首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of selenoprotein P to glycosaminoglycans using heparin as a model compound was studied by surface plasmon resonance. It was found that heparin contains two binding sites for selenoprotein P, a high-affinity, low-capacity site (Kd approximately 1 nM) and a low-affinity, high-capacity site (Kd approximately 140 nM). Binding at both sites is sensitive to pH and ionic strength, and the high-affinity site is abolished by histidine carbethoxylation with diethylpyrocarbonate. The pH and salt dependence of binding suggests electrostatic interactions with heparin. The concentrations of selenoprotein P in plasma (approximately 50 nM) are sufficiently high to facilitate binding of selenoprotein P to proteoglycans on the vascular endothelium, and this may contribute to the formation of a protective barrier against oxidants such as peroxynitrite or hydroperoxides.  相似文献   

2.
Human milk lactoferrin binds two DNA molecules with different affinities.   总被引:2,自引:0,他引:2  
Evidence is presented that lactoferrin (LF), an Fe3+-binding glycoprotein, possesses two DNA-binding sites with different affinities for specific oligonucleotides (ODNs) (Kdl = 8 nM; Kd2 approximately 0.1 mM). The high affinity site became labeled after incubation with affinity probes for DNA-binding sites; like the antibacterial and polyanion-binding sites, this site was shown to be located in the N-terminal domain of LF. Interaction of heparin with the polyanion-binding site inhibits the binding of ODNs to both sites. These data suggest that the DNA-binding sites of LF coincide or overlap with the known polyanion and antimicrobial domains of the protein.  相似文献   

3.
We characterized binding and endocytosis of 125I-bovine lactoferrin by isolated rat hepatocytes. Iron-depleted (apo-Lf), approximately 30% saturated (Lf), and iron-saturated (holo-Lf) lactoferrin were used. At 4 degrees C, cells bound 125I-apo-Lf and 125I-holo-Lf with nearly identical apparent first order kinetics (t1/2 = approximately 42 min). Holo-Lf and apo-Lf competed with each other for binding. Hepatocytes bound lactoferrin optimally at pH greater than or equal to 7 but poorly at pH less than or equal to 6. Ca2+ (greater than or equal to 100 microM) enhanced Lf binding to cells, and holo-Lf remained monomeric with Ca2+ present as determined by gel filtration chromatography. With Ca2+, cells exhibited approximately 10(6) high affinity sites (Kd approximately 20 nM) and approximately 10(7) low affinity sites (Kd approximately 700 nM) for both apo- and holo-Lf. Without Ca2+, cells bound 125I-holo-Lf by the low affinity component only. EGTA and dextran sulfate together released greater than or equal to 90% 125I-Lf prebound at 4 degrees C, but individually removed separate populations of surface-bound 125I-Lf. Cells bound 125I-Lf in a Ca(2+)-dependent manner with dextran sulfate present. We conclude that the high affinity but not the low affinity sites require Ca2+; only the low affinity sites are dextran sulfate-sensitive. Neither transferrin nor asialo-orosomucoid blocked lactoferrin binding to hepatocytes. Some cationic proteins but not others inhibited lactoferrin binding. At 37 degrees C, hepatocytes endocytosed 125I-apo-Lf and 125I-holo-Lf similarly, and hyperosmolality (greater than 500 mmol/kg) blocked uptake by approximately 90%. These data support the proposal that hepatocytes regulate blood lactoferrin concentration by receptor-mediated endocytosis.  相似文献   

4.
The effect of a mixture of alpha-tocopheryl phosphate and di-alpha-tocopheryl phosphate (TPm) was studied in vitro on two cell lines, RASMC (from rat aortic smooth muscle) and human THP-1 monocytic leukaemia cells. Inhibition of cell proliferation by TPm was shown in both lines and occurred with TPm at concentrations lower than those at which alpha-tocopherol was equally inhibitory. TPm led in non-stimulated THP-1 cells to inhibition of CD36 mRNA and protein expression, to inhibition of oxidized low density lipoprotein surface binding and oxLDL uptake. In non-stimulated THP-1 cells, alpha-tocopherol had only very weak effects on these events. Contrary to alpha-tocopherol, TPm was cytotoxic to THP-1 cells at high concentrations. Thus, TPm is able to inhibit the major aggravating elements involved in the progression of atherosclerosis. The higher potency of TPm may be due to a better uptake of the molecule and to its intracellular hydrolysis, providing more alpha-tocopherol to sensitive sites. Alternatively, a direct effect of the phosphate ester on specific cell targets may be considered.  相似文献   

5.
The binding of norepinephrine (NE) to plasma proteins of fresh human blood obtained from healthy volunteers was studied by ultrafiltration at different NE concentrations and incubation times at 37 degrees C. At 1.7 nM L-[3H]-NE binding was approximately 25%. The binding was rapid and was not influenced by the incubation time. [3H]-NE could be dissociated from its binding sites by acid precipitation and, after HPLC, showed to be unchanged NE. No difference in NE binding was found between plasma collected in EGTA-GSH or heparin solution. There was no degradation of NE when incubated in plasma at 37 degrees C for 10 h, even without the addition of antioxidants. Therefore, in the present study, binding represented interaction of unchanged NE with plasma proteins. The whole plasma binding was saturable over the range of 0.66 nM to 0.59 mM of NE. Scatchard plot of specific binding revealed high-affinity sites with a Kd of 5.4 nM and a Bmax of 3.9 fmoles.mg-1 protein, and low-affinity sites with a Kd of 2.7 microM and a Bmax of 3.3 pmoles.mg-1 protein. Electrophoretic characterization of NE-binding proteins showed that about 60% of bound NE was associated to albumin, and 20% to prealbumin. NE binding to pure human plasma proteins was also studied using ultrafiltration. Scatchard analyses revealed a single class of very high-affinity binding sites for prealbumin (Kd 4.9 nM), a single class of binding sites for alpha 1-acid glycoprotein (Kd 54 microM) and two classes of binding sites for albumin with high (Kd 1.7 microM) and low (Kd 0.8 mM) affinities respectively. The main results obtained in this study - a) reversibility of NE binding, b) stability of free and bound NE in plasma, c) involvement of the prealbumin as a specific binding protein - point out to a specific transport for NE in human blood plasma.  相似文献   

6.
The distribution of inositol 1,4,5-trisphosphate and ryanodine binding sites between plasma membrane, microsomal, and mitochondrial fractions of rat liver were compared. IP3 bound mostly to the plasma membrane fraction (Kd = 6 nM; Bmax = 802 fmol/mg protein). Some IP3 binding sites were also present in the microsomal and mitochondrial fractions (Kd = 2.5 and 2.9 nM; Bmax = 35 and 23 fmol/mg protein respectively). The possibility that these binding sites are due to contamination of the fractions with plasma membrane cannot be excluded. Binding of IP3 to the plasma membrane was inhibited by heparin but not by either caffeine or tetracaine. High-affinity ryanodine binding sites were present mostly in the microsomal fraction (Kd = 13 nM; Bmax = 301 fmol/mg protein). Lower affinity binding sites were also found to be present in the mitochondrial and plasma membrane fractions. Binding of ryanodine to the microsomal fraction was inhibited by both caffeine and tetracaine but not by heparin. These data demonstrate that IP3 and ryanodine binding sites are present in different cellular compartments in the liver. These differences in the localization of the binding sites might be indicative of their functional differences.  相似文献   

7.
We investigated binding characteristics of basic fibroblast growth factor (bFGF) on membranes prepared from 4 human breast cancer cell lines and 38 primary BC biopsies. Competitive binding experiments were performed and analyzed using the "Ligand" program. Furthermore bFGF mitogenic activity was measured by [3H]thymidine incorporation into DNA from breast cancer cell lines. The presence of high-affinity binding sites was demonstrated in each cell type (MCF-7: Kd = 0.60 nM; T-47D: Kd = 0.55 nM; BT-20: Kd = 0.77 nM; MDA-MB-231: Kd = 0.34 nM). The presence of these high-affinity binding sites was confirmed with saturation experiments. A second class of low-affinity binding sites was detected in the 2 hormone-independent cells (BT-20: Kd = 2.9 nM; MDA-MB-231: Kd = 2.7 nM). bFGF stimulated the proliferation of MCF-7, T-47D, BT-20 but not MDA-MB-231 cell lines. With competition experiments, binding sites were detectable in 36/38 breast cancers; high-affinity binding sites (Kd less than 1 nM) were present in 19/36 cases and low-affinity binding sites (Kd greater than 2 nM) were present in 29/36 cases (the two classes of binding sites were present in 12 breast cancers). No relation between bFGF binding sites and node involvement, histologic type or grading of the tumor was evidenced. There were negative correlations (Spearman test) between total bFGF binding sites and estradiol receptor (P = 0.05) or progesterone receptor (P = 0.009). The demonstration of (1) bFGF specific binding sites in breast cancer membranes, and (2) bFGF growth stimulation of some breast cancer cell lines indicates that this factor may be involved directly in the growth of some breast cancers.  相似文献   

