首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Endocrine practice》2015,21(7):807-813
Objective: Few randomized studies have focused on the optimal management of non–intensive care unit patients with type 2 diabetes in Latin America. We compared the safety and efficacy of a basal-bolus regimen with analogues and human insulins in general medicine patients admitted to a University Hospital in Asunción, Paraguay.Methods: In a prospective, open-label trial, we randomized 134 nonsurgical patients with blood glucose (BG) between 140 and 400 mg/dL to a basal-bolus regimen with glargine once daily and glulisine before meals (n = 66) or Neutral Protamine Hagedorn (NPH) twice daily and regular insulin before meals (n = 68). Major outcomes included differences in daily BG levels and frequency of hypoglycemic events between treatment groups.Results: There were no differences in the mean daily BG (157 ± 37 mg/dL versus 158 ± 44 mg/dL; P = .90) or in the number of BG readings within target <140 mg/dL before meals (76% versus 74%) between the glargine/glulisine and NPH/regular regimens. The mean insulin dose in the glargine/glulisine group was 0.76 ± 0.3 units/kg/day (glargine, 22 ± 9 units/day; glulisine, 31 ± 12 units/day) and was not different compared with NPH/regular group (0.75 ± 0.3 units/kg/day [NPH, 28 ± 12 units/day; regular, 23 ± 9 units/day]). The overall prevalence of hypoglycemia (<70 mg/dL) was similar between patients treated with NPH/regular and glargine/glulisine (38% versus 35%; P = .68), but more patients treated with human insulin had severe (<40 mg/dL) hypoglycemia (7.6% versus 25%; P = .08). There were no differences in length of hospital stay or mortality between groups.Conclusion: The basal-bolus regimen with insulin analogues resulted in equivalent glycemic control and frequency of hypoglycemia compared to treatment with human insulin in hospitalized patients with diabetes.Abbreviations: BG = blood glucose BMI = body mass index HbA1c = glycated hemoglobin NPH = Neutral Protamine Hagedorn T2D = type 2 diabetes  相似文献   

2.
《Endocrine practice》2013,19(2):231-235
ObjectiveTo compare the response to different insulin regimens for management of hyperglycemia in diabetic patients with hematologic malignancies who are receiving dexamethasone.MethodsA retrospective analysis was conducted to determine whether a basal bolus insulin (BBI) regimen with detemir and aspart is superior to a sliding scale regular insulin (SSI) regimen for management of hyperglycemia in hospitalized diabetic patients receiving dexamethasone.ResultsForty patients with hematologic malignancies were treated with intravenous (8 to 12 mg/day) or oral (40 mg/day) dexamethasone for 3 days. The average blood glucose (BG) level was 301 ± 57 mg/dL in the SSI group (n = 28) and 219 ± 51 mg/dL in the BBI group (n = 12) (P <.001). The BBI regimen resulted in an average BG reduction of 52 ± 82 mg/dL throughout the course of dexa-methasone therapy, while the SSI regimen produced an increase in the mean daily BG level of 128 ± 77 mg/dL (P <.001). On the last day of dexamethasone administration, the insulin requirement was 49 ± 29 units/day in the SSI group and 122 ± 39 units/day in the BBI group (P <.001). Three patients in the SSI group developed diabetic ketoacidosis or hyperosmolar hyperglycemia during steroid therapy. No hypoglycemia was observed in either group. The length of stay and infection rates were similar between groups.ConclusionBasal and bolus insulin regimen is an effective and safe approach for managing dexamethasone-induced hyperglycemia in hospitalized patients with hematologic malignancies. (Endocr Pract. 2013;19:231-235)  相似文献   

