首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
In birds with asynchronous hatching, hatching order is an important factor in determining offspring phenotype. Many previous studies have demonstrated that later‐hatched offspring show reduced growth and survival during development. However, few studies have followed individuals from hatching to adulthood to test whether the effects of hatching order persist into later life. Here, we explore patterns of hatching order and fitness‐related traits in the Pukeko Porphyrio melanotus melanotus, a cooperatively breeding bird that lives in stable social groups that form linear dominance hierarchies. Pukeko groups sometimes contain two breeding females that lay eggs in the same nest (joint‐laying). Thus, competition between nest‐mates can influence the relative fitness of each laying female. We show that in both single‐clutch and joint‐clutch nests, earlier‐hatched Pukeko chicks grow faster and survive better than later‐hatched brood‐mates. Moreover, earlier‐hatched chicks achieve higher dominance ranks as adults, making this study one of the first to find a relationship between hatching order and adult dominance in wild birds. Finally, we show that in groups with two breeding females, the chicks of the primary female hatch earlier than the chicks of the secondary female. As a result, the offspring of the primary female may be at a competitive advantage, which could have important implications for social dynamics in this species.  相似文献   

2.
Theory predicts that overall population sex ratios should be around parity. But when individual females can receive higher fitness from offspring of one sex, they may benefit by biasing their brood sex ratios accordingly. In lekking species, higher variance in male reproductive success relative to that of females predicts that male offspring gain disproportionately from favorable rearing conditions. Females should therefore produce male-biased broods when they are in a position to raise higher quality offspring: i.e., in better body condition or when they reproduce earlier in the breeding season. To investigate these hypotheses, we studied brood sex ratios of lance-tailed manakins Chiroxiphia lanceolata . We found that overall sex ratios and mean brood sex ratios were not different from random expectation. Brood sex ratios were not related to laying date or female body condition. However, we detected a quadratic relationship between brood sex ratios and maternal age: both young (1–2 years) and old (8+ years) females produced female-biased brood sex ratios. This relationship was most clear in a year also distinguished by early rainy and breeding seasons. We suggest that breeding inexperience in young females and senescence in older females is the most plausible explanation for these results, and that the relationship between female age and brood sex ratio is mediated by environmental conditions.  相似文献   

3.
Cody J. Dey  James S. Quinn 《Ibis》2017,159(4):725-733
Intra‐brood competition can influence a variety of fitness‐related traits in birds. Previous research on the joint‐nesting Pūkeko Porphyrio melanotus melanotus, a New Zealand subspecies of Australasian Swamphen, showed that chicks that hatched earlier in a brood tended to grow faster, were more likely to survive and had higher dominance status as adults than later hatched nest‐mates. However, this finding could be due to changes in offspring sex ratio across hatch order (e.g. if males tend to hatch earlier), which was not previously examined because of methodological challenges associated with sexing nestling Pūkeko. Here, we report a useful PCR‐based genetic marker to determine the sex of Pūkeko. We then used new sex‐specific data to re‐examine patterns of offspring growth, survival and dominance. We found that the sex of offspring does not account for the hatching‐order patterns related to social dominance, growth or survival. Furthermore, changes in offspring sex ratio across hatching‐order were negligible and offspring sex ratios did not differ significantly between the primary female and secondary female broods (in joint‐clutch nests), or when comparing primary female and single female broods. We found no clear evidence for sex ratio bias according to hatching‐order and conclude that hatching‐order and not offspring sex explain patterns of growth, survivorship and adult dominance in Pūkeko.  相似文献   

4.
The differential environmental sensitivity of the sexes hasstrong implications in the evolutionary history of species asit can alter sexual size dimorphism, population sex ratios,and the faculty of parents to manipulate offspring sex in relationto environmental conditions. We studied sexual differences inhatching patterns and evaluated sex- and size-related mortalityin relation to hatching order and brood sex ratios in the chinstrappenguin Pygoscelis antarctica, a moderately size-dimorphic species,with a modal clutch size of 2 eggs. We found that male, second-hatched,and large eggs showed shorter hatching periods than female,first-hatched, and small eggs. We also found a male-biased mortalityof nestlings in the colony. However, male mortality patternsdiffered depending on the brood sex ratio composition. Mortalityof male chicks in all-male broods was higher than in mixed broodsand higher than female mortality in all-female broods. Contrary,females from mixed brood showed higher mortality than theirmale nest mates and higher too than females in all-female broods.Second-hatched chicks also suffered from higher mortality thanfirst-hatched chicks. Our results indicate that both the superiorcompetitive capacity and the higher energy demand of the largersex constitute 2 causal factors explaining patterns of sex-biasedmortality. Both factors occur in the same species and in differentsituations of sibling competition shaped by brood sex ratiocomposition. This study constitutes a good example of how patternsof sex-related mortality can vary depending on nest environmentalcircumstances. Furthermore, our study suggests that hatchingperiod can be a mechanism underlying sexual differences in theembryonic period of birds.  相似文献   

5.
Females in a variety of taxa adjust offspring sex ratios to prevailing ecological conditions. However, little is known about whether conditions experienced during a female’s early ontogeny influence the sex ratio of her offspring. We tested for past and present ecological predictors of offspring sex ratios among known-age females that were produced as offspring and bred as adults in a population of house wrens. The body condition of offspring that a female produced and the proportion of her offspring that were male were negatively correlated with the size of the brood in which she herself was reared. The proportion of sons within broods was negatively correlated with maternal hatching date, and varied positively with the quality of a female’s current breeding territory as predicted. However, females producing relatively more sons than daughters were less likely to return to breed in the population the following year. Although correlative, our results suggest that the rearing environment can have enduring effects on later maternal investment and sex allocation. Moreover, the overproduction of sons relative to daughters may increase costs to a female’s residual reproductive value, constraining the extent to which sons might be produced in high-quality breeding conditions. Sex allocation in birds remains a contentious subject, largely because effects on offspring sex ratios are small. Our results suggest that offspring sex ratios are shaped by various processes and trade-offs that act throughout the female life history and ultimately reduce the extent of sex-ratio adjustment relative to classic theoretical predictions.  相似文献   

6.
Many bird species produce two annual broods during a single breeding season. However, not all individuals reproduce twice in the same year suggesting that double brooding is condition‐dependent. In contrast to most raptors and owls, the barn owl Tyto alba produces two annual clutches in most worldwide distributed populations. Nevertheless, the determinants of double brooding are still poorly studied. We performed such a study in a Swiss barn owl population monitored between 1990 and 2014. The annual frequency of double brooding varied from 0 to 14% for males and 0 to 59% for females. The likelihood of double brooding was higher when individuals initiated their first clutch early rather than late in the season and when males had few rather than many offspring at the first nest. Despite the reproductive benefits of double brooding (single‐ and double‐brooded individuals produced 3.97 ± 0.11 and 7.07 ± 0.24 fledglings, respectively), double brooding appears to be traded off against offspring quality because at the first nest double‐brooded males produced poorer quality offspring than single‐brooded males. This might explain why females desert their first mate to produce a second brood with another male without jeopardizing reproductive success at the first nest. Furthermore, the reproductive cycle being very long in the barn owl (120 d from start of laying to offspring independence), selection may have favoured behaviours that accelerate the initiation of a second annual brood. Accordingly, half of the double‐brooded females abandoned their young offspring to look for a new partner in order to initiate the second breeding attempt, 9.48 d earlier than when producing the second brood with the same partner. We conclude that male and female barn owls adopt different reproductive strategies. Females have more opportunities to reproduce twice in a single season than males because mothers are not strictly required during the entire rearing period in contrast to fathers. A high proportion of male floaters may also encourage females to desert their first brood to re‐nest with a new male who is free of parental care duties.  相似文献   

