首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The extracellular matrix glycoprotein tenascin-R (TN-R) is a multidomain protein implicated in neural cell adhesion. To analyze the structure-function relationship of the different domains of TN-R, several recombinant TN-R fragments were expressed in bacterial cells. Two distinct binding regions were localized on the TN-R polypeptide: a region binding the axon-associated immunoglobulin (Ig)-like F11 protein and a cell attachment site. The binding region of the glycosylphosphatidylinositol (GPI)-anchored F11 was allocated to the second and third fibronectin type III (FNIII)-like domain within TN-R. By using a mutant polypeptide of F11 containing only Ig-like domains, a direct interaction between the Ig-like domains of F11 and FNIII-like domains 2-3 of TN-R was demonstrated. The interaction of TN-R with F11 in in vitro cultures enhanced F11-mediated neurite outgrowth, suggesting that the combined action of F11 and TN-R might be of regulatory influence on axon extension. A cell attachment region was identified in the FNIII-like domain eight of TN-R by domain-specific antibodies and fusion constructs. This site is distinct from the F11 binding site within TN-R.  相似文献   

2.
3.
The neuronal cell adhesion molecule Bravo/Nr-CAM is a cell surface protein of the immunoglobulin (Ig) superfamily and is closely related to the L1/NgCAM and neurofascin molecules, all of which contain six immunoglobulin domains, five fibronectin repeats, a transmembrane region, and an intracellular domain. Chicken Bravo/Nr-CAM has been shown to interact with other cell surface molecules of the Ig superfamily and has been implicated in specific pathfinding roles of axonal growth cones in the developing nervous system. We now report the characterization of cDNA clones encoding the human Bravo/Nr-CAM protein, which, like its chicken homolog, is composed of six V-like Ig domains and five fibronectin type III repeats. The human Bravo/Nr-CAM homolog also contains a transmembrane and intracellular domain, both of which are 100% conserved at the amino acid level compared to its chicken homolog. Overall, the human Bravo/Nr-CAM homolog is 82% identical to the chicken Bravo/Nr-CAM amino acid sequence. Independent cDNAs encoding four different isoforms were also identified, all of which contain alternatively spliced variants around the fifth fibronectin type III repeat, including one isoform that had been previously identified for chicken Bravo/Nr-CAM. Northern blot analysis reveals one mRNA species of approximately 7.0 kb in adult human brain tissue. Fluorescencein situhybridization maps the gene for human Bravo/Nr-CAM to human chromosome 7q31.1–q31.2. This chromosomal locus has been previously identified as containing a tumor suppressor candidate gene commonly deleted in certain human cancer tissues.  相似文献   

4.
5.
《The Journal of cell biology》1996,135(4):1059-1069
Neurofascin and NrCAM are two axon-associated transmembrane glycoproteins belonging to the L1 subgroup of the Ig superfamily. In this study, we have analyzed the interaction of both proteins using neurite outgrowth and binding assays. A neurofascin-Fc chimera was found to stimulate the outgrowth of tectal cells when immobilized on an inert surface but not as a soluble form using polylysine as substrate. Antibody blocking experiments demonstrate that neurite extension on immobilized neurofascin is mediated by NrCAM on the axonal surface. Under the reverse experimental conditions where NrCAM induces neurite extension, F11, and not neurofascin, serves as axonal receptor. Binding studies using transfected COS7 cells and immunoprecipitations reveal a direct interaction between neurofascin and NrCAM. This binding activity was mapped to the Ig domains within neurofascin. The neurofascin-NrCAM binding can be modulated by alternative splicing of specific stretches within neurofascin. These studies indicate that heterophilic interactions between Ig-like proteins implicated in axonal extension underlie a regulation by the neuron.  相似文献   