8.
A protein kinase capable of phosphorylating basic fibroblast growth factor (FGF) can be localized on the outer cell surface of human hepatoma cells (SK-Hep cells). The addition of [gamma-32P]ATP, but not H3(32)PO4, results in a rapid (less than 10 min) incorporation of 32P into exogenously added basic FGF. The reaction is time and concentration dependent (apparent Km, 170 nM) and is stimulated by the addition of cAMP (EC50, 0.5 microM), but not the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate. There is also no tyrosine protein kinase detected on the cell surface. The inhibition of basic FGF binding to its low and/or high affinity sites decreases the phosphorylation of basic FGF by the ecto-protein kinase. Accordingly, pretreatment of cells with heparinase for 30 min or coincubation with heparin (0.1-10 micrograms/ml) decreases phosphorylation in a dose-dependent manner. Furthermore, the addition of a nonphosphorylatable peptide analog of basic FGF ([Val112] basic FGF-(106-146)NH2) that can compete with basic FGF binding to cells prevents the phosphorylation of basic FGF. Together, these observations suggest that 1) exogenous basic FGF must associate with its low and/or high affinity binding sites to be phosphorylated, and 2) the kinase is cAMP dependent and associated with the outer cell surface, and support the hypothesis that phosphorylation may regulate the activity and/or bioavailability of the growth factor.  相似文献   

9.
The binding of lactoferrin, an iron-binding glycoprotein found in secretions and leukocytes, to the outer membrane of Gram-negative bacteria is a prerequisite to exert its bactericidal activity. It was proposed that porins, in addition to lipopolysaccharides, are responsible for this binding. We studied the interactions of human lactoferrin with the three major porins of Escherichia coli OmpC, OmpF, and PhoE. Binding experiments were performed on both purified porins and porin-deficient E. coli K12 isogenic mutants. We determined that lactoferrin binds to the purified native OmpC or PhoE trimer with molar ratios of 1.9 +/- 0.4 and 1.8 +/- 0.3 and Kd values of 39 +/- 18 and 103 +/- 15 nM, respectively, but not to OmpF. Furthermore, preferential binding of lactoferrin was observed on strains that express either OmpC or PhoE. It was also demonstrated that residues 1-5, 28-34, and 39-42 of lactoferrin interact with porins. Based on sequence comparisons, the involvement of lactoferrin amino acid residues and porin loops in the interactions is discussed. The relationships between binding and antibacterial activity of the protein were studied using E. coli mutants and planar lipid bilayers. Electrophysiological studies revealed that lactoferrin can act as a blocking agent for OmpC but not for PhoE or OmpF. However, a total inhibition of the growth was only observed for the PhoE-expressing strain (minimal inhibitory concentration of lactoferrin was 2.4 mg/ml). These data support the proposal that the antibacterial activity of lactoferrin may depend, at least in part, on its ability to bind to porins, thus modifying the stability and/or the permeability of the bacterial outer membrane.  相似文献   

10.
The binding of 125I-lactoferrin to HT29-D4 cells, a clone of HT29 cells, was studied and compared to the binding of 125I-transferrin to the same cells. The binding of the two iron-transport proteins is saturable and reversible suggesting the presence of specific receptors for each protein. Scatchard analysis suggests the existence of binding sites for lactoferrin with the relatively high equilibrium dissociation constant, Kd1 of 408 nM. Additionally, the cell is capable of binding large amounts of lactoferrin with very low affinity, probably in a non-receptor intermediate fashion. The dissociation constant of transferrin and its receptor was calculated 9.29 nM which corresponds well to values found in the literature. In contrast to lactoferrin, the cell was capable of binding only low amounts of transferrin in a non-receptor intermediate fashion. After chemical crosslinking of lactoferrin to the cell surface, the radiolabeled lactoferrin was found in a complex of molecular mass 300 kDa. Crosslinking of transferrin resulted in a complex of much higher molecular mass. These data clearly show a binding site for lactoferrin different from the transferrin receptor. Only if competition experiments were performed with a high molar excess of both ligand proteins did a small percentage of either of the two ligands crossreact with the receptor for the other, possibly due to a structural similarity of the two glycoproteins.  相似文献   

