, the genetic diversity and population structure of S. hexandrum in its overall natural distribution areas in the Qinling Mts. were investigated through inter-simple sequence repeats analysis of 32 natural populations. The 11 selected primers generated a total of 135 polymorphic bands. S. hexandrum genetic diversity was low within populations (average He = 0.0621), but higher at the species level (He = 0.1434). Clear structure and high genetic differentiation among populations were detected by using the unweighted pair group method for arithmetic averages, principle coordinate analysis and Bayesian clustering. The clustering approaches supported a division of the 32 populations into three major groups, for which analysis of molecular variance confirmed significant variation (63.27%) among populations. The genetic differentiation may have been attributed to the limited gene flow (Nm = 0.3587) in the species. Isolation by distance among populations was determined by comparing genetic distance versus geographic distance by using the Mantel test. Result was insignificant (r = 0.212, P = 0.287) at 0.05, showing that their spatial pattern and geographic locations are not correlated. Given the low within-population genetic diversity, high differentiation among populations and the increasing anthropogenic pressure on the species, in situ conservation measures were recommended to preserve S. hexandrum in Qinling Mts., and other populations must be sampled to retain as much genetic diversity of the species to achieve ex situ preservation as a supplement to in situ conservation.  相似文献   

3.
The grasshopper Eyprepocnemis plorans subsp. plorans harbors a very widespread polymorphism for supernumerary (B) chromosomes which appear to have arisen recently. These chromosomes behave as genomic parasites because they are harmful for the individuals carrying them and show meiotic drive in the initial stages of population invasion. The rapid increase in B chromosome frequency at intrapopulation level is thus granted by meiotic drive, but its spread among populations most likely depends on interpopulation gene flow. We analyze here the population genetic structure in 10 natural populations from two regions (in the south and east) of the Iberian Peninsula. The southern populations were coastal whereas the eastern ones were inland populations located at 260–655 m altitude. The analysis of 97 ISSR markers revealed significant genetic differentiation among populations (average GST =  0.129), and the Structure software and AMOVA indicated a significant genetic differentiation between southern and eastern populations. There was also significant isolation by distance (IBD) between populations. Remarkably, these results were roughly similar to those found when only the markers showing low or no dropout were included, suggesting that allelic dropout had negligible effects on population genetic analysis. We conclude that high gene flow helped this parasitic B chromosome to spread through most of the geographical range of the subspecies E. plorans plorans.  相似文献   

4.
Studies on the genetic variation in marginal populations and differentiation between them are essential for assessment of best gene conservation strategies and sampling schemes. In this study, ISSR markers were used to establish the level of genetic relationships and polymorphism 50 genotypes of Salvadora persica collected from 6 different regions of Hormozgan province. The ISSR analysis with 9 anchored primers also generated 105 scorable loci, of which 85 were polymorphic (80.95%). Parameters of genetic diversity and its partitioning were calculated. The genetic analysis demonstrated that S. persica maintain relatively high genetic diversity (PIC was 0.63, Na was 1.27 and Ho and He were 0.15 and 0.17 respectively). The coefficient of genetic differentiation among populations based on FST equaled 0.20. Genetic identities between population's pairs were high (mean I?=?0.88). These values are high as compared with other widespread congener species. Cluster analysis based on the Unweighted Pair Group Method with Arithmetic Averages (UPGMA) revealed 3 main clusters for the ISSR data. The levels of genetic diversity maintained within populations of S. persica indicate that an appropriate sampling design for ex situ safeguarding should capture the majority of genetic diversity found within these taxa to help ensure the long term viability of this species. Furthermore, it could be inferred that ISSR markers are suitable tools for the evaluation of genetic diversity and relationships within the Salvadora persica.  相似文献   

5.
Studies on the genetic diversity and relatedness of zoo populations are crucial for implementing successful breeding programmes. The European wildcat, Felis s. silvestris, is subject to intensive conservation measures, including captive breeding and reintroduction. We here present the first systematic genetic analysis of the captive population of Felis s. silvestris in comparison with a natural wild population. We used microsatellites and mtDNA sequencing to assess genetic diversity, structure and integrity of the ex situ population. Our results show that the ex situ population of the European wildcat is highly structured and that it has a higher genetic diversity than the studied wild population. Some genetic clusters matched the breeding lines of certain zoos or groups of zoos that often exchanged individuals. Two mitochondrial haplotype groups were detected in the in situ populations, one of which was closely related to the most common haplotype found in domestic cats, suggesting past introgression in the wild. Although native haplotypes were also found in the captive population, the majority (68%) of captive individuals shared a common mtDNA haplotype with the domestic cat (Felis s. catus). Only six captive individuals (7.7%) were assigned as wildcats in the STRUCTURE analysis (at K = 2), two of which had domestic cat mtDNA haplotypes and only two captive individuals were assigned as purebred wildcats by NewHybrids. These results suggest that the high genetic diversity of the captive population has been caused by admixture with domestic cats. Therefore, the captive population cannot be recommended for further breeding and reintroduction.  相似文献   

6.
To study the genetic diversity and population structure of Lilium tsingtauense Gilg (Qingdao Lily), we collected 648 samples from 12 sites in China and Korea, and analyzed their Inter-Simple Sequence Repeat (ISSR) molecular markers and morphological characters. ISSR data revealed a relatively high genetic diversity at the species level, with 72.31% polymorphic loci, effective numbers of alleles of 1.437, average expected heterozygosity of 0.231 and Shannon’s information index of 0.369. Considerable genetic differentiation among the natural populations (GST = 0.144) and the gene flow (Nm = 1.487) were detected. AMOVA analysis and UPGMA-dendrogram suggested a hierarchical regional structure among populations, and spatial autocorrelation analysis showed a micro-scaled spatial structure. Furthermore, there was a high correlation between morphological characters and genetic parameters obtained from ISSR parameters. There was only a low genetic differentiation among the different morphological types of L. tsingtauence in China. Based on these findings, we recommend in situ and ex situ conservation strategies for the preservation of L. tsingtauense.  相似文献   

7.
8.
The wheat midge, Sitodiplosis mosellana, is an important pest in Northern China. We tested the hypothesis that the population structure of this species arises during a range expansion over the past 30 years. This study used microsatellite and mitochondrial loci to conduct population genetic analysis of S. mosellana across its distribution range in China. We found strong genetic structure among the 16 studied populations, including two genetically distinct groups (the eastern and western groups), broadly consistent with the geography and habitat fragmentation. These results underline the importance of natural barriers in impeding dispersal and gene flow of S. mosellana populations. Low to moderate genetic diversity among the populations and moderate genetic differentiation (F ST = 0.117) between the two groups were also found. The populations in the western group had lower genetic diversity, higher genetic differentiation and lower gene flow (F ST = 0.116, Nm = 1.89) than those in the eastern group (F ST = 0.049, Nm = 4.91). Genetic distance between populations was positively and significantly correlated with geographic distance (r = 0.56, P<0.001). The population history of this species provided no evidence for population expansion or bottlenecks in any of these populations. Our data suggest that the distribution of genetic diversity, genetic differentiation and population structure of S. mosellana have resulted from a historical event, reflecting its adaptation to diverse habitats and forming two different gene pools. These results may be the outcome of a combination of restricted gene flow due to geographical and environmental factors, population history, random processes of genetic drift and individual dispersal patterns. Given the current risk status of this species in China, this study can offer useful information for forecasting outbreaks and designing effective pest management programs.  相似文献   

9.
A. assamensis is a phytophagous Lepidoptera from Northeast India reared on host trees of Lauraceae family for its characteristic cocoon silk. Source of these cocoons are domesticated farm stocks that crash frequently and/or wild insect populations that provide new cultures. The need to reduce dependence on wild populations for cocoons necessitates assessment of genetic diversity in cultivated and wild populations. Molecular markers based on PCR of Inter-simple sequence repeats (ISSR) and simple sequence repeats (SSR) were used with four populations of wild insects and eleven populations of cultivated insects. Wild populations had high genetic diversity estimates (Hi = 0.25; HS = 0.28; HE = 0.42) and at least one population contained private alleles. Both marker systems indicated that genetic variability within populations examined was significantly high. Among cultivated populations, insects of the Upper Assam region (Hi = 0.19; HS = 0.18; HE = 0) were genetically distinct (F ST = 0.38 with both marker systems) from insects of Lower Assam (Hi = 0.24; HS = 0.25; HE = 0.3). Sequencing of polymorphic amplicons suggested transposition as a mechanism for maintaining genomic diversity. Implications for conservation of native populations in the wild and preserving in-farm diversity are discussed.  相似文献   

10.
Rheum tanguticum is an important but endangered traditional Chinese medicine endemic to China. The wild resources have been declining. Establishing the genetic diversity of the species would assist in its conservation and breeding program. Inter-simple sequence repeats (ISSR) markers were used to assess the genetic diversity and population genetic structure in 13 wild populations of R. tanguticum from Qinghai Province. Thirteen selected primers produced 329 discernible bands, with 326 (92.94%) being polymorphic, indicating high genetic diversity at the species level. The Nei's gene diversity (He) was estimated to be 0.1724 within populations (range 0.1026–0.2104), and 0.2689 at the species level. Analysis of molecular variance (AMOVA) showed that the genetic variation was found mainly within populations (71.02%), but variance among populations was only 28.98%. In addition, Nei's differentiation coefficients (Gst) was found to be high (0.3585), confirming the relatively high level of genetic differentiation among populations. Mantel test revealed a significant correlation between genetic and geographic distances (r = 0.573, P = 0.002), and the unweighted pair-group method using arithmetic average (UPGMA) clustering and Principal coordinates analysis (PCoA) demonstrated similar results. Meanwhile, the genetic diversity of R. tanguticum positively correlated with altitude and annual mean precipitation, but negatively correlated with latitude and annual mean temperature. This result might be an explanation that the natural distribution of R. tanguticum is limited to alpine cold areas. We propose conservation strategy and breeding program for this plant.  相似文献   

11.
The interleukin-23 (IL-23) and its receptor (IL-23R) mediate the direct antitumor activities in human hematologic malignancies including pediatric acute leukemia. Two potentially functional genetic variants (IL-23R rs1884444 T>G and rs6682925 T>C) have been found to contribute to solid cancer susceptibility. In this study, we conducted a case-control study including 545 acute myeloid leukemia (AML) patients and 1,146 cancer-free controls in a Chinese population to assess the association between these two SNPs and the risk of AML. We found that IL-23R rs1884444 TG/GG and rs6682925 TC/CC variant genotypes were associated with significantly increased risk of AML [rs1884444: adjusted odds ratio (OR) = 1.28, 95% confidence interval (CI) = 1.01–1.62; rs6682925: adjusted OR = 1.30, 95%CI = 1.01–1.67], compared to their corresponding wild-type homozygotes, respectively. These findings indicated that genetic variants in IL-23R may contribute to AML risk in our Chinese population.  相似文献   

12.
Information on demographic, genetic, and environmental parameters of wild and captive animal populations has proven to be crucial to conservation programs and strategies. Genetic approaches in conservation programs of Brazilian snakes remain scarce despite their importance for critically endangered species, such as Bothrops insularis, the golden lancehead, which is endemic to Ilha da Queimada Grande, coast of São Paulo State, Brazil. This study aims to (a) characterize the genetic diversity of ex situ and in situ populations of B. insularis using heterologous microsatellites; (b) investigate genetic structure among and within these populations; and (c) provide data for the conservation program of the species. Twelve informative microsatellites obtained from three species of the B. neuwiedi group were used to access genetic diversity indexes of ex situ and in situ populations. Low‐to‐medium genetic diversity parameters were found. Both populations showed low—albeit significant—values of system of mating inbreeding coefficient, whereas only the in situ population showed a significant value of pedigree inbreeding coefficient. Significant values of genetic differentiation indexes suggest a small differentiation between the two populations. Discriminant analysis of principal components (DAPC) recovered five clusters. No geographic relationship was found in the island, suggesting the occurrence of gene flow. Also, our data allowed the establishment of six preferential breeding couples, aiming to minimize inbreeding and elucidate uncertain parental relationships in the captive population. In a conservation perspective, continuous monitoring of both populations is demanded: it involves the incorporation of new individuals from the island into the captive population to avoid inbreeding and to achieve the recommended allelic similarity between the two populations. At last, we recommend that the genetic data support researches as a base to maintain a viable and healthy captive population, highly genetically similar to the in situ one, which is crucial for considering a reintroduction process into the island.  相似文献   

13.
To counter species loss living ex situ collections in botanic gardens became important elements of robust conservation programs. Several limitations, problems, and risks associated with living ex situ collections have been reported such as appropriate cultivation management to maintain genetic diversity and stochastic effects in small isolated populations in artificial habitats. However, not all small and isolated populations exhibit these predicted genetic changes. In a multi-species in situ/ex situ comparison of sand dune steppe- and grassland vegetation >30 years after the ex situ population establishment, we compared four different species’ population genetic diversities (Alyssum montanum ssp. gmelinii, Gypsophila fastigiata, Helianthemum nummularium ssp. obscurum, Onosma arenaria) by means of ISSR. We observed different species-specific genetic responses to quite similar abiotic selective forces concerning different neutral genetic diversities of wild versus botanic garden populations. The genetic divergence was kept relatively low in two of the four investigated species between the model steppe plant community within the botanic garden where human interference was kept at a minimum and the wild population. However, the moderate genetic divergence of the two other species kept under the same conditions highlights the importance of species-specific intrinsic responses and stochastic effects to ecosystem changes and provides data on population genetic dynamics in small and isolated populations. This contributes to further improve recommendations on how to best conserve endangered plant species in ex situ environments (cultivation in near nature-like replicas of the original site with as little human inference as possible over only certain periods of time, >30 years).  相似文献   

14.

Background

The first large-scale meta-analysis of published genome-wide association studies (GWAS) in Parkinson’s disease (PD) identified 5 new genetic loci (ACMSD, STK39, MCCC1/LAMP3, SYT11, and CCDC62/HIP1R). Very recently, a large-scale replication and heterogeneity study also reported that STK39 and CCDC62/HIP1R increased risk of PD in Asian and Caucasian populations. However, their roles still remain unclear in a Han Chinese population from mainland China.

Methods

We examined genetic associations of STK39 rs2102808 and CCDC62/HIP1R rs12817488 with PD susceptibility in a Han Chinese population of 783 PD patients and 725 controls. We also performed further stratified analyses by the age of onset and accomplished in-depth clinical characteristics analyses between the different genotypes for each locus.

Results

No significant differences were observed in the minor allele frequency (MAF) among cases and controls at the two loci (STK39 rs2102808: OR = 1.06, 95% CI = 0.91, 1.23, P = 0.467; CCDC62/HIP1R rs12817488: OR = 0.88, 95% CI = 0.76, 1.01, P = 0.072). Subgroup analyses by the age of onset also showed no significant differences among different subgroups of the two loci. In addition, minor allele carriers cannot be distinguished from non-carriers based on their clinical features at the two loci.

Conclusions

We are unable to demonstrate the association between STK39 and CCDC62/HIP1R and PD susceptibility in a Han Chinese population from mainland China. Additional replication studies in other populations and functional studies are warranted to better validate the role of the two new loci in PD risk.  相似文献   

15.
Litsea szemaois (Lauraceae) is an endemic and endangered species from the tropical rain forests of Xishuangbanna, southern Yunnan, SW China, but habitat fragmentation, especially exacerbated by rubber planting, has caused a decline in population size of the species. AFLP and ISSR were used to investigate the genetic diversity and population structure of eight populations from across its known distribution. Three AFLP and ten ISSR primer combinations produced a total of 203 and 77 unambiguous and repeatable bands respectively, of which 164 (80.8%) and 67 (87.0%) were polymorphic for the two markers. These two markers showed that Litsea szemaois exhibits comparatively high genetic diversity at species level (heterozygosity (hs) = 0.2109) relative to some other Lauraceae. Most of the genetic variation was partitioned within populations, but genetic differentiation between populations was significant and relatively high (Φ st = 0.2420, θ= 0.1986) compared with other tropical plants. The genetic characteristics of L. szemaois may be related to its outbreeding system, insect pollination and fragmented distribution. Because L. szemaois is dioecious and slow to mature, ex situ conservation across its genetic diversity is unlikely to succeed, although seedlings grow well under cultivation. Thus, in situ conservation is very important for this endangered species, especially as only 133 adult individuals are known in the wild. In particular, the Nabanhe and Mandian populations should be given a high conservation priority due to their higher genetic diversity, larger population size and better field condition, but wider sampling is required across all populations to determine additional areas with significant genetic conservation value.  相似文献   

16.
Limonium sinense is a halobiotic herb endemic to China that has been traditionally used for hundreds of years for its good restorative function. Genetic variation and population structure of this species were investigated by using amplified fragment length polymorphisms (AFLPs) and inter simple sequence repeats (ISSRs). A high level of genetic diversity was detected [AFLP: H E = 0.284, percentage of polymorphic loci (PPL) = 92.68 %; ISSR: H E = 0.257, PPL = 85.71 %] at the species level with POPGENE. Based on analysis of molecular variation (AMOVA), the among-population component accounted for 29.03 % (AFLP) and 28.81 % (ISSR) of the genetic variation, indicating that most of the genetic variation was between individuals within populations. The Shannon diversity index (I) was higher for AFLP (0.432) than for ISSR (0.395). Five main clusters were shown in the unweighted pair-group method with arithmetic mean (UPGMA) dendrogram created using TFPGA, consistent with the result of principal coordinate analysis using NTSYS. In situ conservation is advocated first. Keeping a stable environment for this halobiotic herb is necessary. For ex situ conservation, it is important to establish a germplasm bank. AFLP and ISSR markers were proved to be efficient tools in assessing the genetic variation among populations of L. sinense. The patterns of variation appeared to be consistent for these two marker systems, and they can be used for management of genetic structure, protection of the halobiotic plant, and conservation of germplasm.  相似文献   

17.
Increased infestation of weedy rice—a noxious agricultural pest has caused significant reduction of grain yield of cultivated rice (Oryza sativa) worldwide. Knowledge on genetic diversity and structure of weedy rice populations will facilitate the design of effective methods to control this weed by tracing its origins and dispersal patterns in a given region. To generate such knowledge, we studied genetic diversity and structure of 21 weedy rice populations from Sri Lanka based on 23 selected microsatellite (SSR) loci. Results indicated an exceptionally high level of within-population genetic diversity (He = 0.62) and limited among-population differentiation (Fst = 0.17) for this predominantly self-pollinating weed. UPGMA analysis showed a loose genetic affinity of the weedy rice populations in relation to their geographical locations, and no obvious genetic structure among populations across the country. This phenomenon was associated with the considerable amount of gene flow between populations. Limited admixture from STRUCTURE analyses suggested a very low level of hybridization (pollen-mediated gene flow) between populations. The abundant within-population genetic diversity coupled with limited population genetic structure and differentiation is likely caused by the considerable seed-mediated gene flow of weedy rice along with the long-distance exchange of farmer-saved rice seeds between weedy-rice contaminated regions in Sri Lanka. In addition to other effective weed management strategies, promoting the application of certified rice seeds with no weedy rice contamination should be the immediate action to significantly reduce the proliferation and infestation of this weed in rice ecosystems in countries with similar rice farming styles as in Sri Lanka.  相似文献   

18.
To determine whether genetic heterogeneity exists in patients with Graves'' disease (GD), the cytotoxic T-lymphocyte associated 4 (CTLA-4) gene, which is implicated a susceptibility gene for GD by considerable genetic and immunological evidence, was used for association analysis in a Chinese Han cohort recruited from various geographic regions. Our association study for the SNPs in the CTLA4 gene in 2640 GD patients and 2204 control subjects confirmed that CTLA4 is the susceptibility gene for GD in the Chinese Han population. Moreover, the logistic regression analysis in the combined Chinese Han cohort revealed that SNP rs231779 (allele frequencies p = 2.81×10−9, OR = 1.35, and genotype distributions p = 2.75×10−9, OR = 1.42) is likely the susceptibility variant for GD. Interestingly, the logistic regression analysis revealed that SNP rs35219727 may be the susceptibility variant to GD in the Shandong population; however, SNP, rs231779 in the CTLA4 gene probably independently confers GD susceptibility in the Xuzhou and southern China populations. These data suggest that the susceptibility variants of the CTLA4 gene varied between the different geographic populations with GD.  相似文献   

19.
Assessing patterns of genetic variation in rare endangered species is critical for developing both in situ and ex situ conservation strategies. Pinus dabeshanensis Cheng et Law is an endangered species endemic to the Dabieshan Mountains of eastern China. To obtain fundamental information of genetic diversity, population history, effective population size, and gene flow in this species, we explored patterns of genetic variation of natural populations, in addition to an ex situ conserved population, using expressed sequence tag-simple sequence repeats (EST-SSR) markers. Our results revealed moderate levels of genetic diversity (e.g., HE = 0.458 vs. HE = 0.423) and a low level of genetic differentiation (FST = 0.028) among natural and conserved populations relative to other conifers. Both contemporary and historical migration rates among populations were high. Bayesian coalescent-based analyses suggested that 3 populations underwent reductions in population size ca. 10,000 yr ago, and that two populations may have experienced recent genetic bottlenecks under the TPM. Bayesian clustering revealed that individuals from the ex situ population were largely assigned to the ‘red’ cluster. Additionally, our results identified private alleles in the natural populations but not in the ex situ population, suggesting that the ex situ conserved population insufficiently represents the genetic diversity present in the species. Past decline in population size is likely to be due to Holocene climate change. Based on the genetic information obtained for P. dabeshanensis, we propose some suggestions for the conservation and efficient management of this endangered species.  相似文献   

20.
Understanding among and within population genetic variation of ecologically important plant traits provides insight into the potential evolutionary processes affecting those traits. The strength and consistency of selection driving variability in traits would be affected by plasticity in differences among genotypes across environments (G×E). We investigated population divergence, selection and environmental plasticity of foliar plant secondary metabolites (PSMs) in a dominant tree species, Eucalyptus globulus. Using two common garden trials we examined variation in PSMs at multiple genetic scales; among 12 populations covering the full geographic range of the species and among up to 60 families within populations. Significant genetic variation in the expression of many PSMs resides both among and within populations of E. globulus with moderate (e.g., sideroxylonal A h2op = 0.24) to high (e.g., macrocarpal G h2op = 0.48) narrow sense heritabilities and high coefficients of additive genetic variation estimated for some compounds. A comparison of Qst and Fst estimates suggest that variability in some of these traits may be due to selection. Importantly, there was no genetic by environment interaction in the expression of any of the quantitative chemical traits despite often significant site effects. These results provide evidence that natural selection has contributed to population divergence in PSMs in E. globulus, and identifies the formylated phloroglucinol compounds (particularly sideroxylonal) and a dominant oil, 1,8-cineole, as candidates for traits whose genetic architecture has been shaped by divergent selection. Additionally, as the genetic differences in these PSMs that influence community phenotypes is stable across environments, the role of plant genotype in structuring communities is strengthened and these genotypic differences may be relatively stable under global environmental changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号