首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Previous studies have shown that the rate of breast cancer metastasis correlates with the expression of vacuolar H+-ATPases (V-ATPases). However, how V-ATPase is involved in breast cancer metastasis remains unknown. Our previous study showed that Atp6v1c1-depleted osteoclasts did not form organized actin rings and that Atp6v1c1 co-localizes with F-actin. In this study, we found that the normal arrangement of filamentous actin is disrupted in Atp6v1c1-depleted 4T1 mouse breast cancer cells and in the ATP6V1C1-depleted human breast cancer cell lines MDA-MB-231 and MDA-MB-435s. We further found that Atp6v1c1 co-localizes with F-actin in 4T1 cells. The results of our study suggest that high expression of Atp6v1c1 affects the actin structure of cancer cells such that it facilitates breast cancer metastasis. The findings also indicate that Atp6v1c1 could be a novel target for breast cancer metastasis therapy.  相似文献   

2.
Periodontal disease (Periodontitis) is a serious disease that affects a majority of adult Americans and is associated with other systemic diseases, including diabetes, rheumatoid arthritis, and other inflammatory diseases. While great efforts have been devoted toward understanding the pathogenesis of periodontitis, there remains a pressing need for developing potent therapeutic strategies for targeting this pervasive and destructive disease. In this study, we utilized novel adeno-associated virus (AAV)-mediated Atp6v1c1 knockdown gene therapy to treat bone erosion and inflammatory caused by periodontitis in mouse model. Atp6v1c1 is a subunit of the V-ATPase complex and regulator of the assembly of the V0 and V1 domains of the V-ATPase complex. We demonstrated previously that Atp6v1c1 has an essential function in osteoclast mediated bone resorption. We hypothesized that Atp6v1c1 may be an ideal target to prevent the bone erosion and inflammation caused by periodontitis. To test the hypothesis, we employed AAV RNAi knockdown of Atp6v1c1 gene expression to prevent bone erosion and gingival inflammation simultaneously. We found that lesion-specific injection of AAV-shRNA-Atp6v1c1 into the periodontal disease lesions protected against bone erosion (>85%) and gingival inflammation caused by P. gingivalis W50 infection. AAV-mediated Atp6v1c1 knockdown dramatically reduced osteoclast numbers and inhibited the infiltration of dendritic cells and macrophages in the bacteria-induced inflammatory lesions in periodontitis. Silencing of Atp6v1c1 expression also prevented the expressions of osteoclast-related genes and pro-inflammatory cytokine genes. Our data suggests that AAV-shRNA-Atp6v1c1 treatment can significantly attenuate the bone erosion and inflammation caused by periodontitis, indicating the dual function of AAV-shRNA-Atp6v1c1 as an inhibitor of bone erosion mediated by osteoclasts, and as an inhibitor of inflammation through down-regulation of pro-inflammatory cytokine expression. This study demonstrated that Atp6v1c1 RNAi knockdown gene therapy mediated by AAV-shRNA-Atp6v1c1 is a promising novel therapeutic approach for the treatment of bone erosion and inflammatory related diseases, such as periodontitis and rheumatoid arthritis.  相似文献   

3.
Vacuolar H(+)-ATPases (V-ATPases) are multisubunit enzymes that acidify compartments of the vacuolar system of all eukaryotic cells. In osteoclasts, the cells that degrade bone, V-ATPases, are recruited from intracellular membrane compartments to the ruffled membrane, a specialized domain of the plasma membrane, where they are maintained at high densities, serving to acidify the resorption bay at the osteoclast attachment site on bone (Blair, H. C., Teitelbaum, S. L., Ghiselli, R., and Gluck, S. L. (1989) Science 249, 855-857). Here, we describe a new mechanism involved in controlling the activity of the bone-resorptive cell. V-ATPase in osteoclasts cultured in vitro was found to form a detergent-insoluble complex with actin and myosin II through direct binding of V-ATPase to actin filaments. Plating bone marrow cells onto dentine slices, a physiologic stimulus that activates osteoclast resorption, produced a profound change in the association of the V-ATPase with actin, assayed by coimmunoprecipitation and immunocytochemical colocalization of actin filaments and V-ATPase in osteoclasts. Mouse marrow and bovine kidney V-ATPase bound rabbit muscle F-actin directly with a maximum stoichiometry of 1 mol of V-ATPase per 8 mol of F-actin and an apparent affinity of 0.05 microM. Electron microscopy of negatively stained samples confirmed the binding interaction. These findings link transport of V-ATPase to reorganization of the actin cytoskeleton during osteoclast activation.  相似文献   