11.
We assessed the participation of the three known heparin-binding domains of PFn (Hep I, Hep II, Hep III) in their interaction with heparin by making a quantitative comparison of the fluid-phase heparin affinities of PFn and PFn fragments under physiologic pH and ionic strength conditions. Using a fluorescence polarization binding assay that employed a PFn affinity-purified fluorescein-labeled heparin preparation, we found that greater than 98% of the total PFn heparin-binding sites exhibit a Kd in the 118-217 nM range. We also identified a minor (less than 2%) class of binding sites exhibiting very high affinity (Kd approximately 1 nM) in PFn and the carboxyl-terminal 190/170 and 150/136 kDa PFn fragments. This latter activity probably reflects multivalent inter- or intramolecular heparin-binding activity. Amino-terminal PFn fragments containing Hep I (72 and 29 kDa) exhibited low affinity for heparin under physiologic buffer conditions (Kd approximately 30,000 mM). PFn fragments (190/170 and 150/136 kDa) containing both the carboxyl-terminal Hep II and central Hep III domains retained most of the heparin-binding activity of native PFn (Kd = 278-492 nM). The isolated Hep II domain (33-kDa fragment) exhibited appreciable, but somewhat lower (2-5-fold), heparin affinity compared to the 190/170-kDa PFn fragment. Heparin binding to the 100-kDa PFn fragment containing Hep III was barely detectable (Kd greater than 30,000 nM). From these observations, we conclude that PFn contains only one major functional heparin-binding site per subunit, Hep II, that dominates the interaction between heparin and PFn.  相似文献   

12.
The growth of regenerating limbs of amphibians depends upon proliferation of the blastema cells that accumulate beneath the epidermal cap. The epidermal cap is known to be mitogenic for the blastema cells. We have extracted a mitogenic activity from both the mesenchymal and epidermal (epidermal cap) components of cone stage blastemas which is retained on heparin-Sepharose and elutes with 1.15 M NaCl. This fraction stimulates neurite outgrowth of PC12 cells and [3H]thymidine incorporation into CCL 39 cells and is potentiated by heparin. The 2 M fraction was inactive. The heparin-Sepharose-purified growth factor cross-reacts with bovine acidic FGF polyclonal antibodies and shows a Mr of 16,000 on Western blots. Blastema membranes contain specific high affinity binding sites (Kd = 25 pM; capacity = 30 fmole/mg protein) and low affinity binding sites (Kd = 18 nM; capacity = 30 pmole/mg protein) for aFGF as revealed by Scatchard analysis. 125I-aFGF which is bound specifically by both the epidermal cap and mesenchyme of blastema frozen sections is displaced by an excess of unlabeled factor and inhibited by heparin. Heparinase treatment and 2 M NaCl washing which decreased the binding was fourfold more efficient for epidermal cap than for mesenchyme suggesting the presence of high affinity receptors in the latter tissue. The presence of aFGF (or a closely related molecule) in blastemas is consistent with our earlier results that showed stimulation of proliferation of cultured blastema cells by acidic or basic FGF or heparin alone. These results suggest the possibility that aFGF is stored in the epidermal cap during limb regeneration and that it stimulates the proliferation of the underlaying mesenchyme.  相似文献   

13.
A class of high-affinity binding sites that preferentially bind heparin/heparan sulfate have been identified on the external surfaces of mouse uterine epithelial cells cultured in vitro. [3H]Heparin binding to these surfaces was time-dependent, saturable, and was blocked specifically by the inclusion of unlabeled heparin or endogenous heparan sulfate in the incubation medium. A variety of other glycosaminoglycans did not compete for these binding sites. The presence of sulfate on heparin influenced, but was not essential for, recognition of the polysaccharide by the cell surface binding sites. [3H]-Heparin bound to the cell surface was displaceable by unlabeled heparin, but not chondroitin sulfate. Treatment of intact cells on ice with trypsin markedly reduced [3H]heparin binding, indicating that a large fraction of the surface binding sites were associated with proteins. Scatchard analyses revealed a class of externally disposed binding sites for heparin/heparan sulfate exhibiting an apparent Kd of approximately 50 nM and present at a level of 1.3 x 10(6) sites per cell. Approximately 9-14% of the binding sites were detectable at the apical surface of cells cultured under polarized conditions in vitro. Detachment of cells from the substratum with EDTA stimulated [3H]heparin binding to cell surfaces. These observations suggested that most of the binding sites were basally distributed and were not primarily associated with the extracellular matrix. Collectively, these observations indicate that specific interactions with heparin/heparan sulfate containing molecules can take place at both the apical and basal cell surfaces of uterine epithelial cells. This may have important consequences with regard to embryo-uterine and epithelial-basal lamina interactions.  相似文献   

