首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Historical harvesting pushed many whale species to the brink of extinction. Although most Southern Hemisphere populations are slowly recovering, the influence of future climate change on their recovery remains unknown. We investigate the impacts of two anthropogenic pressures—historical commercial whaling and future climate change—on populations of baleen whales (blue, fin, humpback, Antarctic minke, southern right) and their prey (krill and copepods) in the Southern Ocean. We use a climate–biological coupled “Model of Intermediate Complexity for Ecosystem Assessments” (MICE) that links krill and whale population dynamics with climate change drivers, including changes in ocean temperature, primary productivity and sea ice. Models predict negative future impacts of climate change on krill and all whale species, although the magnitude of impacts on whales differs among populations. Despite initial recovery from historical whaling, models predict concerning declines under climate change, even local extinctions by 2100, for Pacific populations of blue, fin and southern right whales, and Atlantic/Indian fin and humpback whales. Predicted declines were a consequence of reduced prey (copepods/krill) from warming and increasing interspecific competition between whale species. We model whale population recovery under an alternative scenario whereby whales adapt their migratory patterns to accommodate changing sea ice in the Antarctic and a shifting prey base. Plasticity in range size and migration was predicted to improve recovery for ice‐associated blue and minke whales. Our study highlights the need for ongoing protection to help depleted whale populations recover, as well as local management to ensure the krill prey base remains viable, but this may have limited success without immediate action to reduce emissions.  相似文献   

2.
Relative changes in krill abundance inferred from Antarctic fur seal   总被引:2,自引:0,他引:2  
Huang T  Sun L  Stark J  Wang Y  Cheng Z  Yang Q  Sun S 《PloS one》2011,6(11):e27331
Antarctic krill Euphausia superba is a predominant species in the Southern Ocean, it is very sensitive to climate change, and it supports large stocks of fishes, seabirds, seals and whales in Antarctic marine ecosystems. Modern krill stocks have been estimated directly by net hauls and acoustic surveys; the historical krill density especially the long-term one in the Southern Ocean, however, is unknown. Here we inferred the relative krill population changes along the West Antarctic Peninsula (WAP) over the 20th century from the trophic level change of Antarctic fur seal Arctocephalus gazella using stable carbon (δ(13)C) and nitrogen (δ(15)N) isotopes of archival seal hairs. Since Antarctic fur seals feed preferentially on krill, the variation of δ(15)N in seal hair indicates a change in the proportion of krill in the seal's diets and thus the krill availability in local seawater. For the past century, enriching fur seal δ(15)N values indicated decreasing krill availability. This is agreement with direct observation for the past ~30 years and suggests that the recently documented decline in krill populations began in the early parts of the 20th century. This novel method makes it possible to infer past krill population changes from ancient tissues of krill predators.  相似文献   

3.
For closely related sympatric species to coexist, they must differ to some degree in their ecological requirements or niches ( e.g. , diets) to avoid interspecific competition. Baleen whales in the Antarctic feed primarily on krill, and the large sympatric prewhaling community suggests resource partitioning among these species or a nonlimiting prey resource. In order to examine ecological differences between sympatric humpback and minke whales around the Western Antarctic Peninsula, we made measurements of the physical environment, observations of whale distribution, and concurrent acoustic measurements of krill aggregations. Mantel's tests and classification and regression tree models indicate both similarities and differences in the spatial associations between humpback and minke whales, environmental features, and prey. The data suggest (1) similarities (proximity to shore) and differences (prey abundance versus deep water temperatures) in horizontal spatial distribution patterns, (2) unambiguous vertical resource partitioning with minke whales associating with deeper krill aggregations across a range of spatial scales, and (3) that interference competition between these two species is unlikely. These results add to the paucity of ecological knowledge relating baleen whales and their prey in the Antarctic and should be considered in conservation and management efforts for Southern Ocean cetaceans and ecosystems.  相似文献   

4.
Baleen whales and Adelie penguins in the near-shore waters around the Antarctic Peninsula forage principally on Antarctic krill. Given the spatial overlap in the distribution of these krill predators (particularly humpback whales) and their dependence on krill, the goals of this paper are to determine if the inter-annual community structure and relative abundance of baleen whales around Anvers Island is related to krill demography and abundance, and if the potential exists for inter-specific interactions between Adelie penguins and baleen. We use whale sightings and prey data from both net tows and Adelie penguin stomach samples to correlate the abundance of humpback whales with krill demography and abundance from 1993 to 2001. We find significant relationships between whale abundance and the size–frequency distribution of krill targeted by Adelie penguins, as well as the foraging success of Adelie penguins. These findings suggest both krill predators share common prey preferences in the upper portions of the water column around Anvers Island. These findings highlight the need for better knowledge of baleen whale foraging ecology and inter-specific interactions with penguins, as sea ice and krill populations around the Antarctic Peninsula are affected by rapid changes in climate.  相似文献   