7.
Burying beetles tend their young on small vertebrate carcasses, which serve as the sole source of food for the developing larvae. Single females are as proficient at rearing offspring as male-female pairs, yet males opt to remain with their broods throughout most of the larval development. One potential benefit of a male's extended residency is that it affords him the opportunity of additional copulations with the female, which could ensure his paternity in a replacement brood should the female's first egg clutch fail to hatch. We tested this hypothesis by manipulating males' access to their mates during the production of replacement clutches, using genetic colour markers to determine the paternity of offspring. Females were induced to produce a replacement brood by removing their first clutch of eggs. In one experimental treatment, we removed the female's mate upon the removal of her first egg clutch (‘widowed’ females); in a second treatment, the female was permitted to retain her mate up until she produced a replacement clutch. There was no significant difference in paternity between males removed from females before the initiation of replacement clutches and those permitted to remain with their mates. However, widowed females produced fewer offspring in replacement broods than did females permitted to retain their mates. This difference occurred primarily because a significantly greater proportion of widowed females opted not to produce a replacement clutch, a result we refer to as the ‘widow effect’. This widow effect was further shown in those replicates in which females of both treatments produced replacement clutches: widowed females took significantly longer to produce a replacement clutch than did females permitted to retain their mates. The loss of her mate could be a signal to a female that a take-over of the carcass is imminent. Her reluctance to produce a replacement clutch under these circumstances might constitute a strategy by which she conserves carrion for a subsequent reproductive attempt with an intruding male successful at ousting her previous mate. Regardless of its functional significance, the widow effect favours the extended residency of males and therefore contributes to the selective maintenance of male parental care.  相似文献   

8.
Infanticide is easiest to understand when it involves killing the offspring of others [1], but a parent may also kill its own offspring if the sacrifice of currently dependent young leads to higher survival of brood mates [2] or an improvement in the parent's likely future reproduction [3]. However, sex-specific infanticide by parents of their own offspring, although occurring in some human societies [4], is rare across species. Its rarity may be because killing one sex combines wasted parental effort with consequent biases in population sex ratios that are detrimental for the fitness of the overproduced sex [5-7]. We show that killing male offspring can be advantageous to Eclectus parrot (Eclectus roratus) mothers even though frequency-dependent selection then elevates the reproductive value of sons above that of daughters. In poorer-quality nest hollows, broods with a single female nestling had higher reproductive value than broods in which the female had a younger brother. Our data demonstrate frequent targeted removal of male nestlings within 3 days of hatching in these specific brood types and nesting conditions. The ability of Eclectus parrots to perceive the sex of their offspring relatively early may favor decisions to kill one sex before further investment in parental care.  相似文献   

9.
The mating system of Kentish Plovers Charadrius alexandrinus   总被引:1,自引:1,他引:0  
C. M. Lessells 《Ibis》1984,126(4):474-483
Kentish Plover Charadrius alexandrinus pairs generally re-nest together after the loss of a clutch. In contrast, two females who hatched clutches changed mates before re-nesting, thus proving sequential polyandry. Observations of adults accompanying broods show that females normally desert the brood about a week after hatching. The majority of birds change mates between seasons, even if their partner from the previous season is alive.  相似文献   

10.
ABSTRACT Multiple factors potentially affect nestling survival and maternal reproductive success. However, little is known about the relative importance of different factors when operating simultaneously or whether the same factors are important for nestlings and their mothers. We determined the effect of hatching asynchrony, individual egg size, mean egg size, nestling sex, and clutch initiation date on the survival of individual nestlings and on maternal reproductive success in Common Grackles (Quiscalus quiscula) from 2004 to 2006 in central Illinois. Factors most important to maternal success differed from those important for individual nestling growth and survival. Hatching asynchrony had the greatest within‐nest influence on the fate of nestlings; the earlier a nestling hatched relative to siblings, the greater its mass and likelihood of fledging. Clutch size had the greatest influence on maternal reproductive success, with females with larger clutches fledging more young. Thus, both nestling survival and maternal success were largely determined by a single, albeit different, factor. A possible explanation for the apparent unimportance of most factors we measured in determining maternal success is that we did not consider variation among females. Individual variation in maternal attributes such as condition, size, age, experience, or mate quality may result in females tailoring clutch attributes (i.e., egg size, sex, and degree of hatching asynchrony) in ways that allow them to maximize their reproductive success. The discordance between factors that benefited mothers versus their offspring illustrates the importance of considering the maternal consequences of any factor that appears to affect offspring survival. Factors that increase the mass and survival of some offspring may not result in increased maternal reproductive success.  相似文献   

11.
Absence of seasonal variation in great tit offspring sex ratios   总被引:3,自引:0,他引:3  
When the timing of breeding affects the reproductive value of sons and daughters differently, parents are expected to increase their fitness by changing the offspring sex ratio during the course of the breeding season. Previous studies have shown that in great tits Parus major hatching date has a stronger effect on the fitness of juvenile males than on that of juvenile females. We tested whether this difference was reflected in a seasonal decline in the proportion of sons per breeding attempt. Although offspring sex ratio was more variable than would be expected from a binomial distribution, there was no significant relationship between the proportion of sons and the laying date of the clutch. Moreover, individual females did not adjust the sex ratio of their offspring following an experimental delay of breeding. This study therefore fails to demonstrate adaptive seasonal variation in great tit offspring sex ratios.  相似文献   

12.
Reproductive investment affects both offspring and parental fitness and influences the evolution of life histories. Females may vary their overall primary reproductive effort in relation to the phenotypic characteristics of their mate. However, the effects of male quality on differential resource allocation within clutches have been largely neglected despite the potential implications for mate choice and population dynamics, especially in species exhibiting biparental care and brood reduction. Female southern rockhopper penguins Eudyptes chrysocome paired with heavy mates reduced intra-clutch variation in egg and albumen masses. Females paired with new mates also reduced intra-clutch variation in yolk androgen levels. Since both an increased mass and increased androgen concentrations positively influence chick survival under sibling competition, the chances of fledging the whole clutch are likely to be higher for newly formed pairs with heavy males than for previously formed pairs with light males. Interestingly, total clutch provisioning did not vary with male quality. We show for the first time that females vary intra-clutch variation in resource allocation according to male quality. In species with brood reduction, it may be more adaptive for females to modulate the distribution of resources within the clutch according to breeding conditions, than to change their total clutch provisioning.  相似文献   

13.
Brood sex ratio in the Kentish plover   总被引:3,自引:0,他引:3  
How and why do the mating opportunities of males and femalesdiffer in natural population of animals? Previously we showedthat females have higher mating opportunities than males inthe Kentish plover Charadrius alexandrinus. Both parents incubatethe eggs, and males provide more brood care than females; thusit is not obvious why the females find new mates sooner thanthe males. In this study we investigated whether the sex-biasedmating opportunities stem from biased offspring sex ratios.We determined the sex of newly hatched, precocial chicks usingCHD gene markers. Among fully sexed broods, 0.461 ± 0.024(SE) of chicks (454 chicks in 158 broods) were male, and thissex ratio was not significantly different from unity. The proportionof males at hatching decreased significantly over the breedingseason, which occurred consistently in all 3 years of the study.Large chicks were more likely to be males than females. Neitherparental age nor body size of male and female parents was relatedto brood sex ratio. We also sexed a number of chicks that werecaught after they left their nest (range of estimated ages 0–17days) and found that the proportion of males increased withbrood age. This relationship remained highly significant whencontrolling statistically for hatching date. As brood size decreaseddue to mortality after the chicks left their nest, these resultssuggest that the mortality of daughters was higher than thatof the sons shortly after hatching. Taken together, our resultsshow that the female-biased mating opportunities in the Kentishplover are not due to biased brood sex ratio at hatching but,at least in part, are due to female-biased chick mortality soonafter hatching.  相似文献   