14.
Quiescent normal human B cells have been shown to require an activation step before proliferating in response to B cell growth factor (BCGF) of 12,000 m.w. (12 kd). One effect of cell activation has been the putative acquisition of specific cell surface growth factor receptors. In this report, the existence of such receptors has been confirmed by using purified radioiodinated BCGF-12 kd. BCGF-12 kd receptors on activated B cells have been shown to be distinct form those interacting with IL 2. Scatchard analysis revealed both high affinity receptor sites with an apparent Kd of 28.6 pM and low affinity receptor sites with Kd of 1.2 nM on freshly prepared, anti-IgM activated peripheral blood B cells. Human B cells grown in culture for extended periods of time in the presence of BCGF-12 kd also displayed high affinity receptor sites (Kd, 41.4 pM) and low affinity receptor sites (Kd, 0.9 nM). The action of BCGF-12 kd therefore appears to be mediated by binding to its lineage-specific receptors on the cell surface.  相似文献   

15.
Thrombospondin (TSP), a 450-kDa extracellular matrix protein secreted by platelets may be instrumental in triggering polymorphonuclear leukocyte (PMN) activation and mediating PMN-endothelial cell interactions. TSP alone had no effect on O-2 generation but caused a significant increase in the chemoattractant FMLP-mediated O-2 generation. Purified HBD, but not the 140-kDa COOH-terminal fragment of TSP, retained the priming activity indicating that the priming effect was mediated through the HBD of TSP. The priming of FMLP-mediated O-2 generation by TSP, and our recent studies demonstrating that TSP stimulates PMN adhesion and motility suggested the presence of specific receptors for TSP on PMN. Binding studies on unactivated PMN, using 125I-TSP and competition with excess unlabeled TSP, demonstrated 2.4 x 10(3) binding sites/cell with an apparent Kd of 7 nM. Heparin did not compete for binding as effectively as unlabeled TSP. There were 1.5 x 10(3) heparin-inhibitable binding sites/cell with an apparent Kd of 8 nM that represented approximately 60% of the TSP-specific sites. Therefore, two distinct TSP receptors appeared to exist on unactivated PMN; one interacting with the heparin-binding domain of TSP and one interacting with a different site. Treating PMN with cytochalasin B followed by FMLP caused a 30-fold increase in TSP receptor expression. Binding studies on activated PMNs revealed 7.6 x 10(4) sites/cell; 60% of which were heparin inhibitable. The majority (5.3 x 10(4) sites/cell) of receptors expressed had an affinity of approximately 20 nM. About 50% of these sites were heparin inhibitable. In addition, there were 2.3 x 10(4) higher affinity sites/cell with an apparent Kd of 6 nM. Heparin-inhibitable sites comprised 70% of the higher affinity sites. The existence of a subset of TSP receptors that were heparin-inhibitable on PMN suggests that binding of TSP may trigger functionally independent responses. Increased receptor expression and expression of two high affinity binding sites following PMN activation may modulate PMN-endothelium or PMN-basement membrane interactions localized at the blood vessel wall.  相似文献   

16.
The interleukin 1 receptors (IL-1R) on the human B lymphoma RAJI and on the murine thymoma EL4-6.1 have been characterized. Equilibrium binding analysis using both 125I-labeled IL-1 alpha and IL-1 beta showed that RAJI cells have a higher number of binding sites/cell for IL-1 beta (2400, Kd 2.2 nM) than for IL-1 alpha (316, Kd 0.13 nM). On the other hand, EL4-6.1 cells have more receptors/cell for IL-1 alpha (22 656, Kd 1 nM) than for IL-1 beta (2988, Kd 0.36 nM). Dexamethasone (DXM) induced on RAJI cells a time-dependent increase in binding sites for both IL-1 beta and IL-1 alpha without affecting their binding affinities. However, while receptor-bound 125I-IL-1 alpha was displaced with equal efficiency by both IL-1 forms, only unlabeled IL-1 beta could effectively displace 125I-IL-1 beta. Cross-linking experiments indicated that RAJI cells have a predominant IL-1R of about 68 kDa, while EL4-6.1 cells have an IL-1-binding polypeptide of 80 kDa. These results suggest that B and T cells possess structurally different IL-1R with distinct binding properties for IL-1 alpha and IL-1 beta.  相似文献   