6.
Neural cell adhesion molecules composed of immunoglobulin and fibronectin type III-like domains have been implicated in cell adhesion, neurite outgrowth, and fasciculation. Axonin-1 and Ng cell adhesion molecule (NgCAM), two molecules with predominantly axonal expression exhibit homophilic interactions across the extracellular space (axonin- 1/axonin-1 and NgCAM/NgCAM) and a heterophilic interaction (axonin-1–NgCAM) that occurs exclusively in the plane of the same membrane (cis-interaction). Using domain deletion mutants we localized the NgCAM homophilic binding in the Ig domains 1-4 whereas heterophilic binding to axonin-1 was localized in the Ig domains 2-4 and the third FnIII domain. The NgCAM–NgCAM interaction could be established simultaneously with the axonin-1–NgCAM interaction. In contrast, the axonin-1–NgCAM interaction excluded axonin-1/axonin-1 binding. These results and the examination of the coclustering of axonin-1 and NgCAM at cell contacts, suggest that intercellular contact is mediated by a symmetric axonin-12/NgCAM2 tetramer, in which homophilic NgCAM binding across the extracellular space occurs simultaneously with a cis-heterophilic interaction of axonin-1 and NgCAM. The enhanced neurite fasciculation after overexpression of NgCAM by adenoviral vectors indicates that NgCAM is the limiting component for the formation of the axonin-12/NgCAM2 complexes and, thus, neurite fasciculation in DRG neurons.  相似文献   

7.
The extracellular domain of N-CAM contains five immunoglobulin-like (Ig) and two fibronectin type III-like domains and facilitates cell-cell binding through multiple, weak interdomain interactions. NMR spectroscopy indicated that the two N-terminal Ig-like domains from chicken N-CAM (Ig I and Ig II) interact with millimolar affinity. Physico-chemical studies show that this interaction is significantly amplified when the domains are covalently linked, consistent with an antiparallel domain arrangement. The binding of the two individual domains and the dimerization of the concatenated protein were essentially independent of salt, up to a concentration of 200 mM. The residues in Ig I involved in the interaction map to the BED strands of the beta sandwich, and delineate a largely hydrophobic patch.  相似文献   

8.
Lutheran (Lu) blood group antigens and the basal cell adhesion molecule antigen reside on two glycoproteins that belong to the Ig superfamily (IgSF) and carry five Ig-like extracellular domains. These glycoproteins act as widely expressed adhesion molecules and represent the unique receptors for laminin-10/11 in erythroid cells. Here, we report the mapping of IgSF domains responsible for binding to laminin. In plasmonic resonance surface experiments, only recombinant Lu proteins containing the N-terminal IgSF domains 1-3 were able to bind laminin-10/11 and to inhibit binding of laminin to Lu-expressing K562 cells. Mutant recombinant proteins containing only IgSF domain 1, domains 1 + 2, domains 1 + 3, domains 2 + 3, domain 3, domain 4, domain 5, and domains 4 + 5 failed to bind laminin as well as a construct containing all of the extracellular domains except domain 3. Altogether, these results indicate that IgSF domains 1-3 are involved in laminin binding and that a specific spatial arrangement of these three first domains is most probably necessary for interaction. Neither the RGD nor the N-glycosylation motifs present in IgSF domain 3 were involved in laminin binding.  相似文献   

9.
The L1 adhesion molecule is a 200-220-kDa membrane glycoprotein of the Ig superfamily implicated in important neural processes including neuronal cell migration, axon outgrowth, learning, and memory formation. L1 supports homophilic L1-L1 binding that involves several Ig domains but can also bind with high affinity to the proteoglycan neurocan. It has been reported that neurocan can block homophilic binding; however, the mechanism of inhibition and the precise binding sites in both molecules have not been determined. By using fusion proteins, site-directed mutagenesis, and peptide blocking experiments, we have characterized the neurocan-binding site in the first Ig-like domain of human L1. Results from molecular modeling suggest that the sequences involved in neurocan binding are localized on the surface of the first Ig domain and largely overlap with the G-F-C beta-strands proposed to interact with the fourth Ig domain during homophilic binding. This suggests that neurocan may sterically hinder a proper alignment of L1 domains. We find that the C-terminal portion of neurocan is sufficient to mediate binding to the first Ig domain of L1, and we suggest that the sushi domain cooperates with a glycosaminoglycan side chain in forming the binding site for L1.  相似文献   

10.
The members of the interleukin-6-type family of cytokines interact with receptors that have a modular structure and are built of several immunoglobulin-like and fibronectin type III-like domains. These receptors have a characteristic cytokine receptor homology region consisting of two fibronectin type III-like domains defined by a set of four conserved cysteines and a tryptophan-serine-X-tryptophan-serine sequence motif. On target cells, interleukin-6 (IL-6) initially binds to its cognate alpha-receptor and subsequently to a homodimer of the signal transducer receptor gp130. The IL-6 receptor (IL-6R) consists of three extracellular domains. The N-terminal immunoglobulin-like domain is not involved in ligand binding, whereas the third membrane-proximal fibronectin-like domain (IL-6R-D3) accounts for more than 90% of the binding energy to IL-6. Here, we present the solution structure of the IL-6R-D3 domain solved by multidimensional heteronuclear NMR spectroscopy.  相似文献   

11.
12.
Several bacterial species express surface proteins with affinity for the constant region (Fc) of immunoglobulin (Ig) G. The biological consequences of the interaction with IgG are poorly understood but it has been demonstrated that genes encoding different IgG Fc-binding proteins have undergone convergent evolution, suggesting that these surface molecules are connected with essential microbial functions. One of the molecules, protein H, is present in some strains of Streptococcus pyogenes, the most significant streptococcal species in clinical medicine. In contrast to other Ig-binding bacterial proteins tested, protein H was found to interact also with the neural cell adhesion molecule (N-CAM), a eukaryotic cell surface glycoprotein mediating homo- and heterophilic cell-cell interactions. The affinity for the interaction between protein H and N-CAM was 1.6 x 10(8)/M and the binding site on protein H was mapped to the NH2-terminal 80 amino acid residues. N-CAM and IgG are both members of the Ig superfamily and analogous to N-CAM, IgG binds to the NH2-terminal part of protein H. However, the binding sites for the two proteins were found to be separate, an unexpected result which was explained by the observation that the fibronectin type III (FNIII) domains and not the Ig-like domains of N-CAM are responsible for the interaction with protein H. Thus, the binding of N-CAM to protein H was blocked with fibronectin but not with IgG. Moreover, apart from fibronectin itself and N-CAM, fragments of fibronectin and the matrix protein cytotactin/tenascin containing FNIII domains also showed affinity for protein H.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We report here the complete cDNA sequence of F11 130 kd polypeptide, a chick neural cell surface-associated glycoprotein implicated in neurite fasciculation and elongation. The predicted protein sequence of 1010 amino acids includes an amino-terminal signal peptide and a carboxy-terminal hydrophobic stretch, which is compatible with the consensus motif for covalent attachment of glycosyl-phosphatidylinositol. Accordingly, F11 lacks an intracellular domain, which is consistent with evidence obtained from protease protection experiments on isolated microsomes. In addition, the molecule comprises six domains related to the immunoglobulin domain type C and four resembling fibronectin repeat type III. Both types of repeats resemble those present in neural cell adhesion molecules L1 and N-CAM. The possible identity of F11 with the chick neural glycoprotein contactin is discussed.  相似文献   

14.
Mammalian L1 and avian Ng-CAM are homologous neural cell adhesion molecules (CAMs) that promote neurite outgrowth and cell adhesion in most neurons. Previous attempts to map these activities to discrete regions in the CAMs have suggested the involvement of a variety of different domains. However, these studies mainly used bacterially expressed proteins that were much less active on a molar basis than the native molecules. To define regions that are critical for maximal neurite outgrowth, we constructed and tested a panel of eukaryotically expressed proteins containing various extracellular segments of human L1 (hL1) or Ng-CAM. Our results indicate that Ig domains 1-4 of hL1 are critical for homophilic binding and neurite outgrowth; however this segment is less potent than the entire extracellular region. Optimal neurite outgrowth activity was seen with proteins containing all six Ig domains of hL1 or Ng-CAM. The adhesive properties of hL1 fragments correlated tightly with their neurite outgrowth activities, suggesting that these two processes are closely linked. These results suggest that Ig domains 1-4 form a structural cassette responsible for hL1 homophilic binding, while Ig domains 1-6 represent a functional region for optimal promotion of neurite outgrowth in vitro and possibly in vivo.  相似文献   

15.
The transmembrane glycoprotein gp130 is the common signal transducing receptor subunit of the interleukin-6-type cytokines. It is a member of the cytokine-receptor superfamily predicted to consist of six domains in its extracellular part. The second and third domain constitute the cytokine-binding module defined by a set of four conserved cysteines and a WSXWS motif, respectively. The three-dimensional structure of the carboxy-terminal domain of this region was determined by multidimensional NMR. The domain consists of seven beta-strands constituting a fibronectin type III-like topology. The structure reveals that the WSDWS motif of gp130 is part of an extended tryptophan/arginine zipper which modulates the conformation of the CD loop.  相似文献   

16.
Adhesive interactions between neurons and extracellular matrix (ECM) play a key role in neuronal pattern formation. The prominent role played by the extracellular matrix protein tenascin/cytotactin in the development of the nervous system, tied to its abundance, led us to speculate that brain may contain yet unidentified tenascin receptors. Here we show that the neuronal cell adhesion molecule contactin/F11, a member of the immunoglobulin(Ig)-superfamily, is a cell surface ligand for tenascin in the nervous system. Through affinity chromatography of membrane glycoproteins from chick brain on tenascin-Sepharose, we isolated a major cell surface ligand of 135 kD which we identified as contactin/F11 by NH2-terminal sequencing. The binding specificity between contactin/F11 and tenascin was demonstrated in solid-phase assays. Binding of immunopurified 125I-labeled contactin/F11 to immobilized tenascin is completely inhibited by the addition of soluble tenascin or contactin/F11, but not by fibronectin. When the fractionated isoforms of tenascin were used as substrates, contactin/F11 bound preferentially to the 190-kD isoform. This isoform differs in having no alternatively spliced fibronectin type III domains. Our results imply that the introduction of these additional domains in some way disrupts the contactin/F11 binding site on tenascin. To localize the binding site on contactin/F11, proteolytic fragments were generated and characterized by NH2-terminal sequencing. The smallest contactin/F11 fragment which binds tenascin is 45 kD and also begins with the contactin/F11 NH2-terminal sequence. This implies that contactin/F11 binds to tenascin through a site within the first three Ig-domains.  相似文献   

17.
We have identified and characterized two mouse cDNAs in a mouse antigen-stimulated bone marrow-derived mast cell cDNA library, both of which encode type I transmembrane proteins. The genes were closely mapped in the distal region of mouse chromosome 11 and expressed not only in mast cells but also widely in leukocytes. The extracellular domains of their encoded proteins contain a single variable immunoglobulin (Ig) motif sharing about 90% identity with amino acids, showing that they comprise a pair of molecules and belong to the Ig superfamily. We named these molecules leukocyte mono-Ig-like receptor1 and 2 (LMIR1 and 2). The intracellular domain of LMIR1 contains several immunoreceptor tyrosine-based inhibition motifs (ITIMs). When cross-linked, the intracellular domain was tyrosine phosphorylated and capable of recruiting tyrosine phosphatases, SHP-1 and SHP-2 and inositol polyphosphate 5-phosphatase, SHIP. LMIR2, on the other hand, contains a short cytoplasmic tail and a characteristic transmembrane domain carrying two positively charged amino acids associated with three kinds of immunoreceptor tyrosine-based activation motif (ITAM)-bearing molecules, DAP10, DAP12, and FcRgamma. These findings suggest that a new pair of ITIM/ITAM-bearing receptors, LMIR1 and 2, regulate mast cell-mediated inflammatory responses through yet to be defined ligand(s).  相似文献   

18.
Mutations in the gene for neural cell adhesion molecule L1 (L1CAM) result in a debilitating X-linked congenital disorder of brain development. At the neuronal cell surface L1 may interact with a variety of different molecules including itself and two other CAMs of the immunoglobulin superfamily, axonin-1 and F11. However, whether all of these interactions are relevant to normal or abnormal development has not been determined. Over one-third of patient mutations are single amino acid changes distributed across 10 extracellular L1 domains. We have studied the effects of 12 missense mutations on binding to L1, axonin-1 and F11 and shown for the first time that whereas many mutations affect all three interactions, others affect homophilic or heterophilic binding alone. Patient pathology is therefore due to different types of L1 malfunction. The nature and functional consequence of mutation is also reflected in the severity of the resultant phenotype with structural mutations likely to affect more than one binding activity and result in early mortality. Moreover, the data indicate that several extracellular domains of L1 are required for homophilic and heterophilic interactions.  相似文献   

19.
The neuron-glia cell adhesion molecule (Ng-CAM) mediates both neuron-neuron and neuron-glia adhesion; it is detected on SDS-PAGE as a predominant 135-kD glycoprotein, with minor components of 80, 190, and 210 kD. We have isolated cDNA clones encoding the entire sequence of chicken Ng-CAM. The predicted extracellular region includes six immunoglobulin-like domains followed by five fibronectin-type III repeats, structural features that are characteristic of several neural CAMs of the N-CAM superfamily. The amino acid sequence of chicken Ng-CAM is most similar to that of mouse L1 but the overall identity is only 40% and Ng-CAM contains a short fibronectin-like segment with an RGD sequence that has no counterpart in L1. These findings suggest that Ng-CAM and L1 may not be equivalent molecules in chicken and mouse. The amino-terminal sequences of the 210-, 190-, and 135-kD components of Ng-CAM are all the same as the predicted amino terminus of the molecule, whereas the 80-kD component begins within the third fibronectin repeat. The cDNA sequence is continuous across the junction between the 135- and 80-kD components, and a single 170-kD Ng-CAM polypeptide was isolated from tunicamycin-treated cells. In addition, all cDNA probes hybridized on Northern blots to a 6-kb RNA, and most hybridized to single bands on Southern blots. These results indicate that the Ng-CAM components are derived from a single polypeptide encoded by a single gene, and that the 135- and 80-kD components are generated from the 210/190-kD species by proteolytic cleavage. The 135-kD component contains most of the extracellular region including all of the immunoglobulin-like domains. It has no transmembrane segment, but it is tightly associated with the membrane. The 80-kD component contains two and a half type III repeats plus the RGD-containing segment, as well as the single transmembrane and cytoplasmic domains. These structural features of Ng-CAM provide a framework for understanding its multiple functions in neuron-neuron interactions, neurite fasciculation, and neuron-glia interactions.  相似文献   

20.
Integrin and neurocan binding to L1 involves distinct Ig domains.   总被引:6,自引:0,他引:6  
The cell adhesion molecule L1, a 200-220-kDa type I membrane glycoprotein of the Ig superfamily, mediates many neuronal processes. Originally studied in the nervous system, L1 is expressed by hematopoietic and many epithelial cells, suggesting a more expanded role. L1 supports homophilic L1-L1 and integrin-mediated cell binding and can also bind with high affinity to the neural proteoglycan neurocan; however, the binding site is unknown. We have dissected the L1 molecule and investigated the cell binding ability of Ig domains 1 and 6. We report that RGD sites in domain 6 support alpha5beta1- or alphavbeta3-mediated integrin binding and that both RGD sites are essential. Cooperation of RGD sites with neighboring domains are necessary for alpha(5)beta(1). A T cell hybridoma and activated T cells could bind to L1 in the absence of RGDs. This binding was supported by Ig domain 1 and mediated by cell surface-exposed neurocan. Lymphoid and brain-derived neurocan were structurally similar. We also present evidence that a fusion protein of the Ig 1-like domain of L1 can bind to recombinant neurocan. Our results support the notion that L1 provides distinct cell binding sites that may serve in cell-cell or cell-matrix interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号