首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80 % can be achieved for 15N and 13C with yields comparable to expression in full media. For 2H,15N and 2H,13C,15N labeling, incorporation is only slightly lower with 75 and 73 %, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins.  相似文献   

2.
This report shows for the first time the efficient uniform isotope labeling of a recombinant protein expressed using Baculovirus-infected insect cells. The recent availability of suitable media for 15N- and 13C/15N-labeling in insect cells, the high expression of Abl kinase in these labeling media and a suitable labeling protocol made it possible to obtain a 1H–15N-HSQC spectrum for the catalytic domain of Abl kinase of good quality and with label incorporation rates > 90%. The presented isotope labeling method should be applicable also to further proteins where successful expression is restricted to the Baculovirus expression system.  相似文献   

3.
For larger proteins, and proteins not amenable to expression in bacterial hosts, it is difficult to deduce structures using NMR methods based on uniform 13C, 15N isotopic labeling and observation of just nuclear Overhauser effects (NOEs). In these cases, sparse labeling with selected 15N enriched amino acids and extraction of a wider variety of backbone-centered structural constraints is providing an alternate approach. A limitation, however, is the absence of resonance assignment strategies that work without uniform 15N, 13C labeling or preparation of numerous samples labeled with pairs of isotopically labeled amino acids. In this paper an approach applicable to a single sample prepared with sparse 15N labeling in selected amino acids is presented. It relies on correlation of amide proton exchange rates, measured from data on the intact protein and on digested and sequenced peptides. Application is illustrated using the carbohydrate binding protein, Galectin-3. Limitations and future applications are discussed.  相似文献   

4.
A method for efficient isotopic labeling of recombinant proteins   总被引:15,自引:0,他引:15  
A rapid and efficient approach for preparing isotopically labeled recombinant proteins is presented. The method is demonstrated for 13C labeling of the C-terminal domain of angiopoietin-2, 15N labeling of ubiquitin and for 2H/13C/15N labeling of the Escherichia coli outer-membrane lipoprotein Lpp-56. The production method generates cell mass using unlabeled rich media followed by exchange into a small volume of labeled media at high cell density. Following a short period for growth recovery and unlabeled metabolite clearance, the cells are induced. The expression yields obtained provide a fourfold to eightfold reduction in isotope costs using simple shake flask growths.  相似文献   

5.
6.
Escherichia coli (E. coli) is a versatile organism for making nucleotides labeled with stable isotopes (13C, 15N, and/or 2H) for structural and molecular dynamics characterizations. Growth of a mutant E. coli strain deficient in the pentose phosphate pathway enzyme glucose-6-phosphate dehydrogenase (K10-1516) on 2-13C-glycerol and 15N-ammonium sulfate in Studier minimal medium enables labeling at sites useful for NMR spectroscopy. However, 13C-sodium formate combined with 13C-2-glycerol in the growth media adds labels to new positions. In the absence of labeled formate, both C5 and C6 positions of the pyrimidine rings are labeled with minimal multiplet splitting due to 1JC5C6 scalar coupling. However, the C2/C8 sites within purine rings and the C1′/C3′/C5′ positions within the ribose rings have reduced labeling. Addition of 13C-labeled formate leads to increased labeling at the base C2/C8 and the ribose C1′/C3′/C5′ positions; these new specific labels result in two- to three-fold increase in the number of resolved resonances. This use of formate and 15N-ammonium sulfate promises to extend further the utility of these alternate site specific labels to make labeled RNA for downstream biophysical applications such as structural, dynamics and functional studies of interesting biologically relevant RNAs.  相似文献   

7.
The production of bioactive peptides and small protein fragments is commonly achieved via solid-phase chemical synthesis. However, such techniques become unviable and prohibitively expensive when the peptides are large (e.g., >30 amino acids) or when isotope labeling is required for NMR studies. Expression and purification of large quantities of unfolded peptides in E. coli have also proved to be difficult even when the desired peptides are carried by fusion proteins such as GST. We have developed a peptide expression system that utilizes a novel fusion protein (SFC120) which is highly expressed and directs the peptides to inclusion bodies, thereby minimizing in-cell proteolysis whilst maintaining high yields of peptide expression. The expressed peptides can be liberated from the carrier protein by CNBr cleavage at engineered methionine sites or through proteolysis by specific proteases for peptides containing methionine residues. In the present systems, we use CNBr, due to the absence of methionine residues in the target peptides, although other cleavage sites can be easily inserted. We report the production of six unfolded protein fragments of different composition and lengths (19 to 48 residues) derived from the virulent effector kinases, Cla4 and Ste20 of Candida albicans. All six peptides were produced with high yields of purified material (30–40 mg/l in LB, 15–20 mg/l in M9 medium), pointing to the general applicability of this expression system for peptide production. The enrichment of these peptides with 15N, 15N/13C and even 15N/13C/2H isotopes is presented allowing speedy assignment of poorly-resolved resonances of flexible peptides.  相似文献   

8.
Perdeuteration, selective deuteration, and stereo array isotope labeling (SAIL) are valuable strategies for NMR studies of larger proteins and membrane proteins. To minimize scrambling of the label, it is best to use cell-free methods to prepare selectively labeled proteins. However, when proteins are prepared from deuterated amino acids by cell-free translation in H2O, exchange reactions can lead to contamination of 2H sites by 1H from the solvent. Examination of a sample of SAIL-chlorella ubiquitin prepared by Escherichia coli cell-free synthesis revealed that exchange had occurred at several residues (mainly at Gly, Ala, Asp, Asn, Glu, and Gln). We present results from a study aimed at identifying the exchanging sites and level of exchange and at testing a strategy for minimizing 1H contamination during wheat germ cell-free translation of proteins produced from deuterated amino acids by adding known inhibitors of transaminases (1 mM aminooxyacetic acid) and glutamate synthetase (0.1 mM l-methionine sulfoximine). By using a wheat germ cell-free expression system, we produced [U–2H, 15N]-chlorella ubiquitin without and with added inhibitors, and [U–15N]-chlorella ubiquitin as a reference to determine the extent of deuterium incorporation. We also prepared a sample of [U–13C, 15N]-chlorella ubiquitin, for use in assigning the sites of exchange. The added inhibitors did not reduce the protein yield and were successful in blocking hydrogen exchange at Cα sites, with the exception of Gly, and at Cβ sites of Ala. We discovered, in addition, that partial exchange occurred with or without the inhibitors at certain side-chain methyl and methylene groups: Asn–Hβ, Asp–Hβ, Gln–Hγ, Glu–Hγ, and Lys–Hε. The side-chain labeling pattern, in particular the mixed chiral labeling resulting from partial exchange at certain sites, should be of interest in studies of large proteins, protein complexes, and membrane proteins.  相似文献   

9.
Summary The protein human carbonic anhydrase II (HCA II) has been isotopically labeled with 2H, 13C and 15N for high-resolution NMR assignment studies and pulse sequence development. To increase the sensitivity of several key 1H/13C/15N triple-resonance correlation experiments, 2H has been incorporated into HCA II in order to decrease the rates of 13C and 1HN T2 relaxation. NMR quantities of protein with essentially complete aliphatic 2H incorporation have been obtained by growth of E. coli in defined media containing D2O, [1,2-13C2, 99%] sodium acetate, and [15N, 99%] ammonium chloride. Complete aliphatic deuterium enrichment is optimal for 13C and 15N backbone NMR assignment studies, since the 13C and 1HN T2 relaxation times and, therefore, sensitivity are maximized. In addition, complete aliphatic deuteration increases both resolution and sensitivity by eliminating the differential 2H isotopic shift observed for partially deuterated CHnDm moieties.  相似文献   

10.
We present protocols for high-level expression of isotope-labelled proteins in E. coli in cost-effective ways. This includes production of large amounts of unlabeled proteins and 13C-methyl methionine labeling in rich media, where yields of up to a gram of soluble protein per liter of culture are reached. Procedures for uniform isotope labeling of 2H, 13C and 15N using auto-induction or isopropyl-β-d-1-thiogalactopyranoside-induction are described, with primary focus on minimal isotope consumption and high reproducibility of protein expression. These protocols are based on high cell-density fermentation, but the key procedures are easily transferred to shake flask cultures.  相似文献   

11.
Protein perdeuteration approaches have tremendous value in protein NMR studies, but are limited by the high cost of perdeuterated media. Here, we demonstrate that E. coli cultures expressing proteins using either the condensed single protein production method (cSPP), or conventional pET expression plasmids, can be condensed prior to protein expression, thereby providing high-quality 2H, 13C, 15N-enriched protein samples at 2.5–10% the cost of traditional methods. As an example of the value of such inexpensively-produced perdeuterated proteins, we produced 2H, 13C, 15N-enriched E. coli cold shock protein A (CspA) and EnvZb in 40× condensed phase media, and obtained NMR spectra suitable for 3D structure determination. The cSPP system was also used to produce 2H, 13C, 15N-enriched E. coli plasma membrane protein YaiZ and outer membrane protein X (OmpX) in condensed phase. NMR spectra can be obtained for these membrane proteins produced in the cSPP system following simple detergent extraction, without extensive purification or reconstitution. This allows a membrane protein’s structural and functional properties to be characterized prior to reconstitution, or as a probe of the effects of subsequent purification steps on the structural integrity of membrane proteins. We also provide a standardized protocol for production of perdeuterated proteins using the cSPP system. The 10–40 fold reduction in costs of fermentation media provided by using a condensed culture system opens the door to many new applications for perdeuterated proteins in spectroscopic and crystallographic studies.  相似文献   

12.
A new protocol is described for the isotope (15N and 13C,15N) enrichment of hen egg white lysozyme. Hen egg white lysozyme and an all-Ala-mutant of this protein have been expressed in E. coli. They formed inclusion bodies from which mg quantities of the proteins were purified and prepared for NMR spectroscopic investigations. 1H,13C and 15N main chain resonances of disulfide reduced and S-methylated lysozyme were assigned and its residual structure in water pH 2 was characterized by chemical shift perturbation analysis. A new NMR experiment has been developed to assign tryptophan side chain indole resonances by correlation of side chain and backbone NH resonances with the Cγ resonances of these residues. Assignment of tryptophan side chains enables further residue specific investigations on structural and dynamical properties, which are of significant interest for the understanding of non-natives states of lysozyme stabilized by hydrophobic interactions between clusters of tryptophan residues.  相似文献   

13.
Several techniques based on stable isotope labeling are used for quantitative MS. These include stable isotope metabolic labeling methods for cells in culture as well as live organisms with the assumption that the stable isotope has no effect on the proteome. Here, we investigate the 15N isotope effect on Escherichia coli cultures that were grown in either unlabeled (14N) or 15N‐labeled media by LC‐ESI‐MS/MS‐based relative protein quantification. Consistent protein expression level differences and altered growth rates were observed between 14N and 15N‐labeled cultures. Furthermore, targeted metabolite analyses revealed altered metabolite levels between 14N and 15N‐labeled bacteria. Our data demonstrate for the first time that the introduction of the 15N isotope affects protein and metabolite levels in E. coli and underline the importance of implementing controls for unbiased protein quantification using stable isotope labeling techniques.  相似文献   

14.
Summary By using fully 15N- and 15N/13C-labeled Escherichia coli dihydrofolate reductase, the sequence-specific 1H and 15N NMR assignments were achieved for 95% of the backbone resonances and for 90% of the 13C resonances in the binary folate complex. These assignments were made through a variety of three-dimensional proton-detected 15N and 13C experiments. A smaller but significant subset of side-chain 1H and 13C assignments were also determined. In this complex, only one 15N or 13C resonance was detected per 15N or 13C protein nucleus, which indicated a single conformation. Proton-detected 13C experiments were also performed with unlabeled DHFR, complexed with 13C-7/13C-9 folate to probe for multiple conformations of the substrate in its binary complex. As was found for the protein resonances, only a single bound resonance corresponding to a productive conformation could be detected for C-7. These results are consistent with an earlier report based on 1H NMR data [Falzone, C.J. et al. (1990) Biochemistry, 29, 9667–9677] and suggest that the E. coli enzyme is not involved in any catalytically unproductive binding modes in the binary complex. This feature of the E. coli enzyme seems to be unique among the bacterial forms of DHFR that have been studied to date.  相似文献   

15.
An easy to use and robust approach for amino acid type selective isotope labeling in insect cells is presented. It relies on inexpensive commercial media and can be implemented in laboratories without sophisticated infrastructure. In contrast to previous protocols, where either high protein amounts or high incorporation ratios were obtained, here we achieve both at the same time. By supplementing media with a well considered amount of yeast extract, similar protein amounts as with full media are obtained, without compromising on isotope incorporation. In single and dual amino acid labeling experiments incorporation ratios are consistently ≥90% for all amino acids tested. This enables NMR studies of eukaryotic proteins and their interactions even for proteins with low expression levels. We show applications with human kinases, where protein–ligand interactions are characterized by 2D [15N, 1H]- and [13C, 1H]-HSQC spectra.  相似文献   

16.
A simple isotope labeling approach for selective 13C/15N backbone labeling of proteins is described. Using {1,2-13C2}-pyruvate as the sole carbon source in bacterial growth media, selective incorporation of 13Cα-13CO spin-pairs into the backbones of protein molecules with medium-to-high levels of 13C-enrichment is possible for a subset of 12 amino acids. The isotope labeling scheme has been tested on a pair of proteins—a 7-kDa immunoglobulin binding domain B1 of streptococcal protein G and an 82-kDa enzyme malate synthase G. A number of protein NMR applications are expected to benefit from the {1,2-13C2}-pyruvate based protein production.  相似文献   

17.
Chen CY  Cheng CH  Chen YC  Lee JC  Chou SH  Huang W  Chuang WJ 《Proteins》2006,62(1):279-287
We report the culture conditions for successful amino-acid-type selective (AATS) isotope labeling of protein expressed in Pichia pastoris (P. pastoris). Rhodostomin (Rho), a six disulfide-bonded protein expressed in P. pastoris with the correct fold, was used to optimize the culture conditions. The concentrations of [alpha-15N] selective amino acid, nonlabeled amino acids, and ammonium chloride, as well as induction time, were optimized to avoid scrambling and to increase the incorporation rate and protein yield. The optimized protocol was successfully applied to produce AATS isotope-labeled Rho. The labeling of [alpha-15N]Cys has a 50% incorporation rate, and all 12 cysteine resonances were observed in HSQC spectrum. The labeling of [alpha-15N]Leu, -Lys, and -Met amino acids has an incorporation rate greater than 65%, and the expected number of resonances in the HSQC spectra were observed. In contrast, the labeling of [alpha-15N]Asp and -Gly amino acids has a low incorporation rate and the scrambling problem. In addition, the culture condition was successfully applied to label dendroaspin (Den), a four disulfide-bonded protein expressed in P. pastoris. Therefore, the described condition should be generally applicable to other proteins produced in the P. pastoris expression system. This is the first report to present a protocol for AATS isotope labeling of protein expressed in P. pastoris for NMR study.  相似文献   

18.
Three‐dimensional protein structure determination is a costly process due in part to the low success rate within groups of potential targets. Conventional validation methods eliminate the vast majority of proteins from further consideration through a time‐consuming succession of screens for expression, solubility, purification, and folding. False negatives at each stage incur unwarranted reductions in the overall success rate. We developed a semi‐automated protocol for isotopically‐labeled protein production using the Maxwell‐16, a commercially available bench top robot, that allows for single‐step target screening by 2D NMR. In the span of a week, one person can express, purify, and screen 48 different 15N‐labeled proteins, accelerating the validation process by more than 10‐fold. The yield from a single channel of the Maxwell‐16 is sufficient for acquisition of a high‐quality 2D 1H‐15N‐HSQC spectrum using a 3‐mm sample cell and 5‐mm cryogenic NMR probe. Maxwell‐16 screening of a control group of proteins reproduced previous validation results from conventional small‐scale expression screening and large‐scale production approaches currently employed by our structural genomics pipeline. Analysis of 18 new protein constructs identified two potential structure targets that included the second PDZ domain of human Par‐3. To further demonstrate the broad utility of this production strategy, we solved the PDZ2 NMR structure using [U15N,13C] protein prepared using the Maxwell‐16. This novel semi‐automated protein production protocol reduces the time and cost associated with NMR structure determination by eliminating unnecessary screening and scale‐up steps.  相似文献   

19.
Escherichia coli strain BL21 is commonly used as a host strain for protein expression and purification. For structural analysis, proteins are frequently isotopically labeled with deuterium (2H), 13C, or 15N by growing E. coli cultures in a medium containing the appropriate isotope. When large quantities of fully deuterated proteins are required, E. coli is often grown in minimal media with deuterated succinate or acetate as the carbon source because these are less expensive. Despite the widespread use of BL21, we found no data on the effect of different minimal media and carbon sources on BL21 growth. In this study, we assessed the growth behavior of E. coli BL21 in minimal media with different gluconeogenic carbon sources. Though BL21 grew reasonably well on glycerol and pyruvate, it had a prolonged lag-phase on succinate (20 h), acetate (10 h), and fumarate (20 h), attributed to the physiological adaptation of E. coli cells. Wild-type strain NCM3722 (K12) grew well on all the substrates. We also examined the growth of E. coli BL21 in minimal media that differed in their salt composition but not in their source of carbon. The commonly used M9 medium did not support the optimum growth of E. coli BL21 in minimal medium. The addition of ferrous sulphate to M9 medium (otherwise lacking it) increased the growth rate of E. coli cultures and significantly increased their cell density in the stationary phase. An erratum to this article can be found at  相似文献   

20.
Methyl-detected NMR spectroscopy is a useful tool for investigating the structures and interactions of large macromolecules such as membrane proteins. The procedures for preparation of methyl-specific isotopically-labeled proteins were established for the Escherichia coli (E. coli) expression system, but typically it is not feasible to express eukaryotic proteins using E. coli. The Pichia pastoris (P. pastoris) expression system is the most common yeast expression system, and is known to be superior to the E. coli system for the expression of mammalian proteins, including secretory and membrane proteins. However, this system has not yet been optimized for methyl-specific isotope labeling, especially for Val/Leu-methyl specific isotope incorporation. To overcome this difficulty, we explored various culture conditions for the yeast cells to efficiently uptake Val/Leu precursors. Among the searched conditions, we found that the cultivation pH has a critical effect on Val/Leu precursor uptake. At an acidic cultivation pH, the uptake of the Val/Leu precursor was increased, and methyl groups of Val and Leu in the synthesized recombinant protein yielded intense 1H–13C correlation signals. Based on these results, we present optimized protocols for the Val/Leu-methyl-selective 13C incorporation by the P. pastoris expression system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号