14.
We demonstrate that egg size in side-blotched lizards is heritable (parent-offspring regressions) and thus will respond to natural selection. Because our estimate of heritability is derived from free-ranging lizards, it is useful for predicting evolutionary response to selection in wild populations. Moreover, our estimate for the heritability of egg size is not likely to be confounded by nongenetic maternal effects that might arise from egg size per se because we estimate a significant parent-offspring correlation for egg size in the face of dramatic experimental manipulation of yolk volume of the egg. Furthermore, we also demonstrate a significant correlation between egg size of the female parent and clutch size of her offspring. Because this correlation is not related to experimentally induced maternal effects, we suggest that it is indicative of a genetic correlation between egg size and clutch size. We synthesize our results from genetic analyses of the trade-off between egg size and clutch size with previously published experiments that document the mechanistic basis of this trade-off. Experimental manipulation of yolk volume has no effect on offspring reproductive traits such as egg size, clutch size, size at maturity, or oviposition date. However, egg size was related to offspring survival during adult phases of the life history. We partitioned survival of offspring during the adult phase of the life history into (1) survival of offspring from winter emergence to the production of the first clutch (i.e., the vitellogenic phase of the first clutch), and (2) survival of the offspring from the production of the first clutch to the end of the reproductive season. Offspring from the first clutch of the reproductive season in the previous year had higher survival during vitellogenesis of their first clutch if these offspring came from small eggs. We did not observe selection during these prelaying phases of adulthood for offspring from later clutches. However, we did find that later clutch offspring from large eggs had the highest survival over the first season of reproduction. The differences in selection on adult survival arising from maternal effects would reinforce previously documented selection that favors the production of small offspring early in the season and large offspring later in the season—a seasonal shift in maternal provisioning. We also report on a significant parent-offspring correlation in lay date and thus significant heritable variation in lay date. We can rule out the possibility of yolk volume as a confounding maternal effect—experimental manipulation of yolk volume has no effect on lay date of offspring. However, we cannot distinguish between genetic effects (i.e., heritable) and nongenetic maternal effects acting on lay date that arise from the maternal trait lay date per se (or other unidentified maternal traits). Nevertheless, we demonstrate how the timing of female reproduction (e.g., date of oviposition and date of hatching) affect reproductive attributes of offspring. Notably, we find that date of hatching has effects on body size at maturity and fecundity of offspring from later clutches. We did not detect comparable effects of lay date on offspring from the first clutch.  相似文献   

15.
Females are expected to have evolved to be more discriminatory in mate choice than males as a result of greater reproductive investment into larger gametes (eggs vs. sperm). In turn, males are predicted to be more promiscuous than females, showing both a larger variance in the number of mates and a greater increase in reproductive success with more mates, yielding more intense sexual selection on males vs. females (Bateman's Paradigm). However, sex differences in costly parental care strategies can either reinforce or counteract the initial asymmetry in reproductive investment, which may be one cause for some studies failing to conform with predictions of Bateman's Paradigm. For example, in many bird species with small female‐biased initial investment but extensive biparental care, both sexes should be subject to similar strengths of sexual selection because males and females are similarly restricted in their ability to pursue additional mates. Unlike 99% of avian species, however, obligate brood parasitic birds lack any parental care in either sex, predicting a conformation to Bateman's Paradigm. Here we use microsatellite genotyping to demonstrate that in brood parasitic brown‐headed cowbirds (Molothrus ater), per capita annual reproductive success increases with the number of mates in males, but not in females. Furthermore, also as predicted, the variance of the number of mates and offspring is greater in males than in females. Thus, contrary to previous findings in this species, our results conform to predictions of the Bateman's Paradigm for taxa without parental care.  相似文献   

16.
A biased operational sex ratio (OSR) can have multiple, confounding effects on reproductive fitness. A biased OSR can increase harassment and mating activity directed towards potential mates but may also increase the ability of potential mates to choose a good partner if lower quality mates are screened out through competitive interactions. Additionally, a biased OSR may affect reproductive fitness through changes in male ejaculate content or in female reproductive response. We quantified how a male-biased OSR (1:1, 2:1, or 5:1 male to female) affected the size of a female??s first egg clutch and her offspring??s survivorship in the housefly, Musca domestica. A male-biased OSR increased female fitness: females laid more eggs in their first clutch, had increased offspring survivorship at a 2:1 versus 1:1 OSR, and had equivalent fitness with a 5:1 male to female OSR. Courtship activity increased when the OSR was male-biased but was not a significant predictor of female fitness. Trials where females chose their mates versus trials where a random male was chosen for them had equivalent first clutch sizes and offspring survivorship. These results suggest that there are cryptic effects from a male-biased OSR on female fitness that are most likely driven by pre-copulatory social environment.  相似文献   