4.
The vacuolar-type H(+)-ATPase (V-ATPase) proton pump is a macromolecular complex composed of at least 14 subunits organized into two functional domains, V(1) and V(0). The complex is located on the ruffled border plasma membrane of bone-resorbing osteoclasts, mediating extracellular acidification for bone demineralization during bone resorption. Genetic studies from mice to man implicate a critical role for V-ATPase subunits in osteoclast-related diseases including osteopetrosis and osteoporosis. Thus, the V-ATPase complex is a potential molecular target for the development of novel anti-resorptive agents useful for the treatment of osteolytic diseases. Here, we review the current structure and function of V-ATPase subunits, emphasizing their exquisite roles in osteoclastic function. In addition, we compare several distinct classes of V-ATPase inhibitors with specific inhibitory effects on osteoclasts. Understanding the structure-function relationship of the osteoclast V-ATPase may lead to the development of osteoclast-specific V-ATPase inhibitors that may serve as alternative therapies for the treatment of osteolytic diseases.  相似文献   

5.
Previous studies have shown that Atp6v1c1, a regulator of the assembly of the V0 and V1 domains of the V-ATPase complex, is up-regulated in metastatic oral tumors. Despite these studies, the function of Atp6v1c1 in tumor growth and metastasis is still unknown. Atp6v1c1''s expression in metastatic oral squamous cell carcinoma indicates that Atp6v1c1 has an important function in cancer growth and metastasis. We hypothesized that elevated expression of Atp6v1c1 is essential to cancer growth and metastasis and that Atp6v1c1 promotes cancer growth and metastasis through activation of V-ATPase activity. To test this hypothesis, a Lentivirus-mediated RNAi knockdown approach was used to study the function of Atp6v1c1 in mouse 4T1 mammary tumor cell proliferation and migration in vitro and cancer growth and metastasis in vivo. Our data revealed that silencing of Atp6v1c1 in 4T1 cancer cells inhibited lysosomal acidification and severely impaired 4T1 cell growth, migration, and invasion through Matrigel in vitro. We also show that Atp6v1c1 knockdown with Lenti-c1s3, a lentivirus targeting Atp6v1c1 for shRNA mediated knockdown, can significantly inhibit 4T1 xenograft tumor growth, metastasis, and osteolytic lesions in vivo. Our study demonstrates that Atp6v1c1 may promote breast cancer growth and bone metastasis through regulation of lysosomal V-ATPase activity, indicating that Atp6v1c1 may be a viable target for breast cancer therapy and silencing of Atp6v1c1 may be an innovative therapeutic approach for the treatment and prevention of breast cancer growth and metastasis.  相似文献   

6.
NFATc1 has been characterized as a master regulator of nuclear factor kappaB ligand-induced osteoclast differentiation. Herein, we demonstrate a novel role for NFATc1 as a positive regulator of nuclear factor kappaB ligand-mediated osteoclast fusion as well as other fusion-inducing factors such as TNF-alpha. Exogenous overexpression of a constitutively active form of NFATc1 in bone marrow-derived monocyte/macrophage cells (BMMs) induces formation of multinucleated osteoclasts as well as the expression of fusion-mediating molecules such as the d2 isoform of vacuolar ATPase V(o) domain (Atp6v0d2) and the dendritic cell-specific transmembrane protein (DC-STAMP). Moreover, inactivation of NFATc1 by cyclosporin A treatment attenuates expression of Atp6v0d2 and DC-STAMP and subsequent fusion process of osteoclasts. We show that NFATc1 binds to the promoter regions of Atp6v0d2 and DC-STAMP in osteoclasts and directly induces their expression. Furthermore, overexpression of Atp6v0d2 and DC-STAMP rescues cell-cell fusion of preosteoclasts despite reduced NFATc1 activity. Our data indicate for the first time that the NFATc1/Atp6v0d2 and DC-STAMP signaling axis plays a key role in the osteoclast multinucleation process, which is essential for efficient bone resorption.  相似文献   

