首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The following complexes of iron(II) with the amino acids glycine, alanine, phenylglycine, phenylalanine, leucine, serine, aspartic acid, glutamic acid, glutamine, tryptophan, histidine, methionine, S-methylcysteine, cystine, and glycylglycine have been isolated: Fe(Gly)2, Fe(Ala)2, Fe(Phegly)2, Fe(Phe)2·2H20, Fe(Leu)2·2H20, Fe(Ser)2, Fe(Asp)·2H20, Fe(Glu)·2H20, Fe(Gln)2, Fe(Trp)2, Fe(His)2·H20 and 2H20, Fe(Met)2, Fe(MeCys)2, Fe(CysCys) and Fe(GlyGly)2. Their magnetic behaviour, reflectance spectra, and Mössbauer parameters are consistent with high spin, hexacoordinate iron(II), and imply extended structures involving carboxylate bridges.  相似文献   

2.
2-Benzoylpyridine-phenylhydrazone (H2BzPh), 2-benzoylpyridine-para-chloro-phenylhydrazone (H2BzpClPh), and 2-benzoylpyridine-para-nitro-phenyl (H2BzpNO2Ph) hydrazone were obtained and fully characterized, as well as their zinc(II) complexes [Zn(H2BzPh)Cl2] (1), [Zn(H2BzClPh)Cl2] (2) and [Zn(H2BzpNO2Ph)Cl2] (3). During the syntheses of complex 1 a second product crystallized, which was characterized as [Zn(2BzPh)2] (1a). Upon re-crystallization in 1:9 DMSO:acetone conversion of 2 into [Zn(H2BzpClPh)Cl2] · H2O (2a) and of 3 into [Zn(2BzpNO2Ph)Cl(DMSO)] (3a) occurred. The crystal structures of 1a, 2a and 3a were determined. In 1a the two nearly perpendicular H2BzPh ligands give rise to a distorted octahedral environment around the metal. The 5-fold coordination around the metal is completed with two chloride ions in 2a and with one chloride and one oxygen atom from DMSO in 3a.  相似文献   

3.
The complexes of the type Cp2M(3-TC)Cl, Cp2M(3-TC)2, Cp2M(3-TA)Cl, Cp2M(3-TA)2, Cp2M(2-TB)Cl, Cp2M(2-TB)2 [where Cp = cyclopentadienyl, M = Zr or Ti] were synthesized by the reactions of dichlorobis(cyclopentadienyl)zirconium(IV) and dichlorobis(cyclopentadienyl)titanium(IV) with 3-thiophenecarboxylic acid (3-TCH), 3-thiopheneacetic acid (3-TAH) and 2-thiophenebutyric acid (2-TBH) respectively in different stoichiometric ratios. The new complexes were characterized by their elemental analysis, 1H NMR, IR, and electronic spectral data.  相似文献   

4.
Mitotic or meiotic chromosome numbers for 42 accessions belonging to 39 species of different genera of Asteraceae were determined. First chromosome counts are reported for one genus ( Gymnocoronis ), 14 species, and one variety. These are as follows: Solidago chilensis var. megapotamica (2 n  = 2 x  = 18), Chromolaena barbacensis (2 n  = 3 x  = 30), Chromolaena christieana (2 n  = 3 x  = 30), Chromolaena hirsuta (2 n  = 4 x  = 40), Chromolaena verbenacea ( n  = 20 II, 2 n  = 4 x  = 40), Disynaphia multicrenulata (2 n  = 2 x  = 20), Gymnocoronis spilanthoides var. subcordata (2 n  = 2 x  = 20), Mikania thapsoides (2 n  = 4 x  = 68), Stevia commixta (2 n  = 2 x  = 22), Porophyllum brevifolium (2 n  = 4 x  = 44), Viguiera rojasii (2 n  = 2 x  = 34), Pterocaulon angustifolium (2 n  = 2 x  = 20), Gochnatia haumaniana (2 n  = 4 x  = 44), Senecio ostenii (2 n  = 4 x  = 40), Senecio pinnatus (2 n  = 8 x  = 80), and Lepidaploa amambaia (2 n  = 2 x  = 28). Chromosome numbers differing from those reported previously in the literature were found in Campuloclinium macrocephalum (2 n  = 2 x  = 20), Melanthera latifolia (2 n  = 4 x  = 60), Chrysolaena flexuosa (2 n  = 2 x  = 20), and Cyrtocymura cincta (2 n  = 4 x  = 40). The relevance of the results is discussed in relation to the available data for each of the analysed taxa. © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society, 2007, 153 , 221–230.  相似文献   