3.
《Endocrine practice》2016,22(2):180-189
Objective: To compare the effectiveness of 2 insulin protocols to treat glucocorticoid-induced hyperglycemia in the nonintensive care hospital setting.Methods: A randomized, open-label, parallel-arm study was conducted comparing standard recommended care of complete insulin orders (CIO) (i.e., 3-part insulin regimen of long-acting basal [background], rapid-acting bolus [mealtime], and rapid-acting correction factor) to an experimental group following a regimen of Neutral Protamine Hagedorn (NPH) plus CIO (NPH-CIO). The primary outcome was mean blood glucose (BG), and the secondary outcome was percent of BG in target range of 70 to 180 mg/dL. Hypoglycemia was also evaluated.Results: Sixty-one patients completed 2 to 5 consecutive inpatient days (31 CIO; 30 NPH-CIO). Baseline mean BG results were 237.2 ± 50.2 and 221.9 ± 35.8 mg/dL (P = .30) in the CIO and NPH-CIO groups, respectively. No significant difference in overall mean BG between the 2 groups was detected; however, a significant difference arose on day 3: mean BG 181.8 ± 32.6 mg/dL (CIO) versus 157.2 ± 6.1 mg/dL (NPH-CIO) (P = .03). Moreover, the total daily doses (TDDs) of insulin did not differ: 34.8 ± 43.0 units (CIO) versus 35.8 ± 25.0 units (NPH-CIO) (P = .13). Percent of BG in target was 54.6% (CIO) and 62% (NPH-CIO) (P = .24). Incidence of severe hypoglycemia (<50 mg/dL) was the same in both groups (0.1%).Conclusion: NPH added to 3-part insulin regimen (CIO) may be an effective way to a combat glucocorticoid-induced hyperglycemia, though further research is needed in a larger population.Abbreviations:A1C = hemoglobin A1CBG = blood glucoseCIO = complete insulin ordersDM = diabetes mellitusNPH = neutral protamine HagedornNPH-CIO = neutral protamine Hagedorn plus CIOTDD = total daily dose  相似文献   

4.
《Endocrine practice》2020,26(2):167-173
Objective: Basal/basal-bolus insulin with discontinuation of home oral antidiabetes medications (OADs) is the preferred method to achieve glycemic control in many hospitalized patients. We hypothesized that a subset of patients with type 2 diabetes mellitus (T2DM) can achieve an acceptable level of blood sugar control without cessation of their OADs when hospitalized.Methods: A retrospective chart review was conducted on patients with T2DM who were only on OADs at home, admitted to Fairview Hospital, a community hospital in the Cleveland Clinic Health System. We divided patients into those whose OADs were continued (group 1) and those whose OADs were discontinued (group 2), with or without the addition of insulin in the hospital. Blood glucose (BG) levels and patient characteristics were compared.Results: There were 175 patients, 73 in group 1 and 102 in group 2. The percentage of patients achieving all BG values within 100 to 180 mg/dL was the same between group 1 (21.9%) and group 2 (23.8%) (P = .78). Mean BG was similar between group 1 and group 2 (146.1 ± 41.4 mg/dL versus 152.1 ± 38.9 mg/dL; P = .33), with no significant difference in terms of percentage of patients with hyperglycemia or hypoglycemia. A greater proportion of patients in group 1 had an uninterrupted feeding status, nonintensive care unit admission and no contrast dye exposure, and a shorter length of stay.Conclusion: Our study shows that patients with certain characteristics could achieve an acceptable level of glycemic control without cessation of their home OADs.Abbreviations: BG = blood glucose; DPP-4 = dipeptidyl dipeptidase 4; GFR = glomerular filtration rate; HbA1c = hemoglobin A1c; ICU = intensive care unit; LOS = length of stay; NPO = nil per os; OAD = oral antidiabetes medication; POC = point of care; T2DM = type 2 diabetes mellitus  相似文献   

5.
《Endocrine practice》2015,21(7):794-806
Objective: Recent guidelines recommend a physiologic approach to non–intensive care unit (ICU) inpatient glucose management utilizing basal-bolus with correctional (BBC) insulin over traditional sliding-scale insulin monotherapy. Unfortunately, few studies exist using a BBC approach restricted to human insulins (regular and neutral protamine Hagedorn [NPH]). This study evaluated changes in provider prescribing patterns, effects on blood glucose, and safety with implementation of hospital order sets for BBC using human insulins.Methods: Order sets were developed for non-ICU inpatients, consisting of basal, prandial, and correctional insulin using NPH and regular human insulins. Evaluation compared a 4-month period before (admissions, n = 274) with a 4-month period after order set availability (n = 302). Primary outcome was change in insulin prescribing patterns. Secondary outcomes included use of nonpreferred diabetes treatments, hemoglobin A1c testing, mean daily blood glucose, and incidence of hypoglycemia.Results: Use of BBC insulin regimen increased from 10.6 to 27.5% after order set implementation (P<.001). Use of oral antihyperglycemic agents decreased from 24.1 to 14.9% after implementation (P = .006). Hemoglobin A1c testing rose from 50.0 to 62.3% after (P = .003). Mean daily blood glucose improved, with an estimated mean difference of 14.4 mg/dL (95% confidence interval, 2.2 to 26.5 mg/dL) over hospital days 3 through 9 (P = .02). There was no significant change in the incidence of moderate or severe hypoglycemia.Conclusion: Implementation of hospital-wide human insulin order sets led to improvements in prescribing practices and blood glucose control, without increasing the incidence of hypoglycemia. These order sets may be useful for facilities limited by formulary and cost considerations to the use of older human insulins.Abbreviations: BBC = basal-bolus with correctional insulin ICU = intensive care unit NPH = neutral protamine Hagedorn NPO = nil per os  相似文献   