7.
Dissolution of the inorganic bone matrix releases not only calcium and phosphate ions, but also bicarbonate. Electroneutral sodium-bicarbonate co-transporter (NBCn1) is expressed in inactive osteoclasts, but its physiological role in bone resorption has remained unknown. We show here that NBCn1, encoded by the SLC4A7 gene, is directly involved in bone resorption. NBCn1 protein was specifically found at the bone-facing ruffled border areas, and metabolic acidosis increased NBCn1 expression in rats in vivo. In human hematopoietic stem cell cultures, NBCn1 mRNA expression was observed only after formation of resorbing osteoclasts. To further confirm the critical role of NBCn1 during bone resorption, human hematopoietic stem cells were transduced with SLC4A7 shRNA lentiviral particles. Downregulation of NBCn1 both on mRNA and protein level by lentiviral shRNAs significantly inhibited bone resorption and increased intracellular acidification in osteoclasts. The lentiviral particles did not impair osteoclast survival, or differentiation of the hematopoietic or mesenchymal precursor cells into osteoclasts or osteoblasts in vitro. Inhibition of NBCn1 activity may thus provide a new way to regulate osteoclast activity during pathological bone resorption.  相似文献   

8.
Matrix-producing osteoblasts and bone-resorbing osteoclasts maintain bone homeostasis. Osteoclasts are multinucleated, giant cells of hematopoietic origin formed by the fusion of mononuclear pre-osteoclasts derived from myeloid cells. Fusion-mediated giant cell formation is critical for osteoclast maturation; without it, bone resorption is inefficient. To understand how osteoclasts differ from other myeloid lineage cells, we previously compared global mRNA expression patterns in these cells and identified genes of unknown function predominantly expressed in osteoclasts, one of which is the d2 isoform of vacuolar (H(+)) ATPase (v-ATPase) V(0) domain (Atp6v0d2). Here we show that inactivation of Atp6v0d2 in mice results in markedly increased bone mass due to defective osteoclasts and enhanced bone formation. Atp6v0d2 deficiency did not affect differentiation or the v-ATPase activity of osteoclasts. Rather, Atp6v0d2 was required for efficient pre-osteoclast fusion. Increased bone formation was probably due to osteoblast-extrinsic factors, as Atp6v02 was not expressed in osteoblasts and their differentiation ex vivo was not altered in the absence of Atp6v02. Our results identify Atp6v0d2 as a regulator of osteoclast fusion and bone formation, and provide genetic data showing that it is possible to simultaneously inhibit osteoclast maturation and stimulate bone formation by therapeutically targeting the function of a single gene.  相似文献   

9.
The ultrastructure of osteoclasts was examined in fetal rat bones after stimulation or inhibition of resorption in culture. A central ruffled border area completely encircled by a clear zone was considered to represent the resorbing system of the cell. The proportion of ruffled border and clear zone in osteoclast cross sections was compared with changes in bone resorption as measured by the release of previously incorporated radioactive calcium (45Ca). In control cultures 55% of the osteoclast cross sections showed an area closely apposed to bone and this consisted mainly of clear zone; only 11% showed ruffled borders. Treatment with parathyroid hormone (PTH) increased 45Ca release, increased the frequency of finding areas closely apposed to bone (79%), and markedly increased the frequency of the ruffled border area (64%). Colchicine given concurrently with PTH decreased the number of osteoclasts. Colchicine or calcitonin treatment after PTH stimulation decreased the proportion of ruffled border area significantly by 1 h; this was followed by a decrease in 45Ca release. These inhibited osteoclasts resembled osteoclasts from control, unstimulated cultures, suggesting that the cells had returned to their inactive state. Colchicine-treated osteoclasts also showed a loss of microtubules and a massive accumulation of 100 Å filaments, suggesting that synthesis of microtubular subunits had increased.  相似文献   