5.
Southern hemisphere humpback whales (Megaptera novaeangliae) rely on summer prey abundance of Antarctic krill (Euphausia superba) to fuel one of the longest‐known mammalian migrations on the planet. It is hypothesized that this species, already adapted to endure metabolic extremes, will be one of the first Antarctic consumers to show measurable physiological change in response to fluctuating prey availability in a changing climate; and as such, a powerful sentinel candidate for the Antarctic sea‐ice ecosystem. Here, we targeted the sentinel parameters of humpback whale adiposity and diet, using novel, as well as established, chemical and biochemical markers, and assembled a time trend spanning 8 years. We show the synchronous, inter‐annual oscillation of two measures of humpback whale adiposity with Southern Ocean environmental variables and climate indices. Furthermore, bulk stable isotope signatures provide clear indication of dietary compensation strategies, or a lower trophic level isotopic change, following years indicated as leaner years for the whales. The observed synchronicity of humpback whale adiposity and dietary markers, with climate patterns in the Southern Ocean, lends strength to the role of humpback whales as powerful Antarctic sea‐ice ecosystem sentinels. The work carries significant potential to reform current ecosystem surveillance in the Antarctic region.  相似文献   

6.
The availability of micronutrients is a key factor that affects primary productivity in High Nutrient Low Chlorophyll (HNLC) regions of the Southern Ocean. Nutrient supply is governed by a range of physical, chemical and biological processes, and there are significant feedbacks within the ecosystem. It has been suggested that baleen whales form a crucial part of biogeochemical cycling processes through the consumption of nutrient-rich krill and subsequent defecation, but data on their contribution are scarce. We analysed the concentration of iron, cadmium, manganese, cobalt, copper, zinc, phosphorus and carbon in baleen whale faeces and muscle, and krill tissue using inductively coupled plasma mass spectrometry. Metal concentrations in krill tissue were between 20 thousand and 4.8 million times higher than typical Southern Ocean HNLC seawater concentrations, while whale faecal matter was between 276 thousand and 10 million times higher. These findings suggest that krill act as a mechanism for concentrating and retaining elements in the surface layer, which are subsequently released back into the ocean, once eaten by whales, through defecation. Trace metal to carbon ratios were also higher in whale faeces compared to whale muscle indicating that whales are concentrating carbon and actively defecating trace elements. Consequently, recovery of the great whales may facilitate the recycling of nutrients via defecation, which may affect productivity in HNLC areas.  相似文献   

7.
Knowledge of cetacean species composition and their distribution in the south-east Atlantic sector of the Southern Ocean is scarce. During a survey in February–March 2008, systematic whale sightings were carried out along transect lines following the 5° and 15° E meridians between 35° and 67° S. In total, 67 toothed whales and 126 baleen whales were observed. Both fin whales (four animals) and Antarctic minke whales Balaenoptera bonaerenses (three animals) in addition to 16 individuals of unidentified species were among the observed baleen whales. The dominating baleen whale species in our study was humpback whales Megaptera novaeangliae with 108 individuals observed. They occurred single or in groups up to seven individuals (N mean = 2.5 ind) and eight of the counts were of calves. The relationship between humpback whale occurrence and environmental variables including Antarctic krill (Euphausia superba) abundance from acoustic recordings, hydrography, bathymetry and production was tested using general additive models. Only temperature increased the predictive power of the model with whale occurrence increasing with the decreasing temperature in more southern areas.  相似文献   

8.
A dedicated aerial cetacean survey was conducted concurrently to a standardised net trawl survey for krill in order to investigate distribution patterns of large whales and different krill species and to investigate relationships of these. Distance sampling data were used to produce density surface models for humpback (Megaptera novaeangliae) and fin whales (Balaenoptera physalus) around the West Antarctic Peninsula (WAP). Abundance for both species was estimated over two strata in the Bransfield Strait and Drake Passage. Distinct distribution patterns suggest horizontal niche partitioning of the two whale species around the WAP, with fin whales aggregating at the shelf edge of the South Shetland Islands in the Drake Passage and humpback whales in the Bransfield Strait. Krill biomass estimated from the concurrent krill survey was used along with CTD data from the same expedition, bathymetric parameters and satellite data on chlorophyll-a and ice concentration to model krill distribution. Comparisons of the predicted distributions of both whale species with the predicted distributions of Euphausia superba, Euphausia crystallorophias and Thysanoessa macrura suggest a complex relationship rather than a straightforward correlation between krill and whales. However, results indicate that fin whales were feeding in an area dominated by T. macrura, while humpback whales were found in areas of higher E. superba biomass. Our results provide abundance estimates for humpback whales and, for the first time, fin whales in the WAP and contribute important information on feeding ecology and habitat use of these two species in the Southern Ocean.  相似文献   

9.
Glacio-marine fjords occur widely at high latitudes and have been extensively studied in the Arctic, where heavy meltwater inputs and sedimentation yield low benthic faunal abundance and biodiversity in inner-middle fjords. Fjord benthic ecosystems remain poorly studied in the subpolar Antarctic, including those in extensive fjords along the West Antarctic Peninsula (WAP). Here we test ecosystem predictions from Arctic fjords on three subpolar, glacio-marine fjords along the WAP. With seafloor photographic surveys we evaluate benthic megafaunal abundance, community structure, and species diversity, as well as the abundance of demersal nekton and macroalgal detritus, in soft-sediment basins of Andvord, Flandres and Barilari Bays at depths of 436–725 m. We then contrast these fjord sites with three open shelf stations of similar depths. Contrary to Arctic predictions, WAP fjord basins exhibited 3 to 38-fold greater benthic megafaunal abundance than the open shelf, and local species diversity and trophic complexity remained high from outer to inner fjord basins. Furthermore, WAP fjords contained distinct species composition, substantially contributing to beta and gamma diversity at 400–700 m depths along the WAP. The abundance of demersal nekton and macroalgal detritus was also substantially higher in WAP fjords compared to the open shelf. We conclude that WAP fjords are important hotspots of benthic abundance and biodiversity as a consequence of weak meltwater influences, low sedimentation disturbance, and high, varied food inputs. We postulate that WAP fjords differ markedly from their Arctic counterparts because they are in earlier stages of climate warming, and that rapid warming along the WAP will increase meltwater and sediment inputs, deleteriously impacting these biodiversity hotspots. Because WAP fjords also provide important habitat and foraging areas for Antarctic krill and baleen whales, there is an urgent need to develop better understanding of the structure, dynamics and climate-sensitivity of WAP subpolar fjord ecosystems.  相似文献   

10.
The association of Antarctic krill Euphausia superba with the under-ice habitat was investigated in the Lazarev Sea (Southern Ocean) during austral summer, autumn and winter. Data were obtained using novel Surface and Under Ice Trawls (SUIT), which sampled the 0-2 m surface layer both under sea ice and in open water. Average surface layer densities ranged between 0.8 individuals m(-2) in summer and autumn, and 2.7 individuals m(-2) in winter. In summer, under-ice densities of Antarctic krill were significantly higher than in open waters. In autumn, the opposite pattern was observed. Under winter sea ice, densities were often low, but repeatedly far exceeded summer and autumn maxima. Statistical models showed that during summer high densities of Antarctic krill in the 0-2 m layer were associated with high ice coverage and shallow mixed layer depths, among other factors. In autumn and winter, density was related to hydrographical parameters. Average under-ice densities from the 0-2 m layer were higher than corresponding values from the 0-200 m layer collected with Rectangular Midwater Trawls (RMT) in summer. In winter, under-ice densities far surpassed maximum 0-200 m densities on several occasions. This indicates that the importance of the ice-water interface layer may be under-estimated by the pelagic nets and sonars commonly used to estimate the population size of Antarctic krill for management purposes, due to their limited ability to sample this habitat. Our results provide evidence for an almost year-round association of Antarctic krill with the under-ice habitat, hundreds of kilometres into the ice-covered area of the Lazarev Sea. Local concentrations of postlarval Antarctic krill under winter sea ice suggest that sea ice biota are important for their winter survival. These findings emphasise the susceptibility of an ecological key species to changing sea ice habitats, suggesting potential ramifications on Antarctic ecosystems induced by climate change.  相似文献   