6.
《Endocrine practice》2015,21(12):1333-1343
Objective: To evaluate the impact of different subcutaneous basal insulin regimens on glycemic variability (GV) and hospital complications in non-intensive care unit (ICU) patients with type 2 diabetes (T2D).Methods: This study is a post hoc analysis of 279 general medicine and surgery patients treated with either a “Basal Bolus” insulin regimen using glargine once daily and glulisine before meals or a “Basal Plus” regimen using glargine once daily plus correction doses of glulisine before meals for glucose >140 mg/dL. GV was calculated as mean delta (Δ) daily glucose, mean SD, and mean amplitude of glycemic excursions (MAGE).Results: Treatment with Basal Bolus and Basal Plus regimens resulted in similar mean daily glucose, hypoglycemia, length of stay (LOS), and hospital complications (all P>.05). There were no differences in GV between treatment groups by Δ change (72.5 ± 36 vs. 69.3 ± 34 mg/dL), SD (38.5 ± 18 vs. 37.1 ± 16 mg/dL) and MAGE (67.5 ± 34 vs. 66.1 ± 39 mg/dL) (all P>.05). Surgery patients treated with Basal Bolus had higher GV compared to those treated with Basal Plus (Δ daily glucose and SD: P = .02, MAGE: P = .009), but no difference in GV was found between treatment groups for the general medicine patients (P>.05). Patients with hypoglycemia events had higher GV compared to subjects without hypoglycemia (P<.05), but no association was found between GV and hospital complications (P>.05).Conclusion: Treating hospitalized, non-ICU, diabetic patients with Basal Plus insulin regimen resulted in similar glucose control and GV compared to the standard Basal Bolus insulin regimen. Higher GV was not associated with hospital complications.Abbreviations:BG = blood glucoseCV= coefficient of variationGV= glycemic variabilityICU = intensive care unitLOS = length of stayMAGE = mean amplitude of glycemic excursionsSSI = sliding scale insulinT2D = type 2 diabetesTDD =total daily dose  相似文献   

7.
《Endocrine practice》2013,19(4):614-619
ObjectiveRapid-acting insulins, including insulin aspart (NovoLog) and lispro (Humalog), do not seem to effectively control postprandial glycemic excursions in children with type 1 diabetes mellitus (T1DM). The objective of this study was to determine if insulin glulisine (Apidra), another rapid-acting insulin analog, would be superior in controlling postprandial hyperglycemia in children with T1DM.MethodsThirteen prepubertal children ages 4 to 11 years completed this study. Inclusion criteria included T1DM ≥6 months, glycosylated hemoglobin (HbAlC) 6.9 to 10%, blood glucose (BG) levels in adequate control for 1 week prior to study start, multiple daily injections (MDI) with insulin glargine or determir once daily and aspart or lispro premeal. If fasting BG was 70 to 180 mg/dL, subjects received insulin glulisine alternating with aspart prior to a prescribed breakfast with a fixed amount of carbohydrate (45, 60, or 75 g) for 20 days. Postprandial BG values were obtained at 2 and 4 hours.ResultsMean baseline BG values for insulin glulisine (136.4 ± 15.7 mg/dL; mean ± SD) and aspart (133.4 ± 14.7 mg/dL) were similar (P = .34). Mean increase in 2-hour postprandial BG was higher in glulisine (+113.5 ± 65.2 mg/dL) than aspart (+98.6 ± 66.9 mg/dL), (P = .01). BG remained higher at 4 hours (glulisine: 141.9 ± 36.5 mg/ dL, aspart: 129.0 ± 37.0 mg/dL) (P = .04). Although statistically insignificant, more hypoglycemic events occurred at 2-and 4-hours postprandial with insulin aspart.ConclusionInsulin aspart appears to be more effective than insulin glulisine in controlling 2-and 4-hour postprandial BG excursions in prepubertal children with T1DM. (Endocr Pract. 2013;19:614-619)  相似文献   