10.
Solubilization of mineralized bone by osteoclasts is largely dependent on the acidification of the extracellular resorption lacuna driven by the vacuolar (H+)-ATPases (V-ATPases) polarized within the ruffled border membranes. V-ATPases consist of two functionally and structurally distinct domains, V(1) and V(0). The peripheral cytoplasmically oriented V(1) domain drives ATP hydrolysis, which necessitates the translocation of protons across the integral membrane bound V(0) domain. Here, we demonstrate that an accessory subunit, Ac45, interacts with the V(0) domain and contributes to the vacuolar type proton pump-mediated function in osteoclasts. Consistent with its role in intracellular acidification, Ac45 was found to be localized to the ruffled border region of polarized resorbing osteoclasts and enriched in pH-dependent endosomal compartments that polarized to the ruffled border region of actively resorbing osteoclasts. Interestingly, truncation of the 26-amino acid residue cytoplasmic tail of Ac45, which encodes an autonomous internalization signal, was found to impair bone resorption in vitro. Furthermore, biochemical analysis revealed that although both wild type Ac45 and mutant were capable of associating with subunits a3, c, c', and d, deletion of the cytoplasmic tail altered its binding proximity with a3, c', and d. In all, our data suggest that the cytoplasmic terminus of Ac45 contains elements necessary for its proper interaction with V(0) domain and efficient osteoclastic bone resorption.  相似文献   

11.
Osteoclasts resorb bone via the ruffled border, whose complex folds are generated by secretory lysosome fusion with bone-apposed plasma membrane. Lysosomal fusion with the plasmalemma results in acidification of the resorptive microenvironment and release of CatK to digest the organic matrix of bone. The means by which secretory lysosomes are directed to fuse with the ruffled border are enigmatic. We show that proteins essential for autophagy, including Atg5, Atg7, Atg4B, and LC3, are important for generating the osteoclast ruffled border, the secretory function of osteoclasts, and bone resorption in?vitro and in?vivo. Further, Rab7, which is required for osteoclast function, localizes to the ruffled border in an Atg5-dependent manner. Thus, autophagy proteins participate in polarized secretion of lysosomal contents into the extracellular space by directing lysosomes to fuse with the plasma membrane. These findings are in keeping with a putative link between autophagy genes and human skeletal homeostasis.  相似文献   

12.
Summary Osteoclasts in metaphyses from young rats were systematically sectioned at different levels. Two types of osteoclasts were recognized. One type had no ruffled border while the other, and predominant type contained a ruffled border in a part of its length; some of the latter contained two ruffled borders. The closest contact between osteoclast and bone occurred at the level of the ruffled border and this bone under the border showed characteristic changes indicative of resorption. In some osteoclasts the ruffled border consisted of numerous slender cytoplasmic projections separated by very narrow spaces or channels while in other osteoclasts it was more open. The ruffled border was commonly surrounded by a transitional zone containing numerous thin filaments. The osteoclast usually had its greatest dimension at the level of the ruffled border and the cytoplasm here contained many bodies and vacuoles but a sparse endoplasmic reticulum. Away from the level of the ruffled border the cytoplasmic vacuoles and bodies were fewer while the endoplasmic reticulum was often more pronounced. Parts of the osteoclasts were usually situated close to a vessel. It is suggested that there is a correlation between the development of the ruffled border and the degree of bone resorption and that osteoclasts without a ruffled border are, at least temporarily, inactive with respect to bone resorption. The numerous cytoplasmic bodies, interpreted as lysosomes, are presumed to be important in the resorption process. The closely adjacent positioning of osteoclasts and vessels may facilitate the transport of resorption products to the blood.This research was supported by the Danish Research Council. Grant no. 512–727, 512–819 and 512–1545.I wish to thank Professor Arvid B. Maunsbach for valuable discussions.  相似文献   

13.
Bone homeostasis is tightly regulated by matrix-producing osteoblasts and bone-resorbing osteoclasts. During osteoclast development, mononuclear preosteoclasts derived from myeloid cells fuse together to form multinucleated, giant cells. Previously, we reported that the d2 isoform of the vacuolar (H+) ATPase V0 domain (Atp6v0d2) plays an important role in osteoclast maturation and bone formation. To understand how Atp6v0d2 controls osteoclast maturation, we have performed a yeast two-hybrid screen using full-length Atp6v0d2 as the bait, and identified adhesion-regulating molecule 1 protein (Adrm1) as a potential functional partner of Atp6v0d2. The interaction between Atp6v0d2 and Adrm1 was confirmed in yeast and invivo using immunoprecipitation assays. We also show that Adrm1 is required for cell migration and osteoclast maturation.  相似文献   

