首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Two splice variants of LKB1 exist: LKB1 long form (LKB1L) and LKB1 short form (LKB1S). In a previous study, we demonstrated that phosphorylation of Ser-428/431 (in LKB1L) by protein kinase Cζ (PKCζ) was essential for LKB1-mediated activation of AMP-activated protein kinase (AMPK) in response to oxidants or metformin. Paradoxically, LKB1S also activates AMPK although it lacks Ser-428/431. Thus, we hypothesized that LKB1S contained additional phosphorylation sites important in AMPK activation. Truncation analysis and site-directed mutagenesis were used to identify putative PKCζ phosphorylation sites in LKB1S. Substitution of Ser-399 to alanine did not alter the activity of LKB1S, but abolished peroxynitrite- and metformin-induced activation of AMPK. Furthermore, the phosphomimetic mutation (S399D) increased the phosphorylation of AMPK and its downstream target phospho-acetyl-coenzyme A carboxylase (ACC). PKCζ-dependent phosphorylation of Ser-399 triggered nucleocytoplasmic translocation of LKB1S in response to metformin or peroxynitrite treatment. This effect was ablated by pharmacological and genetic inhibition of PKCζ, by inhibition of CRM1 activity and by substituting Ser-399 with alanine (S399A). Overexpression of PKCζ up-regulated metformin-mediated phosphorylation of both AMPK (Thr-172) and ACC (Ser-79), but the effect was ablated in the S399A mutant. We conclude that, similar to Ser-428/431 (in LKB1L), Ser-399 (in LKB1S) is a PKCζ-dependent phosphorylation site essential for nucleocytoplasmic export of LKB1S and consequent AMPK activation.  相似文献   

2.
We report that the activation level of AMP-dependent protein kinase AMPK is elevated in cancer cell lines as a hallmark of their transformed state. In OVCAR3 and A431 cells, c-Src signals through protein kinase Cα, phospholipase Cγ, and LKB1 to AMPK. AMPK controls internal ribosome entry site (IRES) dependent translation in these cells. We suggest that AMPK activation via PKC might be a general mechanism to regulate IRES-dependent translation in cancer cells.  相似文献   

