首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A comparative study of the staining characteristics of four reagents for human chromosomes has been carried out. The four reagents are: (I) quinacrine mustard, as an alkylating agent, (II) the dihydrory derivative of quinacrine mustard, (III) quinacrine, and (IV) 9-amino-6-chloro-2-methoryacridine. The last reagent does not possess the amino substituted side chain even though it has the same intercalating nucleus. Comparison of the first three compounds in their staining and banding behavior suggested the initial step leading to banding may be the displacement of the nucleoprotein sites in chromosomes. The Q and G banding could he blocked experimentally by treating the chromosome preparation with dimethylamine solution. This result may suggest that these sites have weaker basic proteins (nonhistone proteins?). The use of compound IV, which does not have the side chain in the molecuk but docs have the same intercalating chromophore, did not lead to handing and gives indirect support to this hypothesis. A combined use of compound IV and quinacrine may be useful for the determination of total DNA vs. banding DNA.  相似文献   

2.
K C Tsou  B Giles  G Kohn 《Stain technology》1975,50(5):293-295
A comparative study of the staining characteristics of four reagents for human chromosomes has been carried out. The four reagents are: (I) quinacrine mustard, as an alkylating agent, (II) the dihydroxy derivative of quinacrine mustard, (III) quinacrine, and (IV) 9-amino-6-chloro-2-methoxyacridine. The last reagent does not possess the amino substituted side chain even though it has the same intercalating nucleus. Comparison of the first three compounds in their staining and banding behavior suggested the initial step leading to banding may be the displacement of the nucleoprotein sites in hcromosomes. The Q and G banding could be blocked experimentally by treating the chromosome preparation with dimethylamine solution. This result may suggest that these sites have weaker basic proteins (nonhistone proteins?). The use of compound IV, which does not have the side chain in the molecule but does have the same intercalating chromophore, did not lead to banding and gives indirect support to this hypothesis. A combined use of compound IV and quinacrine may be useful for the determination of total DNA vs. banding DNA.  相似文献   

3.
It is shown that the dyes used to produce banding patterns on chromosomes, quinacrine and Giemsa, are bound to DNA, and not to non-histone protein, the other chromosomal component remaining after acetic acid fixation. Studies on fixed nuclei and on extracted DNA in gelatine films show that the amount of dye bound is not affected by whether the DNA is native or denatured, and is not directly related to the amount of DNA present. Quinacrine is bound to the DNA ionically. With Giemsa, a new magenta compound is formed in situ, consisting of two molecules of methylene blue and one of eosin; this compound is attached to the chromosome by hydrogen bonds. Both quinacrine and the magenta compound formed from Giemsa appear to be attached to DNA molecules at two separate points, and the available evidence suggests that the amount of dye bound is related to the concentration of the DNA. It is suggested that the dye molecules bridge longitudinally separated sites brought into close proximity by folding of the DNA, and that the spatial arrangement of sites in the chromosome is influenced by non-histone proteins. It is concluded that chromosome banding is thus a consequence of the reduction of dye binding in those regions where the DNA chains become sufficiently dispersed to prevent bridging by the dye molecules. Possible indirect effects of base composition and repetition on dye binding at certain chromosomal sites are discussed.  相似文献   

4.
Chromosome banding has been analysed in terms of DNA content and base composition distribution along five human chromosomes. Three intercalative dyes (quinacrine, proflavine and ethidium bromide) whose fluorescence quantum yield in the presence of DNAs of different base compositions has been determined, have been used to examine the influence of base composition on the chromosome patterns. Considering that the amount of DNA as determined by the Feulgen reaction is almost constant along the chromosome arms and assuming that base composition is the only factor influencing the fluorescence of these dyes, a distribution of the A-T base pair content along the chromosomes has been calculated from the fluorescence intensity profiles. From the ratio of the intensity profiles obtained with quinacrine and proflavine, patterns showing the variation of the DNA content and of the A-T base pair content could also be obtained independently. The validity of these different approaches is discussed.  相似文献   

5.
The human chromosomes 1, 9, 16, 21, and Y were analysed cytofluorometrically with the AT-specific DNA ligands quinacrine mustard (QM), Hoechst 33′258, and DAPI, and the GC-specific DNA ligand mithramycin. All three AT dyes give similar results, though QM produces more distinct banding than DAPI or Hoechst. The sum of AT and GC fluorescence is very well correlated to the amount of DNA estimated densitometrically. The AT/GC ratios of chromosomes 16, 22, and Y differ clearly from that of whole nuclei, and accord fairly well with the results obtained by flow cytometry. For the Y a significant difference in calculated base content between donors was found with all three AT dyes even though differences in the karyotypes were not distinguishable by the eye.  相似文献   

6.
Addition of the intercalating dye quinacrine to a low ionic strength solution of DNA in quantities sufficient to saturate the high affinity sites in the DNA will result in the accumulation of the DNA at the solution interface. This entrapment of DNA at the air-water interface has been assayed by the adsorption of DNA to untreated carbon-coated electron microscope grids touched to the solution surface. Other intercalating dyes can also bring about this entrapment, if they possess a side arm large enough to occupy one of the DNA grooves when the dye is intercalated into the DNA. The extension and unwinding of the DNA helix brought about by the intercalating chromophore of the dye molecules are not requirements for the entrapment process. Spermidine, a simple polyamine that will bind to the DNA minor groove but that has no intercalating chromophore, was found to bring about this entrapment. Even simple mono- and divalent cations in the absence of the above ligands were found to promote a low level of surface entrapment. A model for the entrapment of DNA at the air-water interface is proposed in which one (or both) of the hydrophobic grooves of the DNA becomes a surface-active agent as a consequence of the association of various ligands and charge neutralization.  相似文献   