14.
Osteopontin (OPN) was expressed in murine wild-type osteoclasts, localized to the basolateral, clear zone, and ruffled border membranes, and deposited in the resorption pits during bone resorption. The lack of OPN secretion into the resorption bay of avian osteoclasts may be a component of their functional resorption deficiency in vitro. Osteoclasts deficient in OPN were hypomotile and exhibited decreased capacity for bone resorption in vitro. OPN stimulated CD44 expression on the osteoclast surface, and CD44 was shown to be required for osteoclast motility and bone resorption. Exogenous addition of OPN to OPN-/- osteoclasts increased the surface expression of CD44, and it rescued osteoclast motility due to activation of the alpha(v)beta(3) integrin. Exogenous OPN only partially restored bone resorption because addition of OPN failed to produce OPN secretion into resorption bays as seen in wild-type osteoclasts. As expected with these in vitro findings of osteoclast dysfunction, a bone phenotype, heretofore unappreciated, was characterized in OPN-deficient mice. Delayed bone resorption in metaphyseal trabeculae and diminished eroded perimeters despite an increase in osteoclast number were observed in histomorphometric measurements of tibiae isolated from OPN-deficient mice. The histomorphometric findings correlated with an increase in bone rigidity and moment of inertia revealed by load-to-failure testing of femurs. These findings demonstrate the role of OPN in osteoclast function and the requirement for OPN as an osteoclast autocrine factor during bone remodeling.  相似文献   

15.
The multisubunit enzyme V-ATPase harbours isoforms of individual subunits. a3 is one of four 116 kDa subunit a isoforms, and it is crucial for bone resorption. We used small interfering RNA (siRNA) molecules to knock down a3 in rat osteoclast cultures. Labeled siRNA-molecules entered osteoclasts via endocytosis and knocked down the a3 mRNA. Bone resorption was decreased in siRNA-treated samples due to decreased acidification and osteoclast inactivation. Expression of a1 did not respond to decreased a3 levels, suggesting that a1 does not compensate for a3 in osteoclast cultures. Subunit a3 is thus an interesting target for novel nucleic acid therapy.  相似文献   

16.
During skeletal growth and remodeling the mineralized bone matrix is resorbed by osteoclasts through the constant secretion of protons and proteases to the bone surface. This relies on the formation of specialized plasma membrane domains, the sealing zone and the ruffled border, and vectorial transportation of intracellular vesicles in bone-resorbing osteoclasts. Here we show that Rab7, a small GTPase that is associated with late endosomes, is highly expressed and is predominantly localized at the ruffled border in bone-resorbing osteoclasts. The decreased expression of Rab7 in cultured osteoclasts by antisense oligodeoxynucleotides disrupted the polarization of the osteoclasts and the targeting of vesicles to the ruffled border. These impairments caused a significant inhibition of bone resorption in vitro. The results indicate that the late endocytotic pathway is involved in the osteoclast polarization and bone resorption and underscore the importance of Rab7 in osteoclast function.  相似文献   

17.
Osteoclasts employ highly specialized intracellular trafficking controls for bone resorption and organelle homeostasis. The sorting nexin Snx10 is a (Phosphatidylinositol 3-phosphate) PI3P-binding protein, which localizes to osteoclast early endosomes. Osteoclasts from humans and mice lacking functional Snx10 are severely dysfunctional. They show marked impairments in endocytosis, extracellular acidification, ruffled border formation, and bone resorption, suggesting that Snx10 regulates membrane trafficking. To better understand how SNx10 regulates vesicular formation and trafficking in osteoclasts, we set out on a search for Snx10 partners. We performed a yeast two-hybrid screening and identified FKBP12. FKBP12 is expressed in receptor activator of nuclear factor kB ligand–stimulated RAW264.7 monocytes, coimmunoprecipitates with Snx10, and colocalizes with Snx10 in osteoclasts. We also found that FKBP12, Snx10, and early endosome antigen 1 (EEA1) are present in the same subcellular fractions obtained by centrifugation in sucrose gradients, which confirms localization of FKBP12 to early endosomes. Taken together, these results indicate that Snx10 and FKBP12 are partners and suggest that Snx10 and FKBP12 are involved in the regulation of endosome/lysosome homeostasis via the synthesis. These findings may suggest novel therapeutic approaches to control bone loss by targeting essential steps in osteoclast membrane trafficking.  相似文献   