3.
The LKB1 tumor suppressor encodes a serine-threonine kinase whose substrates control cell metabolism, polarity, and motility. LKB1 is a major mediator of the cellular response to energy stress via activation of the master regulator of energy homeostasis, AMPK. While mutational inactivation of LKB1 promotes the development of many types of epithelial cancer, a recent report in Nature by Jeon et al. demonstrates that the LKB1-AMPK pathway can also have an unexpected positive role in tumorigenesis, acting to maintain metabolic homeostasis and attenuate oxidative stress thereby supporting the survival of cancer cells.Normal mammalian cells possess adaptive mechanisms that enable coupling of nutrient availability with demand via integrated control of growth and metabolism. The widespread deregulation of these processes is now recognized as a prominent hallmark of all cancers. A key nutrient sensor in normal and cancer cells is the LKB1-AMPK axis, which is critical for maintenance of metabolic homeostasis1. In response to energy stress (and resulting increase in AMP:ATP ratio), LKB1 phosphorylates AMPK, which in turn phosphorylates numerous substrates controlling diverse metabolic processes, with the net effect of shifting the balance from anabolic to catabolic function and thereby restoring cellular ATP levels. LKB1 is an established tumor suppressor that is mutationally inactivated in a wide variety of epithelial cancers and promotes tumorigenesis when deleted in mouse models. While the underlying mechanisms for LKB1-mediated tumor suppression are not fully defined, the key role of AMPK in inactivating mTOR is thought to contribute to this process1,2.An interesting paradox given this function as a tumor suppressor emerges from the observations that LKB1 or AMPK deletion renders primary cells resistant to transformation by overexpressed oncogenes and causes decreased viability of both cancer cell lines and primary cells under energy stress conditions3,4,5,6,7,8. The significance of the survival function of the LKB1-AMPK axis in cancer pathogenesis and the associated molecular mechanisms are the main focus of a recent report by Jeon et al.9.In this study, the authors utilized the A549 lung cancer cell line, which exhibits homozygous inactivating mutations of endogenous LKB1, as a model to study LKB1-AMPK-dependent survival under energy stress. Reintroduction of LKB1 resulted in the expected activation of AMPK and improved cell survival upon glucose deprivation. This effect was independent of mTOR or p53 inactivation, insofar as rapamycin treatment or p53 dominant-negative coexpression did not affect the starvation-induced cell death in A549 vector-transduced (i.e., control) cells.Glucose starvation inhibits the pentose phosphate pathway (PPP), which is an important mechanism for NADPH production and consequent H2O2 detoxification (Figure 1). To survive in this setting, cells require compensatory NADPH generation, produced by other biochemical pathways. The authors hypothesized that a requirement for LKB1 in this adaptive NAPDH production may underlie its survival function in glucose-deprived cells. Consistent with this hypothesis, they showed that treatment with N-acetylcysteine or catalase, both antioxidants, inhibited starvation-induced death of both LKB1- and AMPK-deficient (A549/HeLa and MEFs, respectively) cells. In addition, metabolic analysis of the glucose-starved A549 cells revealed that the ratios of NADP/NADPH and oxidized glutathione/reduced glutathione (GSSG/GSH) were maintained in LKB1-transduced cells, whereas both ratios were increased in the vector-transduced cells. Since NAPDH is mainly utilized to reduce GSSG to its GSH form, which is in turn used to detoxify cells from H2O2 through the function of glutathione peroxidase, these results reveal that the LKB1-AMPK axis has a central role in suppressing oxidative stress (Figure 1).Open in a separate windowFigure 1AMPK is phosphorylated and activated by LKB1 in response to an increasing cellular AMP:ATP ratio (which reflects a decrease in energy supply). AMPK in turn phosphorylates and inactivates ACC1/2, promoting a shift from fatty acid synthesis (FAS) to fatty acid oxidation (FAO). FAS depletes NADPH that is required for H2O2 detoxification. FAO, by contrast, produces metabolites that are used by the TCA cycle, resulting in increased NADPH and enhanced cell survival. This pathway may only be transiently activated in glucose-deprived cells since ATP, produced by the coupling the TCA cycle with oxidative phosphorylation (OXPHOS), will eventually inhibit AMPK. In addition to the role of the LKB1-AMPK pathway in facilitating tumor cell survival, LKB1 is a context-specific tumor suppressor, which acts to control cell polarity and restrict cell growth via mTOR inactivation and induction of other AMPK-related kinases.Upon glucose starvation and consequent loss of PPP function, the major contributor to NADPH generation is mitochondrial metabolism whose activity is maintained by fatty acid oxidation in this context. The rate-limiting enzyme in catabolism of fatty acids is carnitine palmitoyltransferase 1 (CPT1). Under normal conditions, CPT1 is inhibited by the malonyl-CoA produced by acetyl-CoA carboxylase alpha (ACC1) and acetyl-CoA carboxylase beta (ACC2). These two enzymes are subject to inhibition by phosphorylation by AMPK10. Therefore, the authors hypothesized that LKB1-AMPK may control the levels of NADPH by inhibiting ACC1 and ACC2. Targeted knockdown studies revealed that ACC2 inactivation was sufficient to restore NADP/NADPH and GSSG/GSH ratios and to rescue cell death in glucose-starved A549 cells. These findings were extended by a set of experiments using the constitutively active ACC2 (S212A) mutant, the fatty acid synthase (FAS) inhibitor C75, the ACC inhibitor TOFA, malate supplement, buthionine sulphoximine (which depletes GSH), and nicotinamide, that together support the hypothesis that survival under glucose starvation is dependent on the inactivation of ACC2 (and ACC1 in some cell types) by AMPK-regulated phosphorylation.Matrix detachment impairs cell viability in part due to induction of energy stress, leading to NADPH depletion and increased H2O2 levels. The authors found that the LKB1-AMPK axis also plays a pro-survival role in this setting. LKB1-null cells have reduced viability and impaired growth under anchorage-independent conditions, due mainly to decreased NADPH levels and subsequent oxidative stress.Cancer cells need to activate survival mechanisms to cope with energy stress and matrix detachment during tumor progression. Thus, the authors speculated that the LKB1-AMPK-ACC1/2-NADPH pathway might play an important role in promoting tumor growth. Correspondingly, NAC treatment or shRNA-mediated knockdown of ACC1/2 increased anchorage-independent growth of A549 cells in soft agar, and ACC1/2 knockdown enhanced tumorigenicity in xenograft studies. Moreover, similar effects were seen using RAS V12-transformed AMPKα−/− MEF cells with concurrent ACC1/2 knockdown, consistent with LKB1 and AMPK acting in a common pathway to promote tumorigenesis.The results described above were obtained mainly in the setting of ectopically restoring LKB1 in LKB1-deficient cancer cells. An important question that is raised by these findings is whether cancers that arise with an intact LKB1-AMPK axis require this pathway for sustained tumorigenesis. To address this issue, the authors examined the impact of knockdown of either LKB1 or AMPKα1 in MCF7 breast cancer cells. These manipulations reduced xenograft tumor formation, as did overexpression of the constitutively active, phosphorylation-deficient mutants ACC mutant (ACC1-S79A or ACC2-S212A). Collectively, these observations indicate that activation of AMPK and consequent inactivation of ACC1/2 by endogenous AMPK is an important survival mechanism in cancer (Figure 1).These conclusions are of particular note considering the established role of LKB1 in tumor suppression. This tumor suppressive function may involve the ability of the LKB1-AMPK pathway to promote mTOR inactivation by TSC2 and raptor phosphorylation1,2, as well as functions of other members of the family of AMPK-related kinases. Since mTOR activation is a common feature of cancer and a driver of many tumor types, it may seem counterintuitive to assign a tumorigenic role in one of its major inhibitors. Another layer of complexity stems from the fact that AMPK activation is unlikely to be sustained for prolonged period of time. Fatty acid oxidation, activated by AMPK during glucose starvation, will feed into the TCA-oxidative phosphorylation cycles, in turn leading to ATP production and AMP:ATP ratio decrease, followed by AMPK inactivation (Figure 1). To reconcile these two opposing functions of AMPK, the authors suggest that this negative feedback loop is a reflection of the temporal manner of AMPK activation that, at physiological levels, is essential for the survival of the tumor cells during energy stress (starvation or matrix detachment) but it is quickly followed by inactivation. According to this model, use of LKB1 or AMPK inhibitors in acute regimens could prove beneficial for cancer therapy by sensitizing cells to energy stress. Moreover, the acute nature of the treatment could potentially cause metabolic stress, sensitizing cells to other chemotherapy regiments. Sustained inactivation of the LKB1-AMPK pathway on the other hand, could result in long-term stress, promote rewiring of intracellular metabolic processes, and tip the balance towards increased proliferation due to activation of mTOR and other pathways.Based on these results, a major question is raised: How do LKB1-deficient tumors bypass the normal requirement for the LKB1-AMPK axis in energy stress response? Presumably, LKB1 inactivation must occur in the context of specific cooperating molecular alterations that enable cell survival despite these impairments in metabolic homeostasis, thereby allowing the pro-tumorigenic consequences of LKB1 loss to take hold. One potential escape route could involve alternative, LKB1-independent mechanisms for AMPK activation such as induction of CAMK2 or a hexokinase-dependent pathway1, but other pathways could be equally important. Further studies will likely uncover additional adaptive processes permitting cell survival under metabolic stress in the absence of LKB1. Metabolic profiling of LKB1 null tumors could provide a glimpse of these alternative pathways, opening the way for new targeted therapeutic strategies. Moreover, cancer genome sequencing efforts are likely to reveal specific complementation groups of mutations that coexist with LKB1 mutations in different cancer types or are mutually exclusive, reflecting molecular pathways that synergize with LKB1 deficiency. Additionally, other important AMPK-independent functions of LKB1 should also be brought into focus. In this regard, AMPKα1/2 are constituents of a 14-member family of kinases that are phosphorylated and activated by LKB1 and that broadly include regulators of epithelial cell polarity as well as metabolism. Disruption of polarity, as altered metabolism, is a hallmark of epithelial cancer progression11, and the relative roles of these processes downstream of LKB1 in growth control is an area of active investigation. Indeed, inactivation of LKB1 produces dramatic invasive and migratory phenotypes in different cancer models12,13,14. The findings of Jeon et al.9 may thus presage that the LKB1-AMPK axis is only a minor component of the LKB1 tumor suppressor program compared to its functions in metabolic adaptation and cell survival.Long-term use of metformin, in the treatment of Type II diabetes, has been shown to reduce tumor incidence and sensitizes multiple cancer cell types to chemotherapy1. Furthermore, LKB1 controls hepatic glucose metabolism and the therapeutic effects of metformin. A recent study that revealed that AMPK is activated by salicylate also suggests that this mechanism is, at least partly, responsible for the cancer-protective effects of aspirin15. On the other hand, inhibition of LKB1-AMPK sensitizes cancer cells to energy stress-induced apoptosis. Therefore, the results presented by Jeon et al.9 suggest that targeting the LKB1-AMPK axis in cancer should be done with caution and with attention to specific contexts.  相似文献   