11.
Antarctic marine ecosystems have undergone significant changes as a result of human activities in the past and are now responding in varied and often complicated ways to climate change impacts. Recent years have seen the emergence of large-scale mechanistic explanations–or “paradigms of change”–that attempt to synthesize our understanding of past and current changes. In many cases, these paradigms are based on observations that are spatially and temporally patchy. The West Antarctic Peninsula (WAP), one of Earth’s most rapidly changing regions, has been an area of particular research focus. A recently proposed mechanistic explanation for observed changes in the WAP region relates changes in penguin populations to variability in krill biomass and regional warming. While this scheme is attractive for its simplicity and chronology, it may not account for complex spatio-temporal processes that drive ecosystem dynamics in the region. It might also be difficult to apply to other Antarctic regions that are experiencing some, though not all, of the changes documented for the WAP. We use qualitative network models of differing levels of complexity to test paradigms of change for the WAP ecosystem. Importantly, our approach captures the emergent effects of feedback processes in complex ecological networks and provides a means to identify and incorporate uncertain linkages between network elements. Our findings highlight key areas of uncertainty in the drivers of documented trends, and suggest that a greater level of model complexity is needed in devising explanations for ecosystem change in the Southern Ocean. We suggest that our network approach to evaluating a recent and widely cited paradigm of change for the Antarctic region could be broadly applied in hypothesis testing for other regions and research fields.  相似文献   

12.
Summary Samples of Antarctic krill E. superba from six locations near Prydz Bay were analysed electrophoretically to detect genetically-based protein variation. Analyses of allele distributions at four polymorphic loci indicate no evidence of significant heterogeneity, a result consistent with the hypothesis that all samples were derived from a single breeding population of krill. The results of this study agree closely with genetic data from other studies on krill in the Atlantic sector of the Southern Ocean, suggesting that krill stocks over at least 6000 km of Antarctic waters are derived from a single interbreeding population.  相似文献   

13.
Antarctic krill (Euphausia superba) is a large euphausiid, widely distributed within the Southern Ocean [1], and a key species in the Antarctic food web [2]. The Discovery Investigations in the early 20(th) century, coupled with subsequent work with both nets and echosounders, indicated that the bulk of the population of postlarval krill is typically confined to the top 150 m of the water column [1, 3, 4]. Here, we report for the first time the existence of significant numbers of Antarctic krill feeding actively at abyssal depths in the Southern Ocean. Biological observations from the deep-water remotely operated vehicle Isis in the austral summer of 2006/07 have revealed the presence of adult krill (Euphausia superba Dana), including gravid females, at unprecedented depths in Marguerite Bay, western Antarctic Peninsula. Adult krill were found close to the seabed at all depths but were absent from fjords close inshore. At all locations where krill were detected they were seen to be actively feeding, and at many locations there were exuviae (cast molts). These observations revise significantly our understanding of the depth distribution and ecology of Antarctic krill, a central organism in the Southern Ocean ecosystem.  相似文献   

14.
Understanding regional‐scale food web structure in the Southern Ocean is critical to informing fisheries management and assessments of climate change impacts on Southern Ocean ecosystems and ecosystem services. Historically, a large component of Southern Ocean ecosystem research has focused on Antarctic krill, which provide a short, highly efficient food chain, linking primary producers to higher trophic levels. Over the last 15 years, the presence of alternative energy pathways has been identified and hypotheses on their relative importance in different regions raised. Using the largest circumpolar dietary database ever compiled, we tested these hypotheses using an empirical circumpolar comparison of food webs across the four major regions/sectors of the Southern Ocean (defined as south of 40°S) within the austral summer period. We used network analyses and generalizations of taxonomic food web structure to confirm that while Antarctic krill are dominant as the mid‐trophic level for the Atlantic and East Pacific food webs (including the Scotia Arc and Western Antarctic Peninsula), mesopelagic fish and other krill species are dominant contributors to predator diets in the Indian and West Pacific regions (East Antarctica and the Ross Sea). We also highlight how tracking data and habitat modeling for mobile top predators in the Southern Ocean show that these species integrate food webs over large regional scales. Our study provides a quantitative assessment, based on field observations, of the degree of regional differentiation in Southern Ocean food webs and the relative importance of alternative energy pathways between regions.  相似文献   