18.
Qin A  Cheng TS  Lin Z  Cao L  Chim SM  Pavlos NJ  Xu J  Zheng MH  Dai KR 《PloS one》2012,7(4):e34132
Wear particle-induced peri-implant loosening (Aseptic prosthetic loosening) is one of the most common causes of total joint arthroplasty. It is well established that extensive bone destruction (osteolysis) by osteoclasts is responsible for wear particle-induced peri-implant loosening. Thus, inhibition of osteoclastic bone resorption should prevent wear particle induced osteolysis and may serve as a potential therapeutic avenue for prosthetic loosening. Here, we demonstrate for the first time that saliphenylhalamide, a new V-ATPase inhibitor attenuates wear particle-induced osteolysis in a mouse calvarial model. In vitro biochemical and morphological assays revealed that the inhibition of osteolysis is partially attributed to a disruption in osteoclast acidification and polarization, both a prerequisite for osteoclast bone resorption. Interestingly, the V-ATPase inhibitor also impaired osteoclast differentiation via the inhibition of RANKL-induced NF-κB and ERK signaling pathways. In conclusion, we showed that saliphenylhalamide affected multiple physiological processes including osteoclast differentiation, acidification and polarization, leading to inhibition of osteoclast bone resorption in vitro and wear particle-induced osteolysis in vivo. The results of the study provide proof that the new generation V-ATPase inhibitors, such as saliphenylhalamide, are potential anti-resorptive agents for treatment of peri-implant osteolysis.  相似文献   

19.
Ryu J  Kim H  Lee SK  Chang EJ  Kim HJ  Kim HH 《Proteomics》2005,5(16):4152-4160
Osteoclasts are cells specialized for bone resorption. For osteoclast activation, tumor necrosis factor receptor-associated factor 6 (TRAF6) plays a pivotal role. To find new molecules that bind TRAF6 and have a function in osteoclast activation, we employed a proteomic approach. TRAF6-binding proteins were purified from osteoclast cell lysates by affinity chromatography and their identity was disclosed by MS. The identified proteins included several heat shock proteins, actin and actin-binding proteins, and vacuolar ATPase (V-ATPase). V-ATPase, documented for a great increase in expression during osteoclast differentiation, is an important enzyme for osteoclast function; it transports proton to resorption lacunae for hydroxyapatite dissolution. The binding of V-ATPase with TRAF6 was confirmed both in vitro by GST pull-down assays and in osteoclasts by co-immunoprecipitation and confocal microscopy experiments. In addition, the V-ATPase activity associated with TRAF6 increased in osteoclasts stimulated with receptor activator of nuclear factor kappaB ligand (RANKL). Furthermore, a dominant-negative form of TRAF6 abrogated the RANKL stimulation of V-ATPase activity. Our study identified V-ATPase as a TRAF6-binding protein using a proteomics strategy and proved a direct link between these two important molecules for osteoclast function.  相似文献   

20.
A variety of intracellular membrane trafficking pathways are involved in establishing the polarization of resorbing osteoclasts and regulating bone resorption activities. Small GTP-binding proteins of rab family have been implicated as key regulators of membrane trafficking in mammalian cells. Here we used a RT-PCR-based cloning method and confocal laser scanning microscopy to explore the expression array and subcellular localization of rab proteins in osteoclasts. Rab1B, rab4B, rab5C, rab7, rab9, rab11B, and rab35 were identified from rat osteoclasts in this study. Rab5C may be associated with early endosomes, while rab11B is localized at perinuclear recycling compartments and may function in the ruffled border membrane turnover and osteoclast motility. Interestingly, late endosomal rabs, rab7, and rab9, were found to localize at the ruffled border membrane indicating a late endosomal nature of this specialized plasma membrane domain in resorbing osteoclasts. This also suggests that late endocytotic pathways may play an important role in the secretion of lysosomal enzymes, such as cathepsin K, during bone resorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号