4.
Sirtuin 1 (SIRT1) is known to play a role in a variety of tumorigenesis processes by deacetylating histone and non‐histone proteins; however, antitumour effects by suppressing SIRT1 activity in non‐small cell lung cancer (NSCLC) remain unclear. This study was designed to scrutinize clinicopathological significance of SIRT1 in NSCLC and investigate effects of metformin on SIRT1 inhibition. This study also evaluated new possibilities of drug combination using a SIRT1 inhibitor, tenovin‐6, in NSCLC cell lines. It was found that SIRT1 was overexpressed in 300 (62%) of 485 formalin‐fixed paraffin‐embedded NSCLC tissues. Its overexpression was significantly associated with reduced overall survival and poor recurrence‐free survival after adjusted for histology and pathologic stage. Thus, suppression of SIRT1 expression may be a reasonable therapeutic strategy for NSCLC. Metformin in combination with tenovin‐6 was found to be more effective in inhibiting cell growth than either agent alone in NSCLC cell lines with different liver kinase B1 (LKB1) status. In addition, metformin and tenovin‐6 synergistically suppressed SIRT1 expression in NSCLC cells regardless of LKB1 status. The marked reduction in SIRT1 expression by combination of metformin and tenovin‐6 increased acetylation of p53 at lysine 382 and enhanced p53 stability in LKB1‐deficient A549 cells. The combination suppressed SIRT1 promoter activity more effectively than either agent alone by up‐regulating hypermethylation in cancer 1 (HIC1) binding at SIRT1 promoter. Also, suppressed SIRT1 expression by the combination synergistically induced caspase‐3‐dependent apoptosis. The study concluded that metformin with tenovin‐6 may enhance antitumour effects through LKB1‐independent SIRT1 down‐regulation in NSCLC cells.  相似文献   