8.
ObjectiveHyperglycemia often occurs after the transition from intravenous insulin infusion (IVII) to subcutaneous insulin. Weight-based basal insulin initiated earlier in the course of IVII in the medical intensive care unit (MICU), and a weight-based basal-bolus regimen after IVII, can potentially improve post-IVII glycemic control by 48 hours.MethodsThis prospective study included 69 patients in MICU who were on IVII for ≥24 hours. Exclusions were end-stage renal disease, type 1 diabetes mellitus, and the active use of vasopressors. The intervention group received weight-based basal insulin (0.2-0.25 units/kg) with IVII and weight-based bolus insulin after IVII. The control group received current care. The primary end points were glucose levels at specific time intervals up to 48 hours after IVII.ResultsThere were 25 patients in the intervention group and 44 in the control group. The mean age of the patients was 59 ± 15 years, 32 (47%) were men, and 52 (78%) had prior diabetes mellitus. The 2 groups were not different (acute kidney injury/chronic kidney disease, pre-existing diabetes mellitus, illness severity, or nothing by mouth status after IVII), except for the steroid use, which was higher in the control group than in the intervention group (34% vs 12%, respectively). Glucose levels were not lower until 36 to 48 hours after IVII (166.8 ± 39.1 mg/dL vs 220.0 ± 82.9 mg/dL, P < .001). When controlling for body mass index, nutritional status, hemoglobin A1C, and steroid use, glucose level was lower starting at 12 to 24 hours out (166.87 mg/dL vs 207.50 mg/dL, P = .015). The frequency of hypoglycemia was similar between the 2 groups (5.0% vs 7.1%). The study did not reach target enrollment.ConclusionThe addition of weight-based basal insulin during, and basal-bolus insulin immediately after, IVII in MICU results in better glycemic control at 24 hours after IVII with no increased hypoglycemia.  相似文献   

9.
《Endocrine practice》2008,14(2):185-192
ObjectiveTo describe a structured inpatient insulin management protocol and order set for glycemic control on a vascular surgery service.MethodsPatients admitted to the vascular surgery service with underlying diabetes were enrolled in a study of use of a preprinted basal-bolus insulin order set based on a total daily dose of 0.5 U/kg (0.25 U/kg of insulin glargine and 0.25 U/kg of insulin aspart divided into 3 equal mealtime doses). Outcomes included the mean glycemic control at each of 5 established time intervals, the percentage of blood glucose measurements within the target range of 70 to 180 mg/dL, the incidence of hypoglycemia, and the insulin dosages. Historical control patients with diabetes from the same hospital service were used for comparison.ResultsBoth the study group and the control group consisted of 26 patients. The number of finger-stick blood glucose measurements performed was 871 in the control group and 896 in the intervention group. The mean blood glucose level (± SD) for the intervention group was 149.4 ± 50.7 mg/dL, in comparison with 165.2 ± 64.4 mg/dL for the control group. The incidence of hypoglycemia decreased 50% in the intervention group—from 32 (4% of the finger-stick assessments in the control group) to 19 (2% of the finger-stick blood glucose measurements in the study group). The blood glucose target range of 70 to 180 mg/dL was achieved in 75% of the measurements in the study group versus 61% in the control group. The basal insulin dose was unchanged in 65% of the patients, and of the 9 patients requiring a change in the dose, 5 had the dose decreased by 10% and 4 had the dose increased by 10%.ConclusionThe use of a standardized basal-bolus weight-based insulin regimen was successful at achieving improved glycemic control as well as reducing the incidence of hypoglycemia in an inpatient population with diabetes. (Endocr Pract. 2008;14:185-192)  相似文献   

10.
《Endocrine practice》2011,17(4):558-562
ObjectiveTo test the hypothesis that subcutaneous administration of basal insulin begun immediately after cardiac surgery can decrease the need for insulin infusion in patients without diabetes and save nursing time.MethodsAfter cardiac surgery, 36 adult patients without diabetes were randomly assigned to receive either standard treatment (control group) or insulin glargine once daily in addition to standard treatment (basal insulin group). Standard treatment included blood glucose measurements every 1 to 4 hours and intermittent insulin infusion to maintain blood glucose levels between 100 and 150 mg/dL. The study period lasted up to 72 hours.ResultsThere were no differences in demographics or baseline laboratory characteristics of the 2 study groups. Mean daily blood glucose levels were lower in the basal insulin group in comparison with the control group, but the difference was not statistically significant (129.3 ± 9.4 mg/ dL versus 132.6 ± 7.3 mg/dL; P = .25). The mean duration of insulin infusion was significantly shorter in the basal insulin group than in the control group (16.3 ± 10.7 hours versus 26.6 ± 17.3 hours; P = .04). Nurses tested blood glucose a mean of 8.3 ± 3.5 times per patient per day in the basal insulin group and 12.0 ± 4.7 times per patient per day in the control group (P = .01). There was no occurrence of hypoglycemia (blood glucose level < 60 mg/dL) in either group.ConclusionOnce-daily insulin glargine is safe and may decrease the duration of insulin infusion and reduce nursing time in patients without diabetes who have hyperglycemia after cardiac surgery. (Endocr Pract. 2011;17: 558-562)  相似文献   