5.
Biological properties of new copper(II) complexes of 2-methylthionicotinate (2-MeSNic) of composition Cu(2-MeSNic)2(MeNia)2·4H2O (where MeNia isN-methylnicotinamide), Cu(2-MeSNic)2(Nia)2·2H2O (where Nia is nicotinamide) and Cu(2-MeSNic)2(2 (where L is isonicotinamide (iNia) or ethyl nicotinate (EtNic)) are reported. Gram-bacteria (Escherichia coli) are more resistant against Cu(II) complexes than Gram+-bacteria (Staphylococcus aureus)—significant antistaphylococcal activity was found with Cu(2-MeSNic)2(MeNia)2·4H2O (IC50 1.3 mmol/L).Caddida parapsilosis was most inhibited by Cu(2-MeSNic)2·H2O and Cu(2-MeSNic)2(MeNia)2·4H2O (IC50 1.4 mmol/L and 1.5 mmol/L, respectively). Biosynthesis of nucleic acids influenced by Cu(2-MeSNic)2-(Nia)2·2H2O indicated by incorporation of14C-adenine (IC50(Ade) 0.31 mmol/L) is more sensitive than biosynthesis of proteins indicated by incorporation of14C-leucine (IC50(Leu) 9.94 mmol/L). Cu(II) complexes with expressed antimicrobial activity showed no mutagenic activity.  相似文献   

6.
Chromosome counts of the following 30 taxa (106 populations) are given:Betonica officinalis (2n=16);Bidens frondosus (2n=48);Calamagrostis arundinacea (2n=28+0–2B);Dianthus carthusianorum subsp.latifolius (2n=30);Festuca gigantea (2n=42, 42+2B);Hypericum perforatum (2n=32);Koeleria macrantha (2n=28);Kohlrauschia prolifera (2n=30);Lilium martagon (2n=24+0–2B);Melica ciliata (2n=18);Poa remota (2n=14);Ranunculus polyanthemos (2n=16);R. sardous subsp.sardous (2n=16);Roegneria canina (2n=28+0–1B);Rudbeckia laciniata (2n=76);Scabiosa canescens (2n=16);Serratula tinctoria (2n=22);Seseli elatum subsp.heterophyllum var.beckii (2n=18);S. hippomarathrum (2n=20);Thlaspicaerulescens caerulescens subsp.tatrense (2n=14);Trifolium alpestre (2n=16);T. avense (2n=14);T. medium (2n=79, 80+0–2B, 82);T. rubens (2n=16);Veronica officinalis subsp. alpestris (2n=36);Vincetoxicum hirundinaria (2n=22);Vulpia bromoides (2n=14);Zerna benekenii (2n=28)Z. monoclada (2n=28+0–8B);Z. ramosa (2n=42). Remarks on taxonomy, nomenclature and chorology for some of these taxa are given.  相似文献   

7.
The prostaglandin E2 receptor, EP2 (E-prostanoid 2), plays an important role in mice glomerular MCs (mesangial cells) damage induced by TGFβ1 (transforming growth factor-β1); however, the molecular mechanisms for this remain unknown. The present study examined the role of the EP2 signalling pathway in TGFβ1-induced MCs proliferation, ECM (extracellular matrix) accumulation and expression of PGES (prostaglandin E2 synthase). We generated primary mice MCs. Results showed MCs proliferation promoted by TGFβ1 were increased; however, the production of cAMP and PGE2 (prostaglandin E2) was decreased. EP2 deficiency in these MCs augmented FN (fibronectin), Col I (collagen type I), COX2 (cyclooxygenase-2), mPGES-1 (membrane-associated prostaglandin E1), CTGF (connective tissue growth factor) and CyclinD1 expression stimulated by TGFβ1. Silencing of EP2 also strengthened TGFβ1-induced p38MAPK (mitogen-activated protein kinase), ERK1/2 (extracellular-signal-regulated kinase 1/2) and CREB1 (cAMP responsive element-binding protein 1) phosphorylation. In contrast, Adenovirus-mediated EP2 overexpression reversed the effects of EP2-siRNA (small interfering RNA). Collectively, the investigation indicates that EP2 may block p38MAPK, ERK1/2 and CREB1 phosphorylation via activation of cAMP production and stimulation of PGE2 through EP2 receptors which prevent TGFβ1-induced MCs damage. Our findings also suggest that pharmacological targeting of EP2 receptors may provide new inroads to antagonize the damage induced by TGFβ1.  相似文献   