5.
This study aimed to design and evaluate enhanced permeation and retention (EPR)‐mediated anticancer effect of polymer‐modified and drug‐loaded magnetite nanocomposites. The preformulated bare (10 nm), chitosan‐superparamagnetic iron oxide (SPIO; 69 nm), heparin‐SPIO (42 nm), and (3‐aminopropyl)triethoxysilane‐polyethylene glycol‐SPIO (17 nm) nanocomposites were utilized to evaluate the EPR‐mediated localized cancer targeting and retention of doxorubicin (DOX) and paclitaxel (PTX) in human ovarian cancer cell lines, A2780 and OVCAR‐3 in vitro and in the tumor‐baring Balb/c mice in vivo. Fluorescence microscopy showed that DOX‐ and PTX‐loaded SPIO nanoparticles caused long‐term accumulation and cytoplasmic retention in A2780 and OVCAR‐3 cells, as compared to free drugs in vitro. In vivo antiproliferative effect of present formulations on immunodeficient female Balb/c mice showed a tremendous amount of ovarian tumor shrinkage within 6 weeks. The present nanocomposite systems of targeted drug delivery proved to be efficient drug carrier with sustained drug release and long‐term retention with enhanced cytotoxic properties in vitro and in vivo.  相似文献   

6.

Background

Cellular stress responses trigger signaling cascades that inhibit proliferation and protein translation to help alleviate the stress or if the stress cannot be overcome induce apoptosis. In recent studies, we demonstrated the ability of lovastatin, an inhibitor of mevalonate synthesis, to induce the Integrated Stress Response as well as inhibiting epidermal growth factor receptor (EGFR) activation.

Methodology/Principal Findings

In this study, we evaluated the effects of lovastatin on the activity of the LKB1/AMPK pathway that is activated upon cellular energy shortage and can interact with the above pathways. In the squamous cell carcinoma (SCC) cell lines SCC9 and SCC25, lovastatin treatment (1–25 µM, 24 hrs) induced LKB1 and AMPK activation similar to metformin (1–10 mM, 24 hrs), a known inducer of this pathway. Lovastatin treatment impaired mitochondrial function and also decreased cellular ADP/ATP ratios, common triggers of LKB1/AMPK activation. The cytotoxic effects of lovastatin were attenuated in LKB1 null MEFs indicating a role for this pathway in regulating lovastatin-induced cytotoxicity. Of clinical relevance, lovastatin induces synergistic cytotoxicity in combination with the EGFR inhibitor gefitinib. In LKB1 deficient (A549, HeLa) and expressing (SCC9, SCC25) cell lines, metformin enhanced gefitinib cytotoxicity only in LKB1 expressing cell lines while both groups showed synergistic cytotoxic effects with lovastatin treatments. Furthermore, the combination of lovastatin with gefitinib induced a potent apoptotic response without significant induction of autophagy that is often induced during metabolic stress inhibiting cell death.