17.
Heparin depresses the second-order rate constant kass for the inhibition of neutrophil elastase by alpha 1-proteinase inhibitor. For high and low molecular weight heparin the decrease in kass is 290-fold and 40-fold, respectively. This is due to a tight binding of the polymer to elastase: Kd = 3.3 nM or 89 nM for high or low molecular weight heparin respectively. In contrast heparin increases the rate of inhibition of elastase by mucus proteinase inhibitor. For low molecular weight heparin, there is a 27-fold increase in kass. This is due to a strong binding of the polymer to the inhibitor (Kd = 50 nM) which undergoes a conformational change.  相似文献   

18.
Solute interactions with membrane proteins can be analyzed by biomembrane affinity chromatography (BAC), previously applied to the human red cell glucose transporter. As a novel example, frontal BAC analysis of interactions between the nucleoside transport inhibitor nitrobenzylthioinosine (NBTI) and immobilized reconstituted nucleoside and glucose transporters from human red cells revealed two binding sites, presumably corresponding to the two transporters. The affinities and amounts of sites were determined by use of a double rectangular hyperbolic equation. The Kd value for NBTI binding to the nucleoside transporter in egg phospholipid proteoliposomes was 0.38 +/- 0.08 nM (22 degrees C, I = 0.16, pH 7.4), lower than previously reported for reconstituted systems. The molar ratio between the amounts of nucleoside transporter sites for NBTI and glucose transporter sites for cytochalasin B was 4.5 +/- 0.6%.  相似文献   

19.
R Dardik  J Lahav 《Biochemistry》1991,30(38):9378-9386
Endothelial and other cell types synthesize thrombospondin (TSP), secrete it into their culture medium, and incorporate it into their extracellular matrix. TSP is a large multifunctional protein capable of specific interactions with other matrix components, as well as with cell surfaces, and can modulate cell adhesion to the extracellular matrix. With the aim of understanding the mechanism by which TSP exerts its effect on cell adhesion, we studied the interaction of endothelial cell TSP (EC-TSP) with three different cell types: endothelial cells, granulosa cells, and myoblasts. We find that endothelial cells specifically bind radiolabeled EC-TSP with a Kd of 25 nM, and the number of binding sites is 2.6 X 10(6)/cell. Binding is not inhibitable by the cell-adhesion peptide GRGDS, indicating that the cell-binding site of EC-TSP is not in the RGD-containing domain. Localization of the cell-binding site was achieved by testing two chymotryptic fragments representing different regions of the TSP molecule, the 70-kDa core fragment and the 27-kDa N-terminal fragment, for their ability to bind to the cells. Cell-binding capacity was demonstrated by the 70-kDa fragment but not by the 27-kDa fragment. Binding of both intact [125I]EC-TSP and of the 125I-labeled 70-kDa fragment was inhibited by unlabeled TSP, heparin, fibronectin (FN), monoclonal anti-TSP antibody directed against the 70-kDa fragment (B7-3), and by full serum, but not by heparin-absorbed serum or the cell-adhesion peptide GRGDS. The 70-kDa fragment binds to endothelial cells with a Kd of 47 nM, and the number of binding sites is 5.0 x 10(6)/cell.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The surface of Aeromonas salmonicida is covered by a tetragonal paracrystalline array (A-layer) composed of a single protein (A-protein, Mr = 50,778). This array is a virulence factor. Cells containing A-layer and isolated A-layer sheets specifically bound laminin and fibronectin with high affinity. Binding by cells was inactivated by selective removal of A-layer at pH 2.2, and neither isogenic A-layer-deficient A. salmonicida mutants nor tetragonal paracrystalline array producing Aeromonas hydrophila and Aeromonas sobria strains bound either matrix protein. Laminin binding was by a single class of high affinity interactions (cell Kd = 1.52 nM), whereas fibronectin bound via two classes of interactions, one being similar to that of laminin (cell Class 2 interaction Kd = 6.6 nM). This interaction with both proteins was partly hydrophobic. The Class 1 fibronectin interaction was of lower affinity (cell Kd = 218 nM) and distinct. Purified A-protein inhibited binding of both matrix proteins to A-layer, and trypsin cleavage localized the matrix-protein binding region to the N-terminal major trypsin-resistant structural domain of A-protein. Monoclonal antibody inhibition studies showed that A-protein was folded such that Fabs of only one of two antibodies with epitopes mapping C-terminal to this trypsin-resistant peptide was capable of blocking binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号