15.
The krill surplus hypothesis of unlimited prey resources available for Antarctic predators due to commercial whaling in the 20th century has remained largely untested since the 1970s. Rapid warming of the Western Antarctic Peninsula (WAP) over the past 50 years has resulted in decreased seasonal ice cover and a reduction of krill. The latter is being exacerbated by a commercial krill fishery in the region. Despite this, humpback whale populations have increased but may be at a threshold for growth based on these human-induced changes. Understanding how climate-mediated variation in prey availability influences humpback whale population dynamics is critical for focused management and conservation actions. Using an 8-year dataset (2013–2020), we show that inter-annual humpback whale pregnancy rates, as determined from skin-blubber biopsy samples (n = 616), are positively correlated with krill availability and fluctuations in ice cover in the previous year. Pregnancy rates showed significant inter-annual variability, between 29% and 86%. Our results indicate that krill availability is in fact limiting and affecting reproductive rates, in contrast to the krill surplus hypothesis. This suggests that this population of humpback whales may be at a threshold for population growth due to prey limitations. As a result, continued warming and increased fishing along the WAP, which continue to reduce krill stocks, will likely impact this humpback whale population and other krill predators in the region. Humpback whales are sentinel species of ecosystem health, and changes in pregnancy rates can provide quantifiable signals of the impact of environmental change at the population level. Our findings must be considered paramount in developing new and more restrictive conservation and management plans for the Antarctic marine ecosystem and minimizing the negative impacts of human activities in the region.  相似文献   

16.
Antarctic krill is a cold water species, an increasingly important fishery resource and a major prey item for many fish, birds and mammals in the Southern Ocean. The fishery and the summer foraging sites of many of these predators are concentrated between 0° and 90°W. Parts of this quadrant have experienced recent localised sea surface warming of up to 0.2°C per decade, and projections suggest that further widespread warming of 0.27° to 1.08°C will occur by the late 21st century. We assessed the potential influence of this projected warming on Antarctic krill habitat with a statistical model that links growth to temperature and chlorophyll concentration. The results divide the quadrant into two zones: a band around the Antarctic Circumpolar Current in which habitat quality is particularly vulnerable to warming, and a southern area which is relatively insensitive. Our analysis suggests that the direct effects of warming could reduce the area of growth habitat by up to 20%. The reduction in growth habitat within the range of predators, such as Antarctic fur seals, that forage from breeding sites on South Georgia could be up to 55%, and the habitat’s ability to support Antarctic krill biomass production within this range could be reduced by up to 68%. Sensitivity analysis suggests that the effects of a 50% change in summer chlorophyll concentration could be more significant than the direct effects of warming. A reduction in primary production could lead to further habitat degradation but, even if chlorophyll increased by 50%, projected warming would still cause some degradation of the habitat accessible to predators. While there is considerable uncertainty in these projections, they suggest that future climate change could have a significant negative effect on Antarctic krill growth habitat and, consequently, on Southern Ocean biodiversity and ecosystem services.  相似文献   

17.
Climatically driven fluctuations in Southern Ocean ecosystems   总被引:2,自引:0,他引:2  
Determining how climate fluctuations affect ocean ecosystems requires an understanding of how biological and physical processes interact across a wide range of scales. Here we examine the role of physical and biological processes in generating fluctuations in the ecosystem around South Georgia in the South Atlantic sector of the Southern Ocean. Anomalies in sea surface temperature (SST) in the South Pacific sector of the Southern Ocean have previously been shown to be generated through atmospheric teleconnections with El Niño Southern Oscillation (ENSO)-related processes. These SST anomalies are propagated via the Antarctic Circumpolar Current into the South Atlantic (on time scales of more than 1 year), where ENSO and Southern Annular Mode-related atmospheric processes have a direct influence on short (less than six months) time scales. We find that across the South Atlantic sector, these changes in SST, and related fluctuations in winter sea ice extent, affect the recruitment and dispersal of Antarctic krill. This oceanographically driven variation in krill population dynamics and abundance in turn affects the breeding success of seabird and marine mammal predators that depend on krill as food. Such propagating anomalies, mediated through physical and trophic interactions, are likely to be an important component of variation in ocean ecosystems and affect responses to longer term change. Population models derived on the basis of these oceanic fluctuations indicate that plausible rates of regional warming of 1oC over the next 100 years could lead to more than a 95% reduction in the biomass and abundance of krill across the Scotia Sea by the end of the century.  相似文献   