8.
Abstract

Nucleoside analogues analogues1-(2′,3′-dideoxy-2′-C-hydroxymethyl-β-D-erythro-pentofuranos-yl)thymine (1), 2′,3′-dideoxy-2′-C-hydroxymethylcytidine (2), 2′,3′-dideoxy-2′-C-hydroxymethyladenosine (3), 1-(2′-C-azidomethyl-2′,3′-dideoxy-β-D-erythro-pento-furanosyl)thymine (4), 2′-C-azidomethyl-2′,3′-dideoxycytidine (5), and 2′3′-dideoxy-2′-C-methylcytidine (6) have been synthesized from (S)-4-hydroxymethyl-y-butyro-lactone (7)  相似文献   

9.
The quinary system KCl-K2SO4-MgCl2-MgSO4-Mg(OH)2-H2O and associated eight systems K2SO4-MgSO4-Mg(OH)2-H2O, MgCl2-MgSO4-Mg(OH)2-H2O, KCl-MgCl2-Mg(OH)2-H2O, KCl-K2SO4-Mg(OH)2-H2O, MgSO4-Mg(OH)2-H2O, MgCl2-Mg(OH)2-H2O, K2SO4-Mg(OH)2-H2O and KCl-Mg(OH)2-H2O were investigated at 50° The solid phases of these systems were the new basic triple salt (NS salt B), MgCl2 · 3Mg(OH)2 · 8H2O, MgSO4 · 5Mg(OH)2 · 3H2O, carnallite, leonite, kieserite, hexahydrite, bischofite, potassium chloride, potassium sulfate and magnesium hydroxide and the crystallization fields of these salts in nine systems were determined.  相似文献   

10.
Complexes [Bi(2AcPh)Cl2]·0.5H2O (1), [Bi(2AcpClPh)Cl2] (2), [Bi(2AcpNO2Ph)Cl2] (3), [Bi(2AcpOHPh)Cl2]·2H2O (4), [Bi(H2BzPh)Cl3]·2H2O (5), [Bi(H2BzpClPh)Cl3] (6), [Bi(2BzpNO2Ph)Cl2]·2H2O (7) and [Bi(H2BzpOHPh)Cl3]·2H2O (8) were obtained with 2-acetylpyridine phenylhydrazone (H2AcPh), its -para-chloro-phenyl- (H2AcpClPh), -para-nitro-phenyl (H2AcpNO2Ph) and -para-hydroxy-phenyl (H2AcpOHPh) derivatives, as well as with the 2-benzoylpyridine phenylhydrazone analogues (H2BzPh, H2BzpClPh, H2BzpNO2Ph, H2BzpOHPh).Upon coordination to bismuth(III) antibacterial activity against Gram-positive and Gram-negative bacterial strains significantly improved except for complex (4).The cytotoxic effects of the compounds under study were evaluated on HL-60, Jurkat and THP-1 leukemia, and on MCF-7 and HCT-116 solid tumor cells, as well as on non-malignant Vero cells. In general, 2-acetylpyridine-derived hydrazones proved to be more potent and more selective as cytotoxic agents than the corresponding 2-benzoylpyridine-derived counterparts.Exposure of HCT-116 cells to H2AcpClPh, H2AcpNO2Ph and complex (3) led to 99% decrease of the clonogenic survival. The IC50 values of these compounds were three-fold smaller when cells were cultured in soft-agar (3D) than when cells were cultured in monolayer (2D), suggesting that they constitute interesting scaffolds, which should be considered in further studies aiming to develop new drug candidates for the treatment of colon cancer.  相似文献   