Conclusion/Significance

Thus, targeting multiple metabolic stress pathways including the LKB1/AMPK pathway enhances lovastatin’s ability to synergize with gefitinib in SCC cells.  相似文献   

7.
Genes most closely related to adenosine monophosphate (AMP)-activated protein kinase, including SAD kinases and Par-1 regulate cell polarity, although AMP-activated protein kinase (AMPK) modulates cellular energy status. LKB1 (Par-4) is required for normal activation of AMPK in the liver and also regulates cell polarity. AMPK is proposed to inhibit energy consuming activity while initiating energy producing activity during energy limitation. Demonstration that metformin, a common drug for Type 2 diabetes, requires LKB1 for full therapeutic benefit has increased interest in AMPK signaling. Despite the potential importance of AMPK signaling for diabetes, metabolic syndrome and even cancer, the developmental processes regulated by AMPK in genetically mutant animals require further elucidation. Mouse conditional null mutants for AMPK activity will allow genetic elucidation of AMPK function in vivo. This perspective focuses on sequence and structural moieties of AMPK and genetic analysis of AMPK mutations. Interestingly, the predicted protein structure of the carboxy-terminus of AMPKα resembles the carboxy-terminal KA-1 domain of MARK3, a Par-1 orthologue.  相似文献   

8.
Different cancer cells exhibit altered sensitivity to metformin treatment. Recent studies suggest these findings may be due in part to the common cell culture practice of utilizing high glucose, and when glucose is lowered, metformin becomes increasingly cytotoxic to cancer cells. In low glucose conditions ranging from 0 to 5 mM, metformin was cytotoxic to breast cancer cell lines MCF7, MDAMB231 and SKBR3, and ovarian cancer cell lines OVCAR3, and PA-1. MDAMB231 and SKBR3 were previously shown to be resistant to metformin in normal high glucose medium. When glucose was increased to 10 mM or above, all of these cell lines become less responsive to metformin treatment. Metformin treatment significantly reduced ATP levels in cells incubated in media with low glucose (2.5 mM), high fructose (25 mM) or galactose (25 mM). Reductions in ATP levels were not observed with high glucose (25 mM). This was compensated by enhanced glycolysis through activation of AMPK when oxidative phosphorylation was inhibited by metformin. However, enhanced glycolysis was either diminished or abolished by replacing 25 mM glucose with 2.5 mM glucose, 25 mM fructose or 25 mM galactose. These findings suggest that lowering glucose potentiates metformin induced cell death by reducing metformin stimulated glycolysis. Additionally, under low glucose conditions metformin significantly decreased phosphorylation of AKT and various targets of mTOR, while phospho-AMPK was not significantly altered. Thus inhibition of mTOR signaling appears to be independent of AMPK activation. Further in vivo studies using the 4T1 breast cancer mouse model confirmed that metformin inhibition of tumor growth was enhanced when serum glucose levels were reduced via low carbohydrate ketogenic diets. The data support a model in which metformin treatment of cancer cells in low glucose medium leads to cell death by decreasing ATP production and inhibition of survival signaling pathways. The enhanced cytotoxicity of metformin against cancer cells was observed both in vitro and in vivo.  相似文献   

9.
转录因子FOXM1在上皮性卵巢癌中的表达及临床意义   总被引:1,自引:1,他引:0  
FOXM1(Forkhead box protein M1)是调控细胞增殖的重要转录因子,近年来研究表明与肿瘤发生密切相关,但与卵巢癌的关系尚不明确.通过检测68例卵巢癌标本、21例卵巢良性肿瘤标本、24例正常卵巢标本以及3株卵巢癌细胞系(A2780细胞、OVCAR3细胞、SKOV3细胞)中FOXM1的表达情况,分析其与临床参数之间的相关性及临床意义.结果显示卵巢癌中FOXM1表达明显高于卵巢良性肿瘤及正常卵巢组织,差异极为显著,其中低分化细胞中表达强于中高分化细胞(P=0.013),Ⅲ~Ⅳ期表达强于Ⅰ~Ⅱ期(P=0.011),但与病理类型无关;FOXM1在3株卵巢癌细胞系中均有较强表达.FOXM1在卵巢癌组织及3种卵巢癌细胞系中存在高表达,且与卵巢癌分化程度及临床分期有关.  相似文献   