11.
《Endocrine practice》2020,26(1):43-50
Objective: Consensus guidelines recommend that intensive care unit (ICU) patients with blood glucose (BG) levels >180 mg/dL receive continuous intravenous insulin (CII). The effectiveness of CII at controlling BG levels among patients who are eating relative to those who are eating nothing by mouth (nil per os; NPO) has not been described.Methods: We conducted a retrospective cohort study of 260 adult patients (156 eating, 104 NPO) admitted to an ICU between January 1, 2014, and December 31, 2014, who received CII. Patients were excluded for a diagnosis of diabetic ketoacidosis or hyperglycemic hyperosmolar nonketotic syndrome, admission to an obstetrics service, or receiving continuous enteral or parenteral nutrition.Results: Among 22 baseline characteristics, the proportion of patients receiving glucocorticoid treatment (GCTx) (17.3% eating, 37.5% NPO; P<.001) and APACHE II score (15.0 ± 7.5 eating, 17.9 ± 7.9 NPO; P = .004) were significantly different between eating and NPO patients. There was no significant difference in the primary outcome of patient-day weighted mean BG overall (153 ± 8 mg/dL eating, 156 ± 7 mg/dL NPO; P = .73), or day-by-day BG (P = .37) adjusted for GCTx and APACHE score. Surprisingly, there was a significant difference in the distribution of BG values, with eating patients having a higher percentage of BG readings in the recommended range of 140 to 180 mg/dL. However, eating patients showed greater glucose variability (coefficient of variation 23.1 ± 1.0 eating, 21.2 ± 1.0 NPO; P = .034).Conclusion: Eating may not adversely affect BG levels of ICU patients receiving CII. Whether or not prandial insulin improves glycemic control in this setting should be studied.Abbreviations: BG = blood glucose; CII = continuous insulin infusion; CV = coefficient of variation; HbA1c = hemoglobin A1c; ICU = intensive care unit; NPO = nil per os; PDWMBG = patient day weighted mean blood glucose  相似文献   

12.
《Endocrine practice》2016,22(12):1393-1400
Objective: Hypoglycemia remains one of the main challenges of insulin therapy. To reduce insulin-related hypoglycemia at our institution, we restricted inpatient ordering of high glargine doses (≥0.5 U/kg/day) to endocrine staff in May 2013. This retrospective cohort study assesses its effect on hypoglycemia and glycemic control within 48 hours of admission (ADM).Methods: We identified 692 adult patients hospitalized at Boston Medical Center who received glargine upon ADM from November 1, 2012 through April 30, 2013 as the pre-intervention group, and 651 adult patients admitted between November 1, 2013 and April 30, 2014 as the postintervention group. Demographics, medical history, home insulin regimen, concurrent oral diabetes medications or glucocorticoid administration, ADM serum creatinine, all blood glucose levels (BG) ≤48 hours of ADM, and hemoglobin A1c values ≤3 months were assessed. Hypoglycemia was defined as BG ≤70 mg/dL, and hyperglycemia as BG ≥200 mg/dL. Multivariable regression models assessed potential associations between covariates and incidence of hypoglycemia and average BG ≤48 hours of ADM.Results: Demographics were similar between groups. Significantly less patients received high-dose glargine in the post-intervention group (5.2% vs. 0.3%, P<.001). Incidences of hypoglycemia were significantly lower in the postintervention group (20.9% vs. 17.8%, P<.001 per ADM; 3.4% vs. 2.3%, P = .001 per BG measurements [BGM]). Mean BG levels ≤48 hours of ADM and incidence of hyperglycemia were not significantly different. The adjusted incident rate ratio of hypoglycemia was 0.63 per ADM and 0.74 per BGM in the postintervention group compared to the pre-intervention group (P = .001 and P = .063, respectively).Conclusion: We found that implementation of a restriction on high doses of glargine resulted in lower rates of hypoglycemia without worsening glycemic control.Abbreviations:ADM = admissionBG = blood glucoseBGM = blood glucose measurementsBMC = Boston Medical CenterBMI = body mass indexEMR = electronic medical recordHgbA1c = hemoglobin A1cIRR = incidence rate ratioNPH = neutral protamine HagedornTDD = total daily doseT2D = type 2 diabetes  相似文献   

13.
《Endocrine practice》2014,20(6):527-535
ObjectivePerioperative glycemic management is particularly challenging in heart transplant (HT) patients who are on high-dose steroids and subject to surgical stress. The objective of the study was to examine the efficacy and safety of perioperative insulin administration in HT patients with and without diabetes.MethodsMedical records of 71 HT patients from June 1, 2005 to July 31, 2009 whose hyperglycemia was managed by our Glucose Management Service (GMS) were analyzed for up to 1 year after HT. Their daily blood glucose (BG) averages on intravenous (IV) insulin drips and subcutaneous (SQ) insulin, hypoglycemia rates, reasons for hypoglycemia, and deviations from insulin protocols were analyzed.ResultsDaily BG averages between diabetic (DM) and nondiabetic (nonDM) patients were not significantly different while on the drip but were significantly different for first 5 days on SQ (P < .05). The daily insulin glargine doses were similar. No patients developed severe hypoglycemia (BG ≤ 40 mg/dL) while on drip, and only 2.8% experienced hypoglycemia on SQ. Among 40 episodes of moderate hypoglycemia while on drip, 15 had nurse deviations from protocol prior to the episode. Posttransition day fasting glucose was at goal (mean 124.7 ± 35.4 mg/dL); however 39.4% (28/71) of patients received a transition insulin glargine dose that was different from the amount indicated by protocol. The likelihood of developing moderate hypoglycemia on SQ was associated with the glargine dose used at the time of transition (odds ratio [OR] 1.03, P = .034).ConclusionInpatient insulin protocols implemented by a GMS are successful in obtaining glycemic control with minimal side effects in patients with and without diabetes, even when they are on a high-dose steroid regimen. (Endocr Pract. 2014;20:527-535)  相似文献   

14.
《Endocrine practice》2018,24(11):973-981
Objective: To evaluate the efficacy and safety of insulin glargine 300 U/mL (Gla-300) and insulin glargine 100 U/mL (Gla-100) in patients with type 2 diabetes (T2D) who reached prebreakfast self-monitored plasma glucose (SMPG) levels <100 and <130 mg/dL.Methods: This was a post hoc analysis of insulin-naïve (EDITION 3, NCT01676220) and experienced (EDITION 2, NCT01499095) patients with uncontrolled T2D, randomized to 6 months of Gla-300 versus Gla-100 treatment. Endpoints included glycated hemoglobin A1c change, hypoglycemia incidence, and event rates. Separate comparisons were done for patients achieving prebreak-fast fasting glucose of <100 versus ≥100 mg/dL and <130 versus ≥130 mg/dL.Results: Efficacy did not differ significantly between treatments in either study. Overall, basal insulin doses were ~10% higher with Gla-300 versus Gla-100. EDITION 2: overall and documented (≤70 mg/dL) hypoglycemia rates were significantly lower with Gla-300 versus Gla-100 in all SMPG groups except <100 mg/dL; nocturnal hypoglycemia rates were significantly lower with Gla-300 in all SMPG groups. EDITION 3: overall hypoglycemia rates were significantly lower with Gla-300 in patients with SMPG ≥100 mg/dL and those with SMPG <130 mg/dL; documented hypoglycemia rates were significantly lower in all SMPG groups except ≥130 mg/dL. Nocturnal and nocturnal documented hypoglycemia rates did not differ by treatment group. Hypoglycemia incidence did not differ by treatment in any SMPG group.Conclusion: In patients with T2D initiating basal insulin or previously treated for ≥6 months with basal insulin, Gla-300 provides similar efficacy to Gla-100 and reduces risk of hypoglycemia for many patients, despite a ~10% higher insulin dose.Abbreviations: A1C = glycated hemoglobin A1c; ADA = American Diabetes Association; Gla-100 = insulin glargine 100 U/mL; Gla-300 = insulin glargine 100 U/mL; OAD = oral antidiabetes drug; SMPG = self-monitored plasma glucose; T2D = type 2 diabetes  相似文献   

15.
《Endocrine practice》2013,19(2):275-283
ObjectiveThe study's purpose was to identify the antihyperglycemic affects of colesevelam-HCl (C-HCl) by characterizing the diurnal and postprandial glucose patterns in type 2 diabetic subjects treated concomitantly with metformin, sulfonylurea, or a combination of metformin/ sulfonylurea. A secondary aim was to determine whether C-HCl significantly increased the risk of hypoglycemia.MethodsA prospective, randomized, double-blind, placebo-controlled, crossover study employing continuous glucose monitoring (CGM) with ambulatory glucose profile (AGP) analysis was undertaken. Fifteen males and 6 females, age 60 ± 8 years, treated with metformin (n = 8), sulfonylurea (n = 2), or combination (n = 11) participated.ResultsTreatment with C-HCl led to reductions in glycated hemoglobin (HbAlc) (7.5 ± 0.3 to 7.0 ± 0.4% P<.0001), LDL (90.9 ± 18.6 to 68.9 ± 15.2 mg/dL, P<.0007) and total cholesterol (169.2 ± 24.4 to 147.8 ± 21.5 mg/dL, P<.001). Significantly lower normalized diurnal (21 mg/dL/hour, P = .0006), nocturnal (19 mg/dL/hour, P = .0005), and daytime (22 mg/dL/hour, P = .0008) glucose exposure was detected immediately upon C-HCl administration. Additionally, there was a significant (P<.004) decline in postprandial glucose excursions (averaging 15% or -36 mg/dL/hour) pronounced at dinner following C-HCl administration. There was a nonsignificant increase in the incidence of hypoglycemia (0.4-1%), with no difference due to antihyperglycemic medications.ConclusionsAGP analysis of CGM visually and quantitatively showed immediate and midterm impacts of C-HCl on basal and postprandial glucose patterns. This suggests a multifactorial glucose-lowering mechanism for C-HCl affecting both meal-related and basal glucose levels. (Endocr Pract. 2013;19:275-283)  相似文献   

16.
17.
《Endocrine practice》2016,22(9):1040-1047
Objective: Inpatient hypoglycemia (glucose ≤70 mg/dL) is a limitation of intensive control with insulin. Causes of hypoglycemia were evaluated in a randomized controlled trial examining intensive glycemic control (IG, target 140 mg/dL) versus moderate glycemic control (MG, target 180 mg/dL) on post–liver transplant outcomes.Methods: Hypoglycemic episodes were reviewed by a multidisciplinary team to calculate and identify contributing pathophysiologic and operational factors. A subsequent subgroup case control (1:1) analysis (with/without) hypoglycemia was completed to further delineate factors. A total of 164 participants were enrolled, and 155 patients were examined in depth.Results: Overall, insulin-related hypoglycemia was experienced in 24 of 82 patients in IG (episodes: 20 drip, 36 subcutaneous [SQ]) and 4 of 82 in MG (episodes: 2 drip, 2 SQ). Most episodes occurred at night (41 of 60), with high insulin amounts (44 of 60), and during a protocol deviation (51 of 60). Compared to those without hypoglycemia (n = 127 vs. n = 28), hypoglycemic patients had significantly longer hospital stays (13.6 ± 12.6 days vs. 7.4 ± 6.1 days; P = .002), higher peak insulin drip rates (17.4 ± 10.3 U/h vs. 13.1 ± 9.9 U/h; P = .044), and higher peak insulin glargine doses (36.8 ± 21.4 U vs. 26.2 ± 24.3 U; P = .035). In the case-matched analysis (24 cases, 24 controls), those with insulin-related hypoglycemia had higher median peak insulin drip rates (17 U/h vs. 11 U/h; P = .04) and protocol deviations (92% vs. 50%; P = .004).Conclusion: Peak insulin requirements and protocol deviations were correlated with hypoglycemia.Abbreviations:DM = diabetes mellitusICU = intensive care unitIG = intensive glycemic controlMELD = Model for End-stage Liver DiseaseMG = moderate glycemic controlSQ = subcutaneous  相似文献   

18.
《Endocrine practice》2019,25(8):836-845
Objective: Most acute-care hospitals have transitioned from sliding-scale to basal-bolus insulin therapy to manage hyperglycemia during hospitalization, but there is limited scientific evidence demonstrating better short-term clinical outcomes using the latter approach. The present study sought to determine if using basal-bolus insulin therapy favorably affects these outcomes in noncritical care settings and, if so, whether the magnitude of benefit differs in patients with known versus newly diagnosed type 2 diabetes.Methods: This natural experiment compared outcomes in 10,120 non–critically ill adults with type 2 diabetes admitted to an academic teaching hospital before and after hospital-wide implementation of a basal-bolus insulin therapy protocol. A group of 30,271 inpatients without diabetes (type 1 or 2) served as controls. Binomial models were used to compare percentages of patients with type 2 diabetes who were transferred to intensive care, experienced complications, or died in the hospital before and after implementation of the protocol, controlling for changes in the control group. The analysis also evaluated before-after changes in length of stay and glucometric indicators.Results: Implementation of basal-bolus therapy did not reduce intensive care use (the primary outcome), complications, mortality, or median length of stay, except in patients with newly diagnosed diabetes (n = 234), who experienced a statistically significant decline in the incidence of complications (P<.01). The absence of effect in previously diagnosed patients was observed in spite of a 32% decline (from 3.7% to 2.5%) in the proportion of inpatient days with hypoglycemia <70 mg/dL (P<.01) and a 16% decline (from 13.5% to 11.3%) in the proportion of days with hyperglycemia >300 mg/dL (P<.01).Conclusion: Despite achieving significant reductions in both hyperglycemia and hypoglycemia, use of basal-bolus insulin therapy to manage hyperglycemia in non–critically ill hospitalized patients did not improve short-term clinical outcomes, except in the small minority of patients with newly diagnosed diabetes. The optimal management of hyperglycemia for improving these outcomes has yet to be determined.Abbreviation: ICD-9 = International Classification of Diseases–Ninth Revision  相似文献   

19.
《Endocrine practice》2014,20(5):452-460
ObjectiveTo describe the state of glycemic control in noncritically ill diabetic patients admitted to the Puerto Rico University Hospital and adherence to current standard of care guidelines for the treatment of diabetes.MethodsThis was a retrospective study of patients admitted to a general medicine ward with diabetes mellitus as a secondary diagnosis. Clinical data for the first 5 days and the last 24 hours of hospitalization were analyzed.ResultsA total of 147 noncritically ill diabetic patients were evaluated. The rates of hyperglycemia (blood glucose ≥ 180 mg/dL) and hypoglycemia (blood glucose < 70 mg/dL) were 56.7 and 2.8%, respectively. Nearly 60% of patients were hyperglycemic during the first 24 hours of hospitalization (mean random blood glucose, 226.5 mg/dL), and 54.2% were hyperglycemic during the last 24 hours of hospitalization (mean random blood glucose, 196.51 mg/dL). The mean random last glucose value before discharge was 189.6 mg/dL. Most patients were treated with subcutaneous insulin, with basal insulin alone (60%) used as the most common regimen. The proportion of patients classified as uncontrolled receiving basal-bolus therapy increased from 54.3% on day 1 to 60% on day 5, with 40% continuing to receive only basal insulin. Most of the uncontrolled patients had their insulin dose increased (70.1%); however, a substantial proportion had no change (23.7%) or even a decrease (6.2%) in their insulin dose.ConclusionThe management of hospitalized diabetic patients is suboptimal, probably due to clinical inertia, manifested by absence of appropriate modification of insulin regimen and intensification of dose in uncontrolled diabetic patients. A comprehensive educational diabetes management program, along with standardized insulin orders, should be implemented to improve the care of these patients. (Endocr Pract. 2014;20:452-460)  相似文献   

20.
《Endocrine practice》2009,15(7):689-695
ObjectiveTo investigate the efficacy and safety of continuous (basal-bolus) subcutaneous pramlintide infusion (CSPI) in patients with type 1 diabetes mellitus.MethodsA 16-week, open-label, single-arm pilot study enrolled 11 patients (mean ± SD values: age, 39.9 ± 4.0 years; hemoglobin A1c, 8.20% ± 0.60%; weight, 92.3 ± 18.4 kg; body mass index, 29.7 ± 5.1 kg/m2) with longterm type 1 diabetes mellitus (20.7 ± 1.3 years; duration of pump therapy, 9.5 ± 6.0 years). Pramlintide basal infusion was begun with continuous subcutaneous infusion at 9 μg/h. After 3 days, premeal bolus doses of pramlintide were initiated at 15 μg and titrated to 60 μg per meal. Basal and bolus insulin doses were reduced 10% on initiation of CSPI and adjusted thereafter as needed to prevent hypoglycemia.ResultsAfter 16 weeks of pramlintide therapy, mean ± SD hemoglobin A1c decreased to 7.85% ± 0.74% (-0.35%). The fasting glucose level declined from 198.2 ± 66.9 mg/dL to 135.8 ± 63.9 mg/dL. The mean weight decreased to 91.8 ± 20.1 kg (-0.5 kg) at week 12. The daily bolus insulin requirement decreased 20%; daily basal insulin was unchanged (27.7 ± 11.7 U). All patients experienced mild postprandial hypoglycemia, but no severe hypoglycemia was reported. Three of the 11 study participants experienced mild initial nausea, but all patients successfully titrated bolus doses to 60 μg within 3 weeks.ConclusionIn this pilot study of 11 patients with type 1 diabetes using insulin pumps, CSPI seemed safe and well tolerated, did not alter pramlintide pharmacokinetic variables, and reduced fasting glucose levels. Larger studies of this method for pramlintide administration seem warranted. (Endocr Pract. 2009;15:689-695)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号