11.
《Inorganica chimica acta》2001,312(1-2):183-187
Cadmium(II) complexes with 2-[(2-aminoethyl)amino]ethanethiol (HL1), 2-[(3-aminopropyl)amino]ethanethiol (HL2), 2-[(2-pyridylmethyl)amino]ethanethiol (HL3), and 2-[[2-(2-pyridyl)ethyl]amino]ethanethiol (HL4), [Cd(L1)](ClO4) (1), [Cd(L2)](ClO4)·1/2CH3OH (2), [Cd{Cd(L2)2}2](ClO4)2·CH3CON(CH3)2 (3a·CH3CON(CH3)2), [Cd{Cd(L2)2}2]Cl2·2CH3OH (3b·2CH3OH), [Cd{Cd(L3)2}2](ClO4)2 (4), [Cd(L4)](ClO4) (5), have been synthesized and characterized by measurements of the infrared and electronic spectra. The X-ray crystal structures show that 3a and 3b have a thiolato-bridged trinuclear core with a linear arrangement of three metal atoms.  相似文献   

12.
Five heterocyclic benzothiazoline and -thiazole analogs have been synthesized and characterized by 1H NMR and IR spectroscopy. The analogs fall into two different classes, (a) those which contain one benzothiazoline group adjacent to the heterocyclic ring system (starting with 2-pyridinecarboxaldehyde, 2-thiophenecarboxaldehyde or 2-furaldehyde), and (b) those which have two benzothiazoline substituents (starting with 2,6-pyridinecarboxaldehyde and 2,5-thiohenecarboxaldehyde). In addition, the imine containing ligands, bis-2-[(pyridin-2-ylmethylene)-imino]-benzenethiol disulfide (PyIS)2 and bis-2-[(thiophen-2-ylmethylene)-imino]-benzenethiol disulfide(ThIS)2, were prepared starting with the disulfide of 2-aminothiophenol. Each species has been characterized by 1H NMR and IR spectroscopies. Ligation reactions with 2-(2-pyridyl)benzothiazoline (Py(Bt)) and Cu(OAc)2·1H2O resulted in the formation of a dinuclear species containing two copper ions, two ligand frames and two acetate groups, [Cu(PyAS)(OAc)]2 (1). Both copper ions are five-coordinate and bonded to one monodentate acetate, one ligand frame (NNS) and one bridging thiolate. Ligation reaction with 2-(2-pyridyl)benzothiazole (Py(oBt)) and CoCl2·xH2O or Cu(BF4)2·xH2O resulted in the formation of a six-coordinate, octahedral Co(II) complex, cis-[Co(Py(oBt)2Cl2] (2) and a five coordinate Cu(II) complex, [Cu(Py(oBt))2(OH2)](BF4) (3), respectively. All complexes have been characterized by X-ray crystallography as well as UV-Vis and IR spectroscopy.  相似文献   

13.
The synthesis and characterization of seven new solid complexes, [Cu(2-MeSnic)2 (phen)] (2-MeSnic = 2-methylthionicotinate, phen = 1,10-phenanthroline), [CuX2(bipy)(H2O)] (X = 2-MeSnic or nic (nicotinate), bipy = 2,2′-bipyridine), [Cu(isonic)2(bipy)(H2O)] · H2O (isonic = isonicotinate), [Cu(bipy)2(H2O)](2-MeSnic)2 · 3H2O, [Cu(phen)2(H2O)](isonic) 2 · 2H2O and [Cu(phen)2(H2O)](nic)2 · 3H2O, are reported. The composition and stereochemistry as well as the mode of ligand coordination have been determined by elemental analysis, IR, electronic and EPR spectra. The carboxyl group of the pyridinecarboxylate anions coordinates to the Cu(II) atom as an unidentate or as a chelating ligand. The EPR spectra of studied complexes are monomeric except for the spectrum of [Cu(2-MeSnic)2(bipy)(H2O)], which shows triplet state feature. Half-field transition, observed for [Cu(2-MeSnic)2(bipy)(H2O)], [Cu(bipy)2(H2O)](2-MeSnic)2 · 3H2O and [Cu(phen)2(H2O)](nic)2 · 3H2O, was used to estimate the interspin copper-copper distances. In all cases, the available evidence supports square-pyramidal environment about the copper(II) atom, which is confirmed by crystal and molecular structure of one of the products, namely [Cu(2-MeSnic)2(bipy)(H2O)]. The antimicrobial effects have been tested on various strains of bacteria, yeasts and filamentous fungi.  相似文献   