10.
11.
The release of Notch intracellular domain (NICD) is mediated by γ-secretase. γ-Secretase inhibitors have been shown to be potent inhibitors of NICD. We hypothesized that Notch1 is acting as an oncogene in ovarian cancer and that inhibition of Notch1 would lead to inhibition of cell growth and apoptotic cell death in ovarian cancer cells. In this study, expressions of Notch1 and hes1 in four human ovarian cancer (A2780, SKOV3, HO-8910, and HO-8910PM), and one ovarian surface (IOSE 144) cell lines were detected by Western blot and quantitative real-time RT-PCR. The effects of γ-secretase inhibition (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester, DAPT) were measured by MTT assay, flow cytometry, ELISA and colony-forming assay. Our results showed that Notch1 and hes1 were found in all the four human ovarian cancer and IOSE 144 cell lines, and they were significantly higher in ovarian cancer cells A2780 compared to another four ovarian cells. Down-regulation of Notch1 expression by DAPT was able to substantially inhibit cell growth, induce G1 cell cycle arrest and induce cell apoptosis in A2780 in dose- and time-dependent manner. In addition, hes1 was found to be down-regulated in dose- and time-dependent manner by DAPT in A2780. These results demonstrate that treatment with DAPT leads to growth inhibition and apoptosis of A2780 cells in dose- and time-dependent manner. These findings also support the conclusion that blocking of the Notch1 activity by γ-secretase inhibitors represents a potentially attractive strategy of targeted therapy for ovarian cancer.  相似文献   

12.
13.
Investigation of the endemic Madagascan plant Nematostylis anthophylla (Rubiaceae) for antiproliferative activity against the A2780 ovarian cancer cell line led to the isolation of the known triterpene saponin randianin ( 1 ), and the two new bioactive triterpene saponins 2″‐O‐acetylrandianin ( 2 ) and 6″‐O‐acetylrandianin ( 3 ). The structures of the two new compounds were elucidated based on analysis of their 1D‐ and 2D‐NMR spectra, and mass spectrometric data. The three isolated triterpene saponins displayed moderate but selective antiproliferative activities, with IC50 values of 1.2, 1.7, and 2.2 μM , respectively, against the A2780 ovarian cancer, but only weak inhibitions of the proliferation of A2058 melanoma and the H522 lung cancer cell lines.  相似文献   

14.
AMP-activated protein kinase (AMPK) is an energy-sensing enzyme that is implicated as a key factor in controlling whole body homeostasis, including fatty acid oxidation and glucose uptake. We report that a synthetic structural isomer of dihydrocapsiate, isodihydrocapsiate (8-methylnonanoic acid 3-hydroxy-4-methoxy benzyl ester) improves type 2 diabetes by activating AMPK through the LKB1 pathway. In L6 myotube cells, phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) and glucose uptake were significantly increased, whereas these effects were attenuated by an AMPK inhibitor, compound C. In addition, increased phosphorylation of AMPK and ACC by isodihydrocapsiate was significantly reduced by radicicol, an LKB1 destabilizer, suggesting that increased glucose uptake in L6 cells with isodihydrocapsiate treatment is predominantly accomplished by a LKB1-mediated AMPK activation pathway. Oral administration of isodihydrocapsiate to diabetic (db/db) mice reduced blood glucose levels by 40% after a 4-week treatment period. Our results support the development of isodihydrocapsiate as a potential therapeutic agent to target AMPK in type 2 diabetes.  相似文献   