18.
No global synthesis of the status of baleen whales has been published since the 2008 IUCN Red List assessments. Many populations remain at low numbers from historical commercial whaling, which had ceased for all but a few by 1989. Fishing gear entanglement and ship strikes are the most severe current threats. The acute and long‐term effects of anthropogenic noise and the cumulative effects of multiple stressors are of concern but poorly understood. The looming consequences of climate change and ocean acidification remain difficult to characterize. North Atlantic and North Pacific right whales are among the species listed as Endangered. Southern right, bowhead, and gray whales have been assessed as Least Concern but some subpopulations of these species ‐ western North Pacific gray whales, Chile‐Peru right whales, and Svalbard/Barents Sea and Sea of Okhotsk bowhead whales ‐ remain at low levels and are either Endangered or Critically Endangered. Eastern North Pacific blue whales have reportedly recovered, but Antarctic blue whales remain at about 1% of pre‐exploitation levels. Small isolated subspecies or subpopulations, such as northern Indian Ocean blue whales, Arabian Sea humpback whales, and Mediterranean Sea fin whales are threatened while most subpopulations of sei, Bryde's, and Omura's whales are inadequately monitored and difficult to assess.  相似文献   

19.
Marine pelagic ecosystems: the west Antarctic Peninsula   总被引:4,自引:0,他引:4  
The marine ecosystem of the West Antarctic Peninsula (WAP) extends from the Bellingshausen Sea to the northern tip of the peninsula and from the mostly glaciated coast across the continental shelf to the shelf break in the west. The glacially sculpted coastline along the peninsula is highly convoluted and characterized by deep embayments that are often interconnected by channels that facilitate transport of heat and nutrients into the shelf domain. The ecosystem is divided into three subregions, the continental slope, shelf and coastal regions, each with unique ocean dynamics, water mass and biological distributions. The WAP shelf lies within the Antarctic Sea Ice Zone (SIZ) and like other SIZs, the WAP system is very productive, supporting large stocks of marine mammals, birds and the Antarctic krill, Euphausia superba. Ecosystem dynamics is dominated by the seasonal and interannual variation in sea ice extent and retreat. The Antarctic Peninsula is one among the most rapidly warming regions on Earth, having experienced a 2 degrees C increase in the annual mean temperature and a 6 degrees C rise in the mean winter temperature since 1950. Delivery of heat from the Antarctic Circumpolar Current has increased significantly in the past decade, sufficient to drive to a 0.6 degrees C warming of the upper 300 m of shelf water. In the past 50 years and continuing in the twenty-first century, the warm, moist maritime climate of the northern WAP has been migrating south, displacing the once dominant cold, dry continental Antarctic climate and causing multi-level responses in the marine ecosystem. Ecosystem responses to the regional warming include increased heat transport, decreased sea ice extent and duration, local declines in icedependent Adélie penguins, increase in ice-tolerant gentoo and chinstrap penguins, alterations in phytoplankton and zooplankton community composition and changes in krill recruitment, abundance and availability to predators. The climate/ecological gradients extending along the WAP and the presence of monitoring systems, field stations and long-term research programmes make the region an invaluable observatory of climate change and marine ecosystem response.  相似文献   

20.
The Scotia Sea ecosystem is a major component of the circumpolar Southern Ocean system, where productivity and predator demand for prey are high. The eastward-flowing Antarctic Circumpolar Current (ACC) and waters from the Weddell-Scotia Confluence dominate the physics of the Scotia Sea, leading to a strong advective flow, intense eddy activity and mixing. There is also strong seasonality, manifest by the changing irradiance and sea ice cover, which leads to shorter summers in the south. Summer phytoplankton blooms, which at times can cover an area of more than 0.5 million km2, probably result from the mixing of micronutrients into surface waters through the flow of the ACC over the Scotia Arc. This production is consumed by a range of species including Antarctic krill, which are the major prey item of large seabird and marine mammal populations. The flow of the ACC is steered north by the Scotia Arc, pushing polar water to lower latitudes, carrying with it krill during spring and summer, which subsidize food webs around South Georgia and the northern Scotia Arc. There is also marked interannual variability in winter sea ice distribution and sea surface temperatures that is linked to southern hemisphere-scale climate processes such as the El Ni?o-Southern Oscillation. This variation affects regional primary and secondary production and influences biogeochemical cycles. It also affects krill population dynamics and dispersal, which in turn impacts higher trophic level predator foraging, breeding performance and population dynamics. The ecosystem has also been highly perturbed as a result of harvesting over the last two centuries and significant ecological changes have also occurred in response to rapid regional warming during the second half of the twentieth century. This combination of historical perturbation and rapid regional change highlights that the Scotia Sea ecosystem is likely to show significant change over the next two to three decades, which may result in major ecological shifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号