14.
The synthesis, pharmacological evaluation and molecular modelling study of novel naphthalen-2-yl acetate and 1,6-dithia-4,9-diazaspiro [4.4]nonane-3,8-dione derivatives as potential anticonvulsant agents are described. The newly synthesized compounds were characterized by both analytical and spectral data. Alkylation of 1H-imidazole or substituted piperazine with 1-(2-naphthyl)-2-bromoethanone (2) gave naphthalen-2-yl 2-(1H-imidazol-1-yl) acetate (3) and naphthalen-2-yl 2-(substituted piperazin-1-yl) acetate (48). Moreover, condensation of naphthalen-2-yl 2-bromoacetate or 2-bromo-1-(naphthalen-2-yl) ethanone with hydrazine hydrate and acetylacetone resulted in the formation of the cyclic pyrazole products 9 and 13. Sonication of naphthalen-2-yl acetate (1) with 2-chloropyridine, 2-chloropyrimidine and 2-(chloromethyl) oxirane gave naphthalen-2-yl 2-(pyridin-2-yl) acetate (10), naphthalen-2-yl 2-(pyrimidin-2-yl) acetate (11) and naphthalen-2-yl-3-(oxiran-2-yl) propanoate (12) respectively. Cyclocondensation reaction of 2-iminothiazolidin-4-one (14) with thioglycolic acid, thiolactic acid and thiomalic acid gave 1,6-dithia-4,9-diazaspiro [4.4]nonane-3,8-dione derivatives (1517). The compounds were tested in vivo for the anticonvulsant activity by delaying strychnine-induced seizures. The diazaspirononane (17) and 1-(2-naphthyl)-2-bromoethanone (2) showed a high significant delay in the onset of convulsion and prolongation of survival time compared to phenobarbital. The molecular modelling study of anticonvulsant activity of synthesized compounds showed a CNS depressant activity via modulation of benzodiazepine allosteric site in GABA-A receptors.  相似文献   

15.
The reactions of N,N-dimethylaminopropyl chalcogenolates with platinum(II) compounds have been carried out and complexes of the types [PtCl(ECH2CH2CH2NMe2)]2 (1) (E = S (1a) and Se (1b)), [Pt(ECH2CH2CH2NMe2)2]n (2) (E = S (2a) and Se (2b)), [(PtCl2)2{(Me2NCH2CH2CH2E)2}]n (3), [PtX(SeCH2CH2CH2NMe2)]2 (4) (X = SePh (4a) and OAc (4b)) and [PtCl(ECH2CH2CH2NMe2)(PR3)]n (5) (E = S, Se, Te) have been isolated. These complexes have been characterized by elemental analysis, IR, UV-Vis, NMR (1H, 13C, 31P, 77Se, 195Pt) spectroscopy and FAB mass spectral data. The structures of [PtCl(SeCH2CH2CH2NMe2)]2 (1b) and [PtCl(SCH2CH2CH2NMe2)(PPr3)]2 (5a) have been established by single crystal X-ray diffraction data. Both the molecules have dimeric structures. In 1b, two platinum atoms are held together by symmetrically bridging Se atoms of the chelating selenolate groups. In 5a, two thiolates form a four-membered Pt2S2 bridge with dangling NMe2 groups.  相似文献   