15.
The primary objective of this study was to investigate the impact of lipid oversupply on the AMPK pathway in skeletal muscle, liver, and adipose tissue. Male Wistar rats were infused with lipid emulsion (LE) or phosphate‐buffered saline for 5 h/day for 6 days. Muscles exposed to LE for 6 days exhibited increased AMPK and acetyl‐CoA carboxylase (ACC) phosphorylation, along with a greater association between AMPK and Ca2+/calmodulin‐dependent protein kinase kinase (CaMKK). No differences in muscle protein phosphatase 2C (PP2C) activity, LKB1 phosphorylation or AMPK and LKB1 association were observed. Muscle ACCβ, and adiponectin receptor 1 (AdipoR1) mRNA levels and PPARγ‐co‐activator 1α (PGC1α) protein levels were also increased in LE‐treated rats. In contrast, AMPK and ACC phosphorylation decreased and PP2C activity increased in rat livers exposed to LE. Hepatic mRNA levels of ACCα, PPARα, AdipoR1, AdipoR2, and sterol regulatory element–binding protein‐1c (SREBP1c) were also reduced after LE infusion. In adipose tissue, there was no significant alteration in AMPK or ACC phosphorylation. These results demonstrate that following lipid oversupply the AMPK pathway was enhanced in rat skeletal muscle while diminished in the liver and was unchanged in adipose tissue. CaMKK in skeletal muscle and PP2C in the liver, at least in part, appear to mediate these alterations. Alterations in AMPK pathway in the liver induced metabolic defects associated with lipid oversupply.  相似文献   

16.
The LKB1 tumour suppressor phosphorylates and activates AMPK (AMP-activated protein kinase) when cellular energy levels are low, thereby suppressing growth through multiple pathways, including inhibiting the mTORC1 (mammalian target of rapamycin complex 1) kinase that is activated in the majority of human cancers. Blood glucose-lowering Type 2 diabetes drugs also induce LKB1 to activate AMPK, indicating that these compounds could be used to suppress growth of tumour cells. In the present study, we investigated the importance of the LKB1-AMPK pathway in regulating tumorigenesis in mice resulting from deficiency of the PTEN (phosphatase and tensin homologue deleted on chromosome 10) tumour suppressor, which drives cell growth through overactivation of the Akt and mTOR (mammalian target of rapamycin) kinases. We demonstrate that inhibition of AMPK resulting from a hypomorphic mutation that decreases LKB1 expression does not lead to tumorigenesis on its own, but markedly accelerates tumour development in PTEN(+/-) mice. In contrast, activating the AMPK pathway by administration of metformin, phenformin or A-769662 to PTEN(+/-) mice significantly delayed tumour onset. We demonstrate that LKB1 is required for activators of AMPK to inhibit mTORC1 signalling as well as cell growth in PTEN-deficient cells. Our findings highlight, using an animal model relevant to understanding human cancer, the vital role that the LKB1-AMPK pathway plays in suppressing tumorigenesis resulting from loss of the PTEN tumour suppressor. They also suggest that pharmacological inhibition of LKB1 and/or AMPK would be undesirable, at least for the treatment of cancers in which the mTORC1 pathway is activated. Most importantly, our results demonstrate the potential of AMPK activators, such as clinically approved metformin, as anticancer agents, which will suppress tumour development by triggering a physiological signalling pathway that potently inhibits cell growth.  相似文献   

17.
The link between cancer and metabolism has been suggested for a long time but further evidence of this hypothesis came from the recent molecular characterization of the LKB1/AMPK signaling pathway as a tumor suppressor axis. Besides the discovery of somatic mutations in the LKB1 gene in certain type of cancers, a critical emerging point was that the LKB1/AMPK axis remains generally functional and could be stimulated by pharmacological molecules such as metformin in cancer cells. Notably, most of experimental evidence of the anti-tumor activity of AMPK agonists comes from the study of solid tumors such as breast or prostate cancers and only few data are available in hematological malignancies, although recent works emphasized the potential therapeutic value of AMPK agonists in this setting. Further basic research work should be conducted to elucidate the molecular targets of LKB1/AMPK responsible for its anti-tumor activity in parallel of conducting clinical trials using metformin, AICAR or new AMPK activating agents to explore the potential of the LKB1/AMPK signaling pathway as a new target for anticancer drug development.  相似文献   

18.
Vascular cells have a limited lifespan with limited cell proliferation and undergo cellular senescence. The functional changes associated with cellular senescence are thought to contribute to age-related vascular disorders. AMP-activated protein kinase (AMPK) has been discussed in terms of beneficial or harmful effects for aging-related diseases. However, the detailed functional mechanisms of AMPK are largely unclear. An aging model was established by stimulating vascular smooth muscle cell (VSMC) with adriamycin. Adriamycin progressively increased the mRNA and protein expressions of AMPK. The phosphorylation levels of LKB1 and acetyl-CoA carboxylase (ACC), the upstream and downstream of AMPK, were dramatically increased by adriamycin stimulation. The expressions of p53 and p21, which contribute to vascular senescence, were also increased. Inhibition of AMPK diminished senescence-associated β-galactosidase (SA-β-gal) staining, and restored VSMC proliferation. Cytosolic translocation of LKB1 by adriamycin could be a mechanism for AMPK activation in senescence. Furthermore, p53 siRNA and p21 siRNA transfection attenuated adriamycin-induced SA-β-gal staining. These results suggest that LKB1 dependent AMPK activation elicits VSMC senescence and p53–p21 pathway is a mediator of LKB1/AMPK-induced senescence.  相似文献   

19.
It has been confirmed that circular RNA participates in tumorgenesis through a variety of ways, so it may be used as a molecular marker for tumor diagnosis and treatment. In this study, the expression of circ-LOPD2 in ovarian cancer tissues and cell lines was detected by qRT-PCR and Western blot. The dual luciferase report was used to verify the target of circ-LOPD2, and the silencing and overexpression of circ-CSPP1 in cell lines was used to explore its relationship with miRNA-378. The cell proliferation was detected by CCK8 method, and the expression level of miRNA-378 was detected by qRT-PCR. The results showed that circ-LOPD2 was highly expressed in ovarian cancer (OC) tissues, circ-LOPD2 expression levels were higher in OVCAR3 and A2780, and circ-LOPD2 expression levels in CAOV3 were lower. After silencing circ-LOPD2, the growth ability of OVCAR3 and A2780 cells decreased, while overexpression of circ-LOPD2 led to the opposite result. We also found that miR-378 is a target of circ-LOPD2. Silencing circ-LOPD2 will increase the expression of miR-378, and overexpression of circ-LOPD2 will decrease the expression of miR-378. In summary, our results show that circ-LOPD2 as a miR-378 sponge promotes the proliferation of ovarian cancer cells, which may in turn promote the development of OC.  相似文献   

20.
BackgroundAscites is associated with the poor prognosis of malignant tumors. The biological importance of the changes in the content of trace elements in the ascitic fluid is unknown. Herein, we analyzed trace elements in the ascitic fluid of patients with ovarian tumors and used cultured cells to determine the copper (Cu)-induced changes in gene expression in ovarian cancer.MethodsInductively coupled plasma mass spectrometry (ICP-MS) was used to compare ascitic fluid trace element levels in patients with benign ovarian tumors (n = 22) and borderline/malignant tumors (n = 5) for primary screening. Cu levels were validated using atomic absorption spectrometry (AAS) in 88 benign, 11 borderline, and 25 malignant ovarian tumor patients. To confirm Cu-induced gene expression changes, microarray analysis was performed for Cu-treated OVCAR3, A2780, and Met5A cells. The vascular endothelial growth factor (VEGF) concentration in the cell supernatant or ascitic fluid (ovarian cancer samples) was measured using ELISA.ResultsICP-MS showed that Co, Ni, Cu, Zn, As, Se, and Mo levels significantly increased in patients with malignant/borderline ovarian tumors compared to those in patients with benign ovarian tumors. AAS showed that malignant ovarian tumors were independently associated with elevated levels of Cu in ascites adjusted for age, body mass index, alcohol, smoking, and supplement use (p < 0.001). Microarray analysis of both Cu-treated ovarian cancer cell lines OVCAR3 and A2780 and the mesothelial cell line Met-5A revealed the upregulation of the angiogenesis biological process. Real-time polymerase chain reaction and ELISA demonstrated that an increased Cu content significantly enhanced VEGF mRNA expression and protein secretion in OVCAR3, A2780, and Met-5A cells. VEGF levels and clinical stages of the tumors correlated with the ascitic fluid Cu content in patients with malignant ovarian tumors (correlation coefficient 0.445, 95 % confidence interval [CI]: 0.069–0.710, p = 0.023 and correlation coefficient 0.406, 95 % CI: 0.022–0.686, p = 0.040, respectively).ConclusionCu levels significantly increased in patients with malignant ovarian cancer. Cu induced angiogenic effects in ovarian cancer and mesothelial cells, which affected ascites fluid production. This study clarifies the link between elevated Cu in ascites and malignant ovarian tumor progression. Strategies to decrease Cu levels in the ascitic fluid may help downregulate VEGF expression, thereby improving the prognosis of ovarian malignancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号