7.
The fluorescence and circular dichroism of quinacrine complexed with nucleic acids and chromatin were measured to estimate the relative magnitudes of factors influencing the fluorescence banding patterns of chromosomes stained with quinacrine or quinacrine mustard. DNA base composition can influence quinacrine fluorescence in at least two ways. The major effect, evident at low ratios of quinacrine to DNA, is a quenching of dye fluorescence, correlating with G-C composition. This may occur largely prior to relaxation of excited dye molecules. At higher dye/DNA saturations, which might exist in cytological chromosome preparations stained with high concentrations of quinacrine, energy transfer between dye molecules converts dyes bound near G-C base pairs into energy sinks. In contrast to its influence on quinacrine fluorescence, DNA base composition has very little effect on either quinacrine binding affinity or the circular dichroism of bound quinacrine molecules. The synthetic polynucleotides poly(dA-dT) and poly(dA)-poly(dT) have a similar effect on quinacrine fluorescence, but differ markedly in their affinity for quinacrine and in the circular dichroism changes associated with quinacrine binding. Quinacrine fluorescence intensity and lifetime are slightly less when bound to calf thymus chromatin than when bound to calf thymus DNA, and minor differences in circular dichroism between these complexes are observed. Chromosomal proteins probably affect the fluorescence of chromosomes stained with quinacrine, although this effect appears to be much less than that due to variations in DNA base composition. The fluorescence of cytological chromosome preparations may also be influenced by fixation effects and macroscopic variations in chromosome coiling.  相似文献   

8.
A procedure is described for quinacrine banding of radiolabeled metaphase chromosomes for autoradiography. The chromosomes can be labeled either in vivo or by in situ hybridization. The banding procedure involves treating the slides with RNase and formamide and staining in quinacrine. The slides are then processed for autoradiography. After development of the photoemulsion, the chromosomes can be karyotyped with UV light by their fluorescent banding patterns and the silver grains overlaying the chromosomes can be demonstrated by the addition of tungsten light. It is possible by careful manipulation of the visible light to simultaneously observe both fluorescent bands and silver grains. This technique should significantly increase the accuracy of chromosome identification after autoradiography and decrease the time and effort required for such analysis.  相似文献   

9.
How DNA is folded into chromosomes is unknown. Mitotic chromosome banding shows reproducibility in longitudinal compaction at a resolution of several megabase pairs, but it is less clear whether DNA sequences are targeted laterally to specific locations. The in vitro chromosome assembly of prokaryotic DNA suggests that there is a lack of sequence requirements for chromosome condensation, implying an absence of DNA targeting. Protein extraction experiments indicate, however, that specific DNA sequences may bind to a chromosome scaffold. Chromosome banding patterns, using dyes with differential sequence specificity, have been interpreted to result from the alignment of AT-rich sequences in a partially helically folded chromosome scaffold. But fluorescence in situ hybridization experiments, perhaps owing to technical limitations, have shown at best only slight deviation from a random, lateral sequence distribution. Here we show that there is highly reproducible targeting of specific chromosome segments to the metaphase chromatid axis, but that these segments localize to the periphery of prophase and telophase chromosomes. Unfolding intermediates during anaphase and telophase suggest that sequence repositioning occurs through the global uncoiling of an underlying chromatid structure.  相似文献   

10.
The quinacrine banding patterns of chromosomes of Dipodomys ordii and Mus musculus are described. Satellite and mainband DNA fractions from D. ordii and M. musculus were tested for their ability to quench or enhance the fluorescence of quinacrine dihydrochloride in solution. The relationship between the base composition of a particular DNA fraction, its effect on the fluorescence of quinacrine in solution and its location in chromosomes relative to the quinacrine banding pattern is discussed.  相似文献   

11.
After staining by a new proflavine derivative (2,7-di-t-butyl proflavine, DBP), which specifically binds to the A-T base pairs of DNA by an external process, the constrictions of the human chromosomes 1, 16 and to a lesser extent 9 and the centromeric regions of the chromosomes (except the Y) of Mus musculus are brightly fluorescent. These chromosome regions are known to contain repetitive DNAs rich in A-T. On the contrary, the centromeric regions of the autosomes of Bos taurus, which contain a G-C rich DNA, are faintly fluorescent. The arms of the chromosomes of the three species display a banding similar to, but fainter than, the Q-banding. These results are discussed in correlation with physico-chemical studies on the binding and fluorescence processes of the dye bound to DNA and to nucleohistone. The staining properties of DBP are compared to those of quinacrine, quinacrine mustard and proflavine, three intercalative dyes which are also supposed to reveal the A-T base pairs along the chromosomes, but are faintly fluorescent on the human and murine A-T rich regions. This comparison leads us to discuss the mechanisms responsible for the chromosomal banding in relation to DNA base composition and repetitiveness, protein distribution and packing of the chromatin fibