首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
HL Huang  HY Lee  AC Tsai  CY Peng  MJ Lai  JC Wang  SL Pan  CM Teng  JP Liou 《PloS one》2012,7(8):e43645
Recently, histone deacetylase (HDAC) inhibitors have emerged as a promising class of drugs for treatment of cancers, especially subcutaneous T-cell lymphoma. In this study, we demonstrated that MPT0E028, a novel N-hydroxyacrylamide-derived HDAC inhibitor, inhibited human colorectal cancer HCT116 cell growth in vitro and in vivo. The results of NCI-60 screening showed that MPT0E028 inhibited proliferation in both solid and hematological tumor cell lines at micromolar concentrations, and was especially potent in HCT116 cells. MPT0E028 had a stronger apoptotic activity and inhibited HDACs activity more potently than SAHA, the first therapeutic HDAC inhibitor proved by FDA. In vivo murine model, the growth of HCT116 tumor xenograft was delayed and inhibited after treatment with MPT0E028 in a dose-dependent manner. Based on in vivo study, MPT0E028 showed stronger anti-cancer efficacy than SAHA. No significant body weight difference or other adverse effects were observed in both MPT0E028-and SAHA-treated groups. Taken together, our results demonstrate that MPT0E028 has several properties and is potential as a promising anti-cancer therapeutic drug.  相似文献   

2.
In discovery of novel HDAC inhibitory with anticancer potency, pharmacophores of phenanthridine were introduced to the structure of HDAC inhibitors. Fatty and aromatic linkers were evaluated for their solubility and activity. Both enzyme inhibitory and in vitro antiproliferative (against U937 cells) screening results revealed better activities of compounds with aromatic linker than molecules with fatty linker. Compared with SAHA (IC50 values of 1.34, 0.14, 2.58, 0.67 and 18.17 µM), molecule Fb-4 exhibited 0.87, 0.09, 0.32, 0.34 and 17.37 µM of IC50 values against K562, U266, MCF-7, U937 and HEPG2 cells, respectively. As revealed by cell cycle and apoptotic analysis, induction of G2/M phase arrest and apoptosis plays an important role in the inhibition of MCF-7 cells by Fb-4. Generally, a potent HDAC inhibitor was developed in the present study which could be utilised as a lead compound for further anticancer drug design.  相似文献   

3.
4.
In discovery of HDAC inhibitors (HDACIs) with improved anticancer potency, structural modification was performed on the previous derived indole-3-butyric acid derivative. Among all the synthesised compounds, molecule I13 exhibited high HDAC inhibitory and antiproliferative potencies in the in vitro investigations. The IC50 values of I13 against HDAC1, HDAC3, and HDAC6 were 13.9, 12.1, and 7.71 nM, respectively. In the cancer cell based screening, molecule I13 showed increased antiproliferative activities in the inhibition of U937, U266, HepG2, A2780, and PNAC-1 cells compared with SAHA. In the HepG2 xenograft model, 50 mg/kg/d of I13 could inhibit tumour growth in athymic mice compared with 100 mg/kg/d of SAHA. Induction of apoptosis was revealed to play an important role in the anticancer potency of molecule I13. Collectively, a HDACI (I13) with high anticancer activity was discovered which can be utilised as a lead compound for further HDACI design.  相似文献   

5.
Triple-negative breast cancer (TNBC) is associated with an increased risk of metastasis and a poor prognosis. The invasive ability of TNBC relies on actin reorganization and is regulated by histone deacetylase 6 (HDAC6). The present study aimed to examine the effect of MPT0G211, a novel HDAC6 inhibitor, on cell migration and microtubule association in both in vitro and in vivo models of TNBC. Here MPT0G211 more selectively and potently targeted and inhibited HDAC6, compared with tubastatin A, another selective HDAC6 inhibitor. In vitro, MPT0G211 decreased the migration of the TNBC cell line MDA-MB-231, particularly when administered together with paclitaxel, and increased heat shock protein 90 (Hsp90) acetylation, leading to the dissociation of Hsp90 from aurora-A and proteasomal degradation. Furthermore, MPT0G211 significantly disrupted F-actin polymerization by increasing cortactin acetylation and downregulating slingshot protein phosphatase 1 (SSH1) and active cofilin expression. In vivo, MPT0G211 treatment significantly ameliorated TNBC metastasis. In conclusion, our results demonstrate that MPT0G211 reduces TNBC cell motility by promoting cortactin acetylation and aurora-A degradation, and inhibiting the cofilin–F-actin pathway via HDAC6 activity attenuation. MPT0G211 therefore demonstrates therapeutic potential for invasive TNBC.  相似文献   

6.
Inhibitors of histone deacetylases (HDAC) are being studied for their antiproliferative effects in preclinical cancer trials. Recent studies suggest an anti-inflammatory role for this class of compounds. Because inflammatory bowel disease is associated with an increased risk of malignancies, agents with antiproliferative and anti-inflammatory properties would be of therapeutic interest. HDAC inhibitors from various classes were selected and evaluated for their in vitro capacity to suppress cytokine production and to induce apoptosis and histone acetylation. Valproic acid (VPA) and suberyolanilide hydroxamic acid (SAHA) were chosen for further studies in dextran sulfate sodium- and trinitrobenzene sulfonic acid-induced colitis in mice. In vitro, inhibition of HDAC resulted in a dose-dependent suppression of cytokine synthesis and apoptosis induction requiring higher concentrations of HDAC inhibitors for apoptosis induction compared with cytokine inhibition. Oral administration of either VPA or SAHA reduced disease severity in dextran sulfate sodium-induced colitis. The macroscopic and histologic reduction of disease severity was associated with a marked suppression of colonic proinflammatory cytokines. In parallel to the beneficial effect observed, a dose-dependent increase in histone 3 acetylation at the site of inflammation was shown under VPA treatment. Furthermore, SAHA as well as VPA treatment resulted in amelioration of trinitrobenzene sulfonic acid-induced colitis, which was associated with an increase of apoptosis of lamina propria lymphocytes. Inhibitors of HDAC reveal strong protective effects in different models of experimental colitis by inducing apoptosis and suppressing proinflammatory cytokines, thereby representing a promising class of compounds for clinical studies in human inflammatory bowel disease.  相似文献   

7.
α1-Antitrypsin (α1AT) deficiency (α1ATD) is a consequence of defective folding, trafficking, and secretion of α1AT in response to a defect in its interaction with the endoplasmic reticulum proteostasis machineries. The most common and severe form of α1ATD is caused by the Z-variant and is characterized by the accumulation of α1AT polymers in the endoplasmic reticulum of the liver leading to a severe reduction (>85%) of α1AT in the serum and its anti-protease activity in the lung. In this organ α1AT is critical for ensuring tissue integrity by inhibiting neutrophil elastase, a protease that degrades elastin. Given the limited therapeutic options in α1ATD, a more detailed understanding of the folding and trafficking biology governing α1AT biogenesis and its response to small molecule regulators is required. Herein we report the correction of Z-α1AT secretion in response to treatment with the histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA), acting in part through HDAC7 silencing and involving a calnexin-sensitive mechanism. SAHA-mediated correction restores Z-α1AT secretion and serpin activity to a level 50% that observed for wild-type α1AT. These data suggest that HDAC activity can influence Z-α1AT protein traffic and that SAHA may represent a potential therapeutic approach for α1ATD and other protein misfolding diseases.  相似文献   

8.
X-adrenoleukodystrophy (X-ALD) is a peroxisomal metabolic disorder caused by mutations in the ABCD1 gene encoding the peroxisomal ABC transporter adrenoleukodystrophy protein (ALDP). The consistent metabolic abnormality in all forms of X-ALD is an inherited defect in the peroxisomal β-oxidation of very long chain FAs (VLCFAs >C22:0) and the resultant pathognomic accumulation of VLCFA. The accumulation of VLCFA leads to a neuroinflammatory disease process associated with demyelination of the cerebral white matter. The present study underlines the importance of a potent histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA) in inducing the expression of ABCD2 [adrenoleukodystrophy-related protein (ALDRP)], and normalizing the peroxisomal β-oxidation, as well as the saturated and monounsaturated VLCFAs in cultured human skin fibroblasts of X-ALD patients. The expression of ELOVL1, the single elongase catalyzing the synthesis of both saturated VLCFA (C26:0) and monounsaturated VLCFA (C26:1), was also reduced by SAHA treatment. In addition, using Abcd1/Abcd2-silenced mouse primary astrocytes, we also examined the effects of SAHA in VLCFA-induced inflammatory response. SAHA treatment decreased the inflammatory response as expression of inducible nitric oxide synthase, inflammatory cytokine, and activation of NF-κB in Abcd1/Abcd2-silenced mouse primary astrocytes was reduced. These observations indicate that SAHA corrects both the metabolic disease of VLCFA as well as secondary inflammatory disease; therefore, it may be an ideal drug candidate to be tested for X-ALD therapy in humans.  相似文献   

9.
IntroductionClinical diversity in systemic sclerosis (SSc) reflects multifaceted pathogenesis and the effect of key growth factors or cytokines operating within a disease-specific microenvironment. Dermal interstitial fluid sampling offers the potential to examine local mechanisms and identify proteins expressed within lesional tissue. We used multiplex cytokine analysis to profile the inflammatory and immune activity in the lesions of SSc patients.MethodsDermal interstitial fluid sample from the involved forearm skin, and synchronous plasma samples were collected from SSc patients (n = 26, diffuse cutaneous SSc (DcSSc) n = 20, limited cutaneous SSc (LcSSc) n = 6), and healthy controls (HC) (n = 10) and profiled by Luminex® array for inflammatory cytokines, chemokines, and growth factors.ResultsLuminex® profiling of the dermal blister fluid showed increased inflammatory cytokines (median interleukin ( IL)-6 in SSc 39.78 pg/ml, HC 5.51 pg/ml, p = 0.01, median IL-15 in SSc 6.27 pg/ml, HC 4.38 pg/ml, p = 0.03), chemokines (monocyte chemotactic protein (MCP)-3 9.81 pg/ml in SSc, 7.18 pg/ml HC, p = 0.04), and profibrotic growth factors (platelet derived growth factor (PDGF)-AA 10.38 pg/ml versus 6.94 pg/ml in HC, p = 0.03). In general dermal fluid and plasma cytokine levels did not correlate, consistent with predominantly local production of these factors within the dermal lesions, rather than leakage from the serum. In hierarchical clustering and network analysis IL-6 emerged as a key central mediator.ConclusionsOur data confirm that an immuno-inflammatory environment and aberrant vascular repair are intimately linked to fibroblast activation in lesional skin in SSc. This non-invasive method could be used to profile disease activity in the clinic, and identifies key inflammatory or pro-fibrotic proteins that might be targeted therapeutically. Distinct subgroups of SSc may be defined that show innate or adaptive immune cytokine signatures.  相似文献   

10.
11.
IntroductionInterleukin-1β (IL-1β) is a major inflammatory cytokine, produced predominantly by innate immune cells through NLRP3-inflammasome activation. Both intrinsic and extrinsic danger signals may activate NLRP3. Genetic variations in NLRP3-inflammasome components have been reported to influence rheumatoid arthritis (RA) susceptibility and severity. We sought to assess the activity of NLRP3-inflammasome in patients with active RA compared to healthy individuals.MethodIntracellular protein expression of NLRP3, ASC, pro- and active caspase-1, pro- and active IL-1β was assessed by immunoblotting both at baseline and upon inflammasome activation. NLRP3 function (IL-1β secretion) was assessed upon priming of TLR2 (Pam(3)CysSK(4), TLR3 (poly(I:C)) or TLR4 (LPS) and ATP sequential treatment. We used caspase inhibitors (casp-1, 3/7 and 8) to assess their contribution to IL-1β maturation. All experiments were performed in whole blood cells.ResultsActive RA patients (n = 11) expressed higher basal intracellular levels of NLRP3 (p < 0.008), ASC (p < 0.003), active caspase-1 (p < 0.02) and pro-IL-1β (p < 0.001). Upon priming with TLR4 (LPS) and ATP, RA-derived cell extracts (n = 7) displayed increased expression of NLRP3 (p < 0.01) and active caspase-1 (p < 0.001). Secreted IL-1β in culture supernatants from whole blood cells activated with TLR4 (LPS) or TLR3 agonist (poly(I:C)) plus ATP was higher in RA patients (n = 20) versus controls (n = 18) (p < 0.02 for both). Caspase-1 inhibition significantly reduced IL-1β secretion induced by all stimuli, whereas caspase-8 inhibition affected only TLR4 and TLR3 cell priming.ConclusionPatients with active RA have increased expression of NLRP3 and NLRP3-mediated IL-1β secretion in whole blood cells upon stimulation via TLR3 and TLR4 but not TLR2. In these patients, IL-1β secretion seems to be predominately driven by caspase-1 and caspase-8. Targeting NLRP3 or downstream caspases may be of benefit in suppressing IL-1β production in RA.  相似文献   

12.
IntroductionInnate immune responses, including monocyte functions, seem to play an important role in the pathogenesis of axial spondyloarthritis (axSpA). Therefore, we characterized the phenotype and functional state of monocytes of patients with axSpA.MethodsFifty-seven patients with axSpA, 11 patients with rheumatoid arthritis (RA), and 29 healthy controls were included in the study. We determined the percentage of classic, intermediate, and non-classic monocytes according to CD14 and CD16 expression and the expression of Toll-like receptor (TLR) 1, 2, and 4 in whole blood by flow cytometry. The percentage of monocytes producing interleukin (IL)-1beta, IL-6, tumor necrosis factor alpha (TNFα), IL-12/23p40, and IL-1 receptor antagonist (IL-1ra) was detected by flow cytometry after stimulation of whole blood without and with different TLR and nucleotide-binding oligomerization domain ligands—i.e., lipopolysaccharide (LPS), fibroblast-stimulating lipopeptid-1, PAM3CSK4, and muramyl dipeptide (MDP)—for 5 h. IL-10 production was measured after 18 h of stimulation in supernatants by enzyme-linked immunosorbent assay.ResultsIn patients with axSpA but not patients with RA, we found higher frequencies of classic monocytes than in controls (median of 90.4 % versus 80.4 %, P < 0.05), higher frequencies of monocytes spontaneously producing IL-1beta and IL-1ra (P < 0.05), and a higher percentage of monocytes producing IL-1beta after MDP stimulation (P < 0.05). Elevated cytokine production was confined to axSpA patients under conventional therapy (non-steroidal anti-inflammatory drugs) and not found in patients under TNFα inhibitor treatment. The LPS-induced production of IL-6 and IL-10 was lower in axSpA patients compared with controls (P < 0.05). Monocytic TLR expression was unaffected in patients with axSpA.ConclusionEnhanced spontaneous and MDP-induced cytokine secretion by monocytes suggests in vivo pre-activation of monocytes in axSpA patients under conventional therapy which is reverted under TNF inhibitor treatment.  相似文献   

13.
In inflamed joints, enhanced hyaluronic acid (HA) degradation is closely related to the pathogenesis of rheumatoid arthritis (RA). KIAA1199 has been identified as a hyaladherin that mediates the intracellular degradation of HA, but its extracellular function remains unclear. In this study, we found that the serum and synovial levels of secreted KIAA1199 (sKIAA1199) and low-molecular-weight HA (LMW-HA, MW < 100 kDa) in RA patients were significantly increased, and the positive correlation between them was shown for the first time. Of note, treatment with anti-KIAA1199 mAb effectively alleviated the severity of arthritis and reduced serum LMW-HA levels and cytokine secretion in collagen-induced arthritis (CIA) mice. In vitro, sKIAA1199 was shown to mediate exogenous HA degradation by attaching to the cell membrane of RA fibroblast-like synoviosytes (RA FLS). Furthermore, the HA-degrading activity of sKIAA1199 depended largely on its adhesion to the membrane, which was achieved by its G8 domain binding to ANXA1. In vivo, kiaa1199-KO mice exhibited greater resistance to collagen-induced arthritis. Interestingly, this resistance could be partially reversed by intra-articular injection of vectors encoding full-length KIAA1199 instead of G8-deleted KIAA119 mutant, which further confirmed the indispensable role of G8 domain in KIAA1199 involvement in RA pathological processes. Mechanically, the activation of NF-κB by interleukin-6 (IL-6) through PI3K/Akt signaling is suggested to be the main pathway to induce KIAA1199 expression in RA FLS. In conclusion, our study supported the contribution of sKIAA1199 to RA pathogenesis, providing a new therapeutic target for RA by blocking sKIAA1199-mediated HA degradation.Subject terms: Extracellular signalling molecules, Rheumatoid arthritis  相似文献   

14.
Cancer treatment and therapy has moved from conventional chemotherapeutics to more mechanism-based targeted approach. Disturbances in the balance of histone acetyltransferase (HAT) and deacetylase (HDAC) leads to a change in cell morphology, cell cycle, differentiation, and carcinogenesis. In particular, HDAC plays an important role in carcinogenesis and therefore it has been a target for cancer therapy. Structurally diverse group of HDAC inhibitors are known. The broadest class of HDAC inhibitor belongs to hydroxamic acid derivatives that have been shown to inhibit both class I and II HDACs. Suberoylanilide hydroxamic acid (SAHA) and Trichostatin A (TSA), which chelate the zinc ions, fall into this group. In particular, SAHA, second generation HDAC inhibitor, is in several cancer clinical trials including solid tumors and hematological malignancy, advanced refractory leukemia, metastatic head and neck cancers, and advanced cancers. To our knowledge, selenium-containing HDAC inhibitors are not reported in the literature. In order to find novel HDAC inhibitors, two selenium based-compounds modeled after SAHA were synthesized. We have compared two selenium-containing compounds; namely, SelSA-1 and SelSA-2 for their inhibitory HDAC activities against SAHA. Both, SelSA-1 and SelSA-2 were potent HDAC inhibitors; SelSA-2 having IC50 values of 8.9 nM whereas SAHA showed HDAC IC50 values of 196 nM. These results provided novel selenium-containing potent HDAC inhibitors.  相似文献   

15.
Hypoxia inducible factor 1α (HIF-1α) is a master regulator of tumor angiogenesis being one of the major targets for cancer therapy. Previous studies have shown that Histone Deacetylase Inhibitors (HDACi) block tumor angiogenesis through the inhibition of HIF-1α expression. As such, Vorinostat (Suberoylanilide Hydroxamic Acid/SAHA) and Romidepsin, two HDACis, were recently approved by the Food and Drug Administration (FDA) for the treatment of cutaneous T cell lymphoma. Although HDACis have been shown to affect HIF-1α expression by modulating its interactions with the Hsp70/Hsp90 chaperone axis or its acetylation status, the molecular mechanisms by which HDACis inhibit HIF-1α expression need to be further characterized. Here, we report that the FDA-approved HDACi Vorinostat/SAHA inhibits HIF-1α expression in liver cancer-derived cell lines, by a new mechanism independent of p53, prolyl-hydroxylases, autophagy and proteasome degradation. We found that SAHA or silencing of HDAC9 mechanism of action is due to inhibition of HIF-1α translation, which in turn, is mediated by the eukaryotic translation initiation factor - eIF3G. We also highlighted that HIF-1α translation is dramatically inhibited when SAHA is combined with eIF3H silencing. Taken together, we show that HDAC activity regulates HIF-1α translation, with HDACis such as SAHA representing a potential novel approach for the treatment of hepatocellular carcinoma.  相似文献   

16.
Suberoylanilide hydroxamic acid (SAHA) is an inhibitor of histone deacetylases (HDACs) used for the treatment of cutaneous T cell lymphoma (CTCL) and under consideration for other indications. In vivo studies suggest reducing HDAC function can enhance synaptic function and memory, raising the possibility that SAHA treatment could have neurological benefits. We first examined the impacts of SAHA on synaptic function in vitro using rat organotypic hippocampal brain slices. Following several days of SAHA treatment, basal excitatory but not inhibitory synaptic function was enhanced. Presynaptic release probability and intrinsic neuronal excitability were unaffected suggesting SAHA treatment selectively enhanced postsynaptic excitatory function. In addition, long-term potentiation (LTP) of excitatory synapses was augmented, while long-term depression (LTD) was impaired in SAHA treated slices. Despite the in vitro synaptic enhancements, in vivo SAHA treatment did not rescue memory deficits in the Tg2576 mouse model of Alzheimer’s disease (AD). Along with the lack of behavioral impact, pharmacokinetic analysis indicated poor brain availability of SAHA. Broader assessment of in vivo SAHA treatment using high-content phenotypic characterization of C57Bl6 mice failed to demonstrate significant behavioral effects of up to 150 mg/kg SAHA following either acute or chronic injections. Potentially explaining the low brain exposure and lack of behavioral impacts, SAHA was found to be a substrate of the blood brain barrier (BBB) efflux transporters Pgp and Bcrp1. Thus while our in vitro data show that HDAC inhibition can enhance excitatory synaptic strength and potentiation, our in vivo data suggests limited brain availability may contribute to the lack of behavioral impact of SAHA following peripheral delivery. These results do not predict CNS effects of SAHA during clinical use and also emphasize the importance of analyzing brain drug levels when interpreting preclinical behavioral pharmacology.  相似文献   

17.

Introduction

Evaluation of disease severity in experimental models of rheumatoid arthritis is inevitably associated with assessment of structural bone damage. A noninvasive imaging technology allowing objective quantification of pathophysiological alterations of bone structure in rodents could substantially extend the methods used to date in preclinical arthritis research for staging of autoimmune disease severity or efficacy of therapeutical intervention. Sodium 18 F-fluoride (18 F-NaF) is a bone-seeking tracer well-suited for molecular imaging. Therefore, we systematically examined the use of 18 F-NaF positron emission tomography/computed tomography (PET/CT) in mice with glucose-6-phosphate isomerase (G6PI)–induced arthritis for quantification of pathological bone metabolism.

Methods

F-fluoride was injected into mice before disease onset and at various time points of progressing experimental arthritis. Radioisotope accumulation in joints in the fore- and hindpaws was analyzed by PET measurements. For validation of bone metabolism quantified by 18 F-fluoride PET, bone surface parameters of high-resolution μCT measurements were used.

Results

Before clinical arthritis onset, no distinct accumulation of 18 F-fluoride was detectable in the fore- and hindlimbs of mice immunized with G6PI. In the course of experimental autoimmune disease, 18 F-fluoride bone uptake was increased at sites of enhanced bone metabolism caused by pathophysiological processes of autoimmune disease. Moreover, 18 F-fluoride signaling at different stages of G6PI-induced arthritis was significantly correlated with the degree of bone destruction. CT enabled identification of exact localization of 18 F-fluoride signaling in bone and soft tissue.

Conclusions

The results of this study suggest that small-animal PET/CT using 18 F-fluoride as a tracer is a feasible method for quantitative assessment of pathophysiological bone metabolism in experimental arthritis. Furthermore, the possibility to perform repeated noninvasive measurements in vivo allows longitudinal study of therapeutical intervention monitoring.  相似文献   

18.
Among a panel of histone deacetylase (HDAC) inhibitors investigated, suberoylanilide hydroxamic acid (SAHA) evolved as a potent and non-toxic candidate drug for the treatment of spinal muscular atrophy (SMA), an alpha-motoneurone disorder caused by insufficient survival motor neuron (SMN) protein levels. SAHA increased SMN levels at low micromolar concentrations in several neuroectodermal tissues, including rat hippocampal brain slices and motoneurone-rich cell fractions, and its therapeutic capacity was confirmed using a novel human brain slice culture assay. SAHA activated survival motor neuron gene 2 (SMN2), the target gene for SMA therapy, and inhibited HDACs at submicromolar doses, providing evidence that SAHA is more efficient than the HDAC inhibitor valproic acid, which is under clinical investigation for SMA treatment. In contrast to SAHA, the compounds m-Carboxycinnamic acid bis-Hydroxamide, suberoyl bishydroxamic acid and M344 displayed unfavourable toxicity profiles, whereas MS-275 failed to increase SMN levels. Clinical trials have revealed that SAHA, which is under investigation for cancer treatment, has a good oral bioavailability and is well tolerated, allowing in vivo concentrations shown to increase SMN levels to be achieved. Because SAHA crosses the blood-brain barrier, oral administration may allow deceleration of progressive alpha-motoneurone degeneration by epigenetic SMN2 gene activation.  相似文献   

19.
Activation of the inflammatory response is accompanied by a metabolic shift to aerobic glycolysis. Here we identify histone deacetylase 4 (HDAC4) as a new component of the immunometabolic program. We show that HDAC4 is required for efficient inflammatory cytokine production activated by lipopolysaccharide (LPS). Surprisingly, prolonged LPS treatment leads to HDAC4 degradation. LPS-induced HDAC4 degradation requires active glycolysis controlled by GSK3β and inducible nitric oxide synthase (iNOS). Inhibition of GSK3β or iNOS suppresses nitric oxide (NO) production, glycolysis, and HDAC4 degradation. We present evidence that sustained glycolysis induced by LPS treatment activates caspase-3, which cleaves HDAC4 and triggers its degradation. Of importance, a caspase-3–resistant mutant HDAC4 escapes LPS-induced degradation and prolongs inflammatory cytokine production. Our findings identify the GSK3β-iNOS-NO axis as a critical signaling cascade that couples inflammation to metabolic reprogramming and a glycolysis-driven negative feedback mechanism that limits inflammatory response by triggering HDAC4 degradation.  相似文献   

20.
Radiation-induced colitis is a common clinical problem after radiation therapy and accidental radiation exposure. Myeloid-derived suppressor cells (MDSCs) have immunosuppressive functions that use a variety of mechanisms to alter both the innate and the adaptive immune systems. Here, we demonstrated that radiation exposure in mice promoted the expansion of splenic and intestinal MDSCs and caused intestinal inflammation due to the increased secretion of cytokines. Depletion of monocytic MDSCs using anti-Ly6C exacerbated radiation-induced colitis and altered the expression of inflammatory cytokine IL10. Adoptive transfers of 0.5 Gy-derived MDSCs ameliorated this radiation-induced colitis through the production IL10 and activation of both STAT3 and SOCS3 signaling. Intestinal-inflammation recovery using 0.5 Gy-induced MDSCs was assessed using histological grading of colitis, colon length, body weight, and survival rate. Using in vitro co-cultures, we found that 0.5 Gy-induced MDSCs had higher expression levels of IL10 and SOCS3 compared with 5 Gy-induced MDSCs. In addition, IL10 expression was not enhanced in SOCS3-depleted cells, even in the presence of 0.5 Gy-induced monocytic MDSCs. Collectively, the results indicate that 0.5 Gy-induced MDSCs play an important immunoregulatory role in this radiation-induced colitis mouse model by releasing anti-inflammatory cytokines and suggest that IL10-overexpressing mMDSCs may be potential immune-therapy targets for treating colitis.Subject terms: Stress signalling, Super-resolution microscopy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号