首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An improved analytical method, based on high pressure liquid chromatography, has been developed for the simultaneous determination of the polyamines and S-adenosyl-containing compounds in extracts of plant protoplasts. The method involves simple procedures for sample preparation and permits quantification of 1 picomole or less for all the compounds. This method has been used to study the effects of dicyclohexylamine, an inhibitor of plant spermidine synthase (Sindhu, R. K., S. S. Cohen 1984 Plant Physiol 74: 645-649), on biosynthesis of polyamines and 1-aminocyclopropane-1-carboxylate in protoplasts derived from Chinese cabbage leaves. Dicyclohexylamine effectively inhibits spermidine synthase in vivo. Inhibition of the synthesis of spermidine by dicyclohexylamine resulted in a stimulation of spermine synthesis, without significant effect on the synthesis of 1-aminocyclopropane-1-carboxylate. Decarboxylated S-adenosylmethionine is present in control Chinese cabbage protoplasts at ~10−18 moles per cell, and dicyclohexylamine caused an increase of this metabolite of up to 10-fold in a 4-hour period. The increase in decarboxylated S-adenosylmethionine permitted an increased synthesis of spermine. These findings suggest that the availability of decarboxylated S-adenosylmethionine may be rate-limiting for the synthesis of spermine in plant protoplasts.  相似文献   

2.
The enzyme, S-adenosylmethionine (SAM) decarboxylase (EC 4.1.1.50), has been demonstrated in leaves of Chinese cabbage, (Brassica pekinensis var Pak Choy). All of the enzyme can be found in extracts of the protoplasts obtained from the leaves of growing healthy or virus-infected cabbage. The protein has been purified approximately 1500-fold in several steps involving ammonium sulfate precipitation, affinity chromatography, and Sephacryl S-300 filtration. The reaction catalyzed by the purified enzyme has been shown to lead to the equimolar production of CO2 and of decarboxylated S-adenosylmethionine (dSAM). The Km for SAM is 38 micromolar. The reaction is not stimulated by Mg++ or putrescine, and is inhibited by dSAM competitively with SAM. It is also inhibited strongly by methylglyoxal bis(guanylhydrazone). The enzyme, spermidine synthase (EC 2.5.1.16), present in leaf or protoplast extracts in many fold excess over SAM decarboxylase, has been purified approximately 1900-fold in steps involving ammonium sulfate precipitation, affinity chromatography, and gel filtration on Sephacryl S-300. Standardization of the Sephacryl column by proteins of known molecular weight yielded values of 35,000 and 81,000 for the decarboxylase and synthase, respectively.  相似文献   

3.
Putrescine N-methyltransferase (PMT) catalyses S-adenosylmethionine (SAM) dependent methylation of the diamine putrescine. The product N-methylputrescine is the first specific metabolite on the route to nicotine, tropane, and nortropane alkaloids. PMT cDNA sequences were cloned from tobacco species and other Solanaceae, also from nortropane-forming Convolvulaceae and enzyme proteins were synthesised in Escherichia coli. PMT activity was measured by HPLC separation of polyamine derivatives and by an enzyme-coupled colorimetric assay using S-adenosylhomocysteine. PMT cDNA sequences resemble those of plant spermidine synthases (putrescine aminopropyltransferases) and display little similarity to other plant methyltransferases. PMT is likely to have evolved from the ubiquitous enzyme spermidine synthase. PMT and spermidine synthase proteins share the same overall protein structure; they bind the same substrate putrescine and similar co-substrates, SAM and decarboxylated S-adenosylmethionine. The active sites of both proteins, however, were shaped differentially in the course of evolution. Phylogenetic analysis of both enzyme groups from plants revealed a deep bifurcation and confirmed an early descent of PMT from spermidine synthase in the course of angiosperm development.  相似文献   

4.
Leaves of Chinese cabbage from healthy plants or from those infected with turnip yellow mosaic virus yield protoplasts which convert methionine to protein, S-adenosylmethionine, decarboxylated S-adenosylmethionine, spermidine, spermine and 1-aminocyclopropane-1-carboxylate. The enzyme spermidine synthase is entirely cytosolic and has been purified extensively. An inhibitor of this enzyme, dicyclohexylamine, blocks spermidine synthesis in intact protoplasts, and in so doing stimulates spermine synthesis. Aminoethoxyvinylglycine blocks the conversion of S-adenosylmethionine to 1-aminocyclopropane-1-carboxylate, the precursor to ethylene, in protoplasts. This inhibitor markedly stimulates the synthesis of both spermidine and spermine. Essentially all the protoplasts obtained from new leaves of plants infected 7 days earlier are infected. On incubation, such protoplasts convert exogenous methionine to viral protein and viral spermidine whose specific radioactivity is twice that of total cell spermidine. Exogeneous spermidine is also converted to cell putrescine and viral spermidine and spermine. Normal and virus-infected cells are being studied for their content of phenolic acid amides of the polyamines.  相似文献   

5.
Extracts of liver from vitamin B6-deficient rats had only 50% of the S-adenosylmethionine decarboxylase activity of extracts of liver from control rats when assayed with no exogenous pyridoxal phosphate. When pyridoxal phosphate was included in the reaction mixture, both extracts exhibited the same activity, indicating that pyridoxal phosphate is the coenzyme for S-adenosylmethionine decarboxylase. There was no similar decreased activity in extracts of brain from vitamin B6-deficient rats.The activity of the pyridoxal phosphate-dependent enzyme, ornithine decarboxylase, was increased in extracts of liver from vitamin B6-deficient rats: 1.6-fold when assayed with no pyridoxal phosphate and 4-fold when assayed with pyridoxal phosphate.The concentrations of putrescine and spermidine were decreased 50% in liver of vitamin B6-deficient animals, but only putrescine was decreased in brain. Putreanine was barely detectable in liver of vitamin B6-deficient animals, but was unchanged in brain.  相似文献   

6.
Spermidine synthase (Spds) catalyzes the formation of spermidine by transferring the aminopropyl group from decarboxylated S-adenosylmethionine (dcSAM) to putrescine. The Synechococcus spds gene encoding Spds was expressed in Escherichia coli. The purified recombinant enzyme had a molecular mass of 33 kDa and showed optimal activity at pH 7.5, 37?°C. The enzyme had higher affinity for dcSAM (K m, 20 µM) than for putrescine (K m, 111 µM) and was highly specific towards the diamine putrescine with no activity observed towards longer chain diamines. The three-dimensional structural model for Synechococcus Spds revealed that most of the ligand binding residues in Spds from Synechococcus sp. PCC 7942 are identical to those of human and parasite Spds. Based on the model, the highly conserved acidic residues, Asp89, Asp159 and Asp162, are involved in the binding of substrates putrescine and dcSAM and Pro166 seems to confer substrate specificity towards putrescine.  相似文献   

7.
Putrescine N-methyltransferase (PMT) is a key enzyme of plant secondary metabolism at the start of the specific biosynthesis of nicotine, of tropane alkaloids, and of calystegines that are glycosidase inhibitors with nortropane structure. PMT is assumed to have developed from spermidine synthases (SPDS) participating in ubiquitous polyamine metabolism. In this study decisive differences between both enzyme families are elucidated. PMT sequences were known from four Solanaceae genera only, therefore additional eight PMT cDNA sequences were cloned from five Solanaceae and a Convolvulaceae. The encoded polypeptides displayed between 76% and 97% identity and typical amino acids different from plant spermidine synthase protein sequences. Heterologous expression of all enzymes proved catalytic activity exclusively as PMT and K cat values between 0.16 s−1 and 0.39 s−1. The active site of PMT was initially inferred from a protein structure of spermidine synthase obtained by protein crystallisation. Those amino acids of the active site that were continuously different between PMTs and SPDS were mutated in one of the PMT sequences with the idea of changing PMT activity into spermidine synthase. Mutagenesis of active site residues unexpectedly resulted in a complete loss of catalytic activity. A protein model of PMT was based on the crystal structure of SPDS and suggests that overall protein folds are comparable. The respective cosubstrates S-adenosylmethionine and decarboxylated S-adenosylmethionine, however, appear to bind differentially to the active sites of both enzymes, and the substrate putrescine adopts a different position.  相似文献   

8.
Spermidine synthase catalyzes the production of spermidine from putrescine and decarboxylated S-adenosylmethionine (dcSAM), and plays a crucial role in cell proliferation and differentiation. The gatekeeping loop identified in the structure of spermidine synthase was predicted to contain residues important for substrate binding, but its correlation with enzyme catalysis has not been fully understood. In this study, recombinant Escherichia coli spermidine synthase (EcSPDS) was produced and its enzyme kinetics was characterized. Site-directed mutants of EcSPDS were obtained to demonstrate the importance of the amino acid residues in the gatekeeping loop. Substitution of Asp158 and Asp161 with alanine completely abolished EcSPDS activity, suggesting that these residues are absolutely required for substrate interaction. Reduction in enzyme activity was observed in the C159A, T160A, and P165Q variants, indicating that hydrophobic interactions contributed by Cys159, Thr160, and Pro165 are important for enzyme catalysis as well. On the other hand, replacement of Pro162 and Ile163 had no influence on EcSDPS activity. These results indicate that residues in the gatekeeping loop of spermidine synthase are indispensable for the catalytic reaction of EcSPDS. To the best of our knowledge, this is the first functional study on the gatekeeping loop of EcSPDS by site-directed mutagenesis.  相似文献   

9.
J A Sturman 《Life sciences》1976,18(8):879-886
The rates of decarboxylation of S-adenosylmethionine and synthesis of spermidine have been measured in extracts of liver, kidney and brain of the rat and guinea pig after intraperitoneal injection of MGBG, both before and after dialysis. The rate of decarboxylation of S-adenosylmethionine paralleled that of spermidine synthesis in all of the tissues investigated, even when spermidine synthesis was measured using preformed decarboxylated S-adenosylmethionine as substrate instead of S-adenosylmethionine itself. MGBG inhibited CO2 production and spermidine synthesis to a similar extent in extracts of liver and kidney of both the rat and the guinea pig. After dialysis, a similar increase in both CO2 production and spermidine synthesis was noted in these extracts. No effects on CO2 production or spermidine synthesis were noted on extracts of brain of the rat or guinea pig, either before or after dialysis. When MGBG was injected intracisternally, CO2 production and spermidine synthesis by extracts of brain were inhibited to the same extent, and after dialysis a similar increase in CO2 production and spermidine synthesis was observed. These results indicate that the effects of MGBG are essentially the same in brain as they are in liver and kidney, and the MGBG injected intraperitoneally does not pass into the brain.  相似文献   

10.
Aminopropyltransferases are essential enzymes that form polyamines in eukaryotic and most prokaryotic cells. Spermidine synthase (SpdS) is one of the most well‐studied enzymes in this biosynthetic pathway. The enzyme uses decarboxylated S‐adenosylmethionine and a short‐chain polyamine (putrescine) to make a medium‐chain polyamine (spermidine) and 5′‐deoxy‐5′‐methylthioadenosine as a byproduct. Here, we report a new spermidine synthase inhibitor, decarboxylated S‐adenosylhomocysteine (dcSAH). The inhibitor was synthesized, and dose‐dependent inhibition of human, Thermatoga maritima, and Plasmodium falciparum spermidine synthases, as well as functionally homologous human spermine synthase, was determined. The human SpdS/dcSAH complex structure was determined by X‐ray crystallography at 2.0 Å resolution and showed consistent active site positioning and coordination with previously known structures. Isothermal calorimetry binding assays confirmed inhibitor binding to human SpdS with Kd of 1.1 ± 0.3 μM in the absence of putrescine and 3.2 ± 0.1 μM in the presence of putrescine. These results indicate a potential for further inhibitor development based on the dcSAH scaffold.  相似文献   

11.
Polyamines (PAs) are essential metabolites in eukaryotes, participating in a variety of proliferative processes, and in trypanosomatid protozoa play an additional role in the synthesis of the critical thiol trypanothione. The PAs are synthesized by a metabolic process which involves arginase (ARG), which catalyzes the enzymatic hydrolysis of l-arginine (l-Arg) to l-ornithine and urea, and ornithine decarboxylase (ODC), which catalyzes the enzymatic decarboxylation of l-ornithine in putrescine. The S-adenosylmethionine decarboxylase (AdoMetDC) catalyzes the irreversible decarboxylation of S-adenosylmethionine (AdoMet), generating the decarboxylated S-adenosylmethionine (dAdoMet), which is a substrate, together with putrescine, for spermidine synthase (SpdS). Leishmania parasites and all the other members of the trypanosomatid family depend on spermidine for growth and survival. They can synthesize PAs and polyamine precursors, and also scavenge them from the microenvironment, using specific transporters. In addition, Trypanosomatids have a unique thiol-based metabolism, in which trypanothione (N1-N8-bis(glutathionyl)spermidine, T(SH)2) and trypanothione reductase (TR) replace many of the antioxidant and metabolic functions of the glutathione/glutathione reductase (GR) and thioredoxin/thioredoxin reductase (TrxR) systems present in the host. Trypanothione synthetase (TryS) and TR are necessary for the protozoa survival. Consequently, enzymes involved in spermidine synthesis and its utilization, i.e. ARG, ODC, AdoMetDC, SpdS and, in particular, TryS and TR, are promising targets for drug development.  相似文献   

12.
S-adenosyl-L-methionine decarboxylase (EC 4.1.1.50) from most eukaryotic organisms is activated by putrescine whereas the corresponding enzyme from bacterial sources shows a stringent requirement for magnesium ions. Adenosylmethionine decarboxylase from lower eukaryotes such as protozoa, however, is not influenced by diamines, neither are any metals needed for its maximal activity. A common characteristic of those organisms containing putrescine-insensitive adenosylmethionine decarboxylase appeared to be either a total absence or very low intracellular content of spermine. While extracts of all organisms containing putrescine-activated adenosylmethionine decarboxylase (animal tissues and yeast) exhibited easily measurable spermine synthase activity, no such activity was detected in cells of Tetrahymena pyriformis, Escherichia coli or Pseudomonas aeruginosa all containing adenosylmethionine decarboxylase insensitive to putrescine and other diamines.The activation of adenosylmethionine decarboxylase by putrescine, the immediate precursor of spermidine, may thus assure the availability of sufficient amounts of decarboxylated adenosylmethionine (S-methyladenosyl-cysteamine) for the synthesis of spermidine even in the presence of a spermine synthesizing system competing for the same precursor (decarboxylated adenosylmethionine).  相似文献   

13.
Polyamine content and the activities of their main biosynthetic enzymes, ornithine decarboxylase (ODC, EC 4.1.1.17), arginine decarboxylase (ADC, EC 4.1.1.19), S-adenosylmethionine decarboxylase (SAMDC, EC 4.1.1.50), and arginase (EC 3.5.3.1.), were examined in crude extracts of Helianthus tuberosus tuber slices during the first synchronous cell cycle, induced by synthetic auxin, with or without the addition of 1 or 5 millimolar dicyclohexylamine (DCHA), an inhibitor of spermidine synthase. In the DCHA-treated slices a peak of accumulation of the drug was observed at 12 hours. Bound DCHA was also found. Free polyamine content generally increased, reaching a maximum at 12 to 18 hours in the S phase of the cycle; while spermidine content was decreased slightly with DCHA after 12 hours, putrescine almost doubled at 18 hours. Bound polyamines were also present. ODC and ADC showed a maximum activity at 15 and 18 to 21 hours, respectively, i.e. in the S phase; both activities increased slightly in the presence of 5 millimolar DCHA at or near the time of maximum activity. Arginase was initially very high and then rapidly decreased although a small peak of activity occurred at 15 hours. SAMDC, which had two peaks of activity, was initially inhibited by DCHA, and then stimulated, especially at 12 hours and in coincidence with the main peak, at 21 hours. Thus ODC, ADC, and SAMDC activities as well as polyamine titer increased before and during the S phase of the cell cycle and all declined during cell division. The slight inhibitory effect of DCHA was possibly due to its degradation in the tissue and to the fact that putrescine could substitute for the function(s) of spermidine.  相似文献   

14.
Spermidine synthase (EC 2.5.1.16) was purified to homogeneity for the cytosol of soybean (Glycine max) axes using ammonium sulfate fractionation and chromatography on DEAE-Sephacel, Sephacryl S-300, ω-aminooctyl-Sepharose and ATPA-Sepharose. The molecular mass of the enzyme estimated by gel filtration and SDS–PAGE is 74 kDa. Cadaverin and 1,6-diaminohexane could not replace putrescine as the aminopropyl acceptor. Kinetic behaviors of the substrate are consistent with a ping pong mechanism. The kinetic mechanism is further supported by direct evidence confirming the presence of an aminopropylated enzyme and identification of product, 5′-deoxy-5′-methylthioadenosine, prior to adding putrescine. The Km values for decarboxylated S-adenosylmethionine and putrescine are 0.43 μM and 32.45 μM, respectively. Optimum pH and temperature for the enzyme reaction are 8.5 and 37°C, respectively. The enzyme activity is inhibited by N-ethylmaleimide and DTNB, but stimulated by Co2+, Cu2+ and Ca2+ significantly, suggesting that these metal ions could be the cellular regulators in polyamine biosynthesis.  相似文献   

15.
16.
1. The content of decarboxylated S-adenosylmethionine (AdoMet) in transformed mouse fibroblasts (SV-3T3 cells) was increased 500-fold to about 0.4fmol/cell when ornithine decarboxylase was inhibited by α-difluoromethylornithine. This increase was due to the absence of putrescine and spermidine, which serve as substrates for aminopropyltransferases with decarboxylated AdoMet as an aminopropyl donor, and to the enhanced activity of AdoMet decarboxylase brought about by depletion of spermidine. The increase in decarboxylated AdoMet content was abolished by addition of putrescine, but not by 1,3-diaminopropane. 2. 5′-Methylthiotubercidin also increased decarboxylated AdoMet content, presumably by direct inhibition of aminopropyl-transferase activities, but the increase in its content and the decline in spermidine content were much less than those produced by α-difluoromethylornithine. 3. Decarboxylated AdoMet content of regenerating rat liver was measured in rats treated with inhibitors of ornithine decarboxylase. The content was increased by 60% 32h after partial hepatectomy in control rats, by 90% when α-difluoromethylornithine was given to the partially hepatectomized rats, and by 330% when 1,3-diaminopropane was used to inhibit putrescine and spermidine synthesis. After 48h of exposure to 1,3-diaminopropane, which completely prevented the increase in spermidine after partial hepatectomy, there was a 5-fold rise in hepatic decarboxylated AdoMet concentration. These increases were prevented by treatment with putrescine or with methylglyoxal bis(guanylhydrazone), an inhibitor of AdoMet decarboxylase. 4. These results show that changes in AdoMet metabolism result from the administration of specific inhibitors of polyamine synthesis. The possible consequences of the accumulation of decarboxylated AdoMet, which could, for example, interfere with normal cellular methylation or lead to depletion of cellular adenine nucleotides, should be considered in the interpretation of results obtained with such inhibitors.  相似文献   

17.
Graser G  Hartmann T 《Planta》2000,211(2):239-245
 The polyamine spermidine is an essential biosynthetic precursor of pyrrolizidine alkaloids. It provides its aminobutyl group which is transferred to putrescine yielding homospermidine, the specific building block of the necine base moiety of pyrrolizidine alkaloids. The enzymatic formation of spermidine was studied in relation to the unique role of this polyamine as an alkaloid precursor. S-adenosylmethionine decarboxylase (SAMDC, EC 4.1.1.50) and spermidine synthase (SPDS, EC 2.5.1.16) from root cultures of Senecio vulgaris were partially purified and characterized. The SAMDC-catalyzed reaction showed a pH optimum of 7.5, that of SPDS an optimum of 7.7. The K m value of SAMDC for its substrate S-adenosylmethionine (SAM) was 15 μM, while the apparent K m values of SPDS for its substrates decarboxylated SAM (dSAM) and putrescine were 4 μM and 21 μM, respectively. The relative molecular masses of the two enzymes, determined by gel filtration, were 29 000 (SAMDC) and 37 000 (SPDS). Studies with various potential inhibitors revealed, for most inhibitors, profiles that were similar to those established with the respective enzymes from other plant sources. However, putrescine which is not known to be an inhibitor of plant SAMDC, strongly inhibited the enzyme from S. vulgaris roots. Spermidine synthase was sensitive to inhibition by its product spermidine. In the presence of the stationary tissue concentrations of the two polyamines (ca. 0.1 mM each) the activities of SAMDC and SPDS would be inhibited by >80%. The results are discussed in relation to the role of spermidine in primary and secondary metabolism of alkaloid-producing S. vulgaris root cultures. Received: 15 September 1999 / Accepted 10 December 1999  相似文献   

18.
In Euglena gracilis Z the biosynthesis of spermidine and spermine closely resembles the pathways occurring in mammalian tissues and in most microorganisms. l-Ornithine and not l-arginine, as is the case in most plants, is the main precursor of putrescine, and S-adenosylmethionine donates the propylamino moiety for the biosynthesis of spermidine and spermine. Cell-free extracts of Euglena synthesized sym-norspermidine and sym-norspermine from 1,3-diaminopropane and labelled S-adenosylmenthionine. The synthases for the biosynthesis of these two polyamines have a pH optimum of 7.6, like that of spermidine and spermine synthases. Ion exchange chromatography showed two peaks corresponding to the retention times of 2,4-diaminobutyric acid and 1,3-diaminopropane, lower homologues of ornithine and putrescine, respectively. Experiments with dl-2,4-diaminobutyric acid-[4-14C] did not result in significant incorporation of the label into 1,3-diaminopropane.  相似文献   

19.
A novel affinity chromatographic adsorbent was developed for purification of spermidine synthase from rat prostate. The adsorbent (S-adenosyl(5′)-3-thiopropylamine-Sepharose) possesses a ligand structurally similar to S-adenosyl(5′)-3-methylthiopropylamine (decarboxy AdoMet), a substrate of spermidine synthase. The S-adenosyl(5′)-3-thiopropylamine-Sepharose was prepared by an alkylation on sulfur of S-adenosyl-3-thiopropylamine by bromoacetamidohexyl-Sepharose under mild acidic conditions. The enzyme has been purified to homogeneity in 40% yield by using DEAE-cellulose, affinity chromatography employing S-adenosyl(5′)-3-thiopropylamine-Sepharose, and gel filtration. The enzyme had a molecular weight of approximately 73,000 and was composed of two subunits of equal size. The specificity of the reaction was rather strict, but cadaverine could replace putrescine as the aminopropyl acceptor, and the rate was 1/20th of the rate for spermidine formation. Apparent Km values for putrescine and decarboxy AdoMet were 0.1 mm and 1.1 μm, respectively. Inhibition by decarboxy AdoMet and 5′-deoxy-5′-methylthioadenosine was observed. The inhibition by 5′-deoxy-5′-methylthioadenosine was partially noncompetitive with respect to decarboxy AdoMet.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号