16.
The energetic compounds 5-nitriminotetrazole (H2AtNO2, 1), 1-methyl-5-nitriminotetrazole (1MeHAtNO2, 2) and 2-methyl-5-nitraminotetrazole (2MeHAtNO2, 3), were reacted with Cu(NO3)2 · 3H2O and CuCl2 · 2H2O, respectively, in water as well as in aqueous ammonia solution. The syntheses yielded the complexes [Cu(HAtNO2)2(H2O)4] (4), [Cu(AtNO2)(NH3)3]2 (5), (NH4)2[Cu(AtNO2)2(H2O)2] (6), [Cu(1MeAtNO2)2(NH3)2] (7), [Cu(2-MeAtNO2)2(2-MeHAtNO2)2] (8), [Cu(2MeAtNO2)2] (9), [Cu(2-MeAtNO2)2(NH3)2] (10), and [Cu(2MeAtNO2)2(NH3)4] · H2O (11). All complexes were characterized using low temperature single crystal X-ray diffraction, IR spectroscopy, elemental analysis, and differential scanning calorimetry. The magnetic properties of six of the complexes were investigated. Due to the energetic characters, the sensitivities towards impact and friction were investigated using the BAM drophammer and friction tester. The values range from “very sensitive”, comparable to primary explosives, to “insensitive” depending on the amount of water or ammonia coordinated. Since Cu(II) salts can be used for colorants in pyrotechnics, the combustions and flame colors were discovered to be intensively green.  相似文献   

17.
A set of two Cu(II) complexes, [Cu(cdXsalen)] and [Cu(cdXsalMeen)] derived from Schiff base ligands (H2cdXsalen: methyl-2-{[2-(2-X-phenyl)methylidynenitrilo]ethyl}amino-1-cyclopentenedithiocarboxylate and H2cdXsalMeen: methyl-2-{[1-methyl-2-(2-X-phenyl)methylidynenitrilo]ethyl}amino-1-cyclopenteneithiocarb-oxylate where X = hydroxyl, methoxy, nitro, sodiumsulfite, chloro, bromo and H2cdMesalen: methyl-2-{[2-(2-hydroxyphenyl)ethylidynenitrilo]ethyl}amino-1-cyclopentenedithiocarboxylate; H2cdPhsalen: methyl-2-{[2-(2-hydroxyphenyl)phenylidynenitrilo]ethyl}amino-1-cyclopentenedithiocarboxylate; H2cdMesalMeen: methyl-2-{[1-methyl-2-(2-hydroxyphenyl)ethylidynenitrilo]ethyl}amino-1-cyclopentenedithiocarboxylate; H2cdPhsalMeen: methyl-2-{[1-methyl-2-(2-hydroxyphenyl)phenylidynenitrilo]ethyl}amino-1-cyclopentenedi-thiocarboxylate) with an unsymmetric NNOS coordination sphere have been synthesized and characterized by elemental analysis, IR, UV-Vis and mass spectrometry. The thermodynamic formation constants of the complexes were measured spectrophotometrically, at constant ionic strength 0.1 M (NaClO4), at 25 °C in DMF solvent. The trend of the complex formation for copper is as follow:
[Cu(cdMesalen)]>[Cu(cdsalen)]>[Cu(cdPhsalen)][Cu(cdMesalMeen)]>[Cu(cdsalMeen)]>[Cu(cdPhsalMeen)]  相似文献   

18.
Li JZ  Liu HY  Lin YJ  Hao XJ  Ni W  Chen CX 《Steroids》2008,73(6):594-600
Six new C21 steroidal glycosides, named curassavosides A–F (3–8), were obtained from the aerial parts of Asclepias curassavica (Asclepiadaceae), along with two known oxypregnanes, 12-O-benzoyldeacylmetaplexigenin (1) and 12-O-benzoylsarcostin (2). By spectroscopic methods, the structures of the six new compounds were determined as 12-O-benzoyldeacylmetaplexigenin 3-O-β-d-oleandropyranosyl-(1 → 4)-β-d-digitoxopyranoside (3), 12-O-benzoylsarcostin 3-O-β-d-oleandropyranosyl-(1 → 4)-β-d-digitoxopyranoside (4), sarcostin 3-O-β-d-oleandropyranosyl-(1 → 4)-β-d-canaropyranosyl-(1 → 4)-β-d-oleandropyranosyl-(1 → 4)-β-d-digitoxopyranoside (5), sarcostin 3-O-β-d-oleandropyranosyl-(1 → 4)-β-d-canaropyranosyl-(1 → 4)-β-d-canaropyranosyl-(1 → 4)-β-d-digitoxopyranoside (6), 12-O-benzoyldeacylmetaplexigenin 3-O-β-d-glucopyranosyl-(1 → 4)-β-d-oleandropyranosyl-(1 → 4)-β-d-canaropyranosyl-(1 → 4)-β-d-oleandropyranosyl-(1 → 4)-β-d-digitoxopyranoside (7), and 12-O-benzoylsarcostin 3-O-β-d-glucopyranosyl-(1 → 4)-β-d-oleandropyranosyl-(1 → 4)-β-d-canaropyranosyl-(1 → 4)-β-d-oleandropyranosyl-(1 → 4)-β-d-digitoxopyranoside (8), respectively. All compounds (1–8) were tested for in vitro cytotoxicity; only compound 3 showed weak inhibitory activity against Raji and AGZY cell lines.  相似文献   