17.
Life-history theory assumes a trade-off between current reproductive effort and future reproductive success. There are a large number of studies demonstrating reproductive trade-offs in different animal taxa, particularly in birds. Most bird studies have focused on the costs of chick rearing in altricial species. These costs have been assumed to be low in precocial species, but this aspect has been little studied. We used long-term individual reproductive data from the common goldeneye Bucephala clangula , an iteroparous precocial duck with uniparental female care, to examine whether brood rearing carries costs that affect future reproductive performance. All females were experienced breeders, and possible differences in female quality were ruled out. We compared within-individual (between-year) changes in clutch size, hatching date and body mass between females that had reared a brood in the previous year and females that had not. It turned out that brood rearing involved a cost in terms of clutch size and hatching date the next year, but not in terms of body mass: females that had reared a brood in the previous year laid relatively smaller clutches and laid relatively later than females that had not reared a brood. Our results show that normal brood rearing in a precocial species involves costs that affect future reproduction.  相似文献   

18.
Increased variance in the reproductive success of males relative to females favors mothers that optimally allocate sons and daughters to maximize their fitness return. In altricial songbirds, one influence on the fitness prospects of offspring arises through the order in which nestlings hatch from their eggs, which affects individual mass and size before nest leaving. In house wrens (Troglodytes aedon), the influence of hatching order depends on the degree of hatching synchrony, with greater variation in nestling mass and size within broods hatching asynchronously than in those hatching synchronously. Early-hatching nestlings in asynchronous broods were heavier and larger than their later-hatching siblings and nestlings in synchronous broods. The effect of hatching order was also sex specific, as the mass of males in asynchronous broods was more strongly influenced by hatching order than the mass of females, with increased variation in the mass of males relative to that of females. As predicted, mothers hatching their eggs asynchronously biased first-laid, first-hatching eggs toward sons and late-laid, late-hatching eggs toward daughters, whereas females hatching their eggs synchronously distributed the sexes randomly among the eggs of their clutch. We conclude that females allocate the sex of their offspring among the eggs of their clutch in a manner that maximizes their own fitness.  相似文献   

19.
We examined the brood sex ratio and offspring body mass in relation to the timing of breeding and brood size in the Great Cormorant Phalacrocorax carbo sinensis. The brood sex ratio was not related to brood size but it was significantly related to the hatching date, with a decreasing proportion of males in the brood in the course of the season. Male chicks had significantly lower body mass if they hatched later in the season, whereas there was no such relationship for female offspring. Assuming that environmental conditions deteriorate with progress of the breeding season, and male offspring may be more vulnerable to poor environmental conditions, the observed decline in the proportion of male offspring late in the season may be adaptive.  相似文献   

20.
Like many other gobies, male Isaza (Gymnogobius isaza) which are endemic to Lake Biwa, Japan, exclusively care for broods in nests. This goby may have an optimal range of brood size (i.e., an average clutch size of about 2000–3000 eggs) within which they may produce larger numbers of hatching young because much larger broods may be destroyed by fungal infection before hatching. This optimal brood size hypothesis (Takahashi et al. in J Ethol 22:153–159, 2004) predicts that (1) after spawning, both males and females will refuse additional spawning by other gravid females (second females) to keep brood sizes within optimal ranges, (2) larger fish will repel second females more successfully than will smaller fish, and thus, (3) both sexes prefer larger mates. To examine these predictions, we first observed Isaza’s aggressive behaviors in aquaria and investigated whether fish attacked and repelled second females that were introduced after spawning, and, if so, what were the sizes of fish that did so. Large fish, regardless of sex, aggressively prevented second females from entering the nest, but second females larger than the pairs displaced the pair females forcibly and spawned eggs into their clutches. Mate choice experiments showed that males preferred large females. Although females’ choice of large mates was not confirmed, many results may largely coincide with the predictions of the optimal brood size hypothesis. Thus, Isaza males’ choice of large mates will be advantageous for defending against brood parasitism by conspecific females and for achieving optimal clutch size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号