19.
The use of the microorganism Sporotrichum sulfurescens (ATCC 7159) to oxygenate organic molecules has been extended to several dialkylbenzenes. Oxygenation of 1,4-di-t-butylbenzene (1) gave 4-t-butyl(1-hydroxy-2-methyl)isopropylbenzene (2) and 1,4-di-(1-hydroxy-2-methyl)isopropylbenzene (3); of 1,4-diisopropylbenzene (4) gave (R,R)-1,4-di-(1-hydroxy)isopropylbenzene (5); of 1,3-diisopropylbenzene (6) gave 1,3-di-(2-hydroxy)isopropylbenzene (7), 3-(1-hydroxy)isopropyl-(2-hydroxy)isopropylbenzene (8), and 1,3-di-(1-hydroxy)isopropylbenzene (9); and of p-isobutylisopropylbenzene (20) gave 1-(p-2-hydroxyisopropylphenyl)-2-methylpropan-2-ol (15) and 1-(p-1-hydroxyisopropylphenyl)-2-methylpropan-2-ol (16). Monohydroxydialkylbenzenes also served as useful substrates in this reaction as suggested by the fact that 2 is an intermediate in the formation of 3 from 1. Oxygenation of 1-(p-isopropylphenyl)-2-methylpropan-2-ol (14), conveniently prepared from 2-(p-isopropylphenyl)propene (12) via oxygenative isomerization with thallium trinitrate to 13 followed by addition of methyl magnesium bromide, gave 15 and 16. Oxygenation of 2-(p-isobutylphenyl)propan-2-ol (18) gave 15, 2-(p-isobutylphenyl)-propan-1,2-diol (21), and 1-(p-2-hydroxyisopropylphenyl)-2-methylpropan-3-ol (22). Compound 16, obtained from substrate 14, was converted to (2R)-2-[4-(2-hydroxy-2-methylpropyl)phenyl]propionic acid (11), the enantiomer of a metabolite of the antiinflammatory agent, 2-(4-i-butyl)phenylpropionic acid (10).  相似文献   

20.
A series of inorganic-organic hybrid compounds built from bis(undecatungstophosphate) lanthanates and copper-complexes, namely, H8[Cu(en)2H2O]4[Cu(en)2]{[Cu(en)2][La(PW11O39)2]}2·18H2O (1), H6[Na2(en)2(H2O)5][Cu(en)2H2O]4[Cu(en)2]{[Cu(en)2][Ce(PW11O39)2]}2·16H2O (2), H6[Na2(en)2(H2O)5][Cu(en)2H2O]4[Cu(en)2]{[Cu(en)2][Pr(PW11O39)2]}2·18H2O (3), H6[Na2(en)2(H2O)4][Cu(en)2H2O]4[Cu(en)2]{[Cu(en)2][Nd(PW11O39)2]}2·14H2O (4), H6[Na2(en)2(H2O)5][Cu(en)2H2O]4[Cu(en)2]{[Cu(en)2][Sm(PW11O39)2]}2·20H2O (5), and H7[Cu(en)2]2[Sm(PW11O39)2]·10H2O (6) (where en = 1,2-ethylenediamine), have been prepared. In these compounds, two lacunary [PW11O39]7− anions sandwich an eight-coordinated Ln(III) cation to yield [Ln(PW11O39)2]11− anion in a twisted square anti-prismatic geometry, which is further bridged by [Cu(en)2]2+ fragments to generate a 1D zigzag-like chain. In 1-6, the coordination bond interactions and weak interactions between adjacent 1D chains play an important role in the zigzagging distances and angles of different 1D chains. The magnetic studies indicate that antiferromagnetic interactions exist in compounds 1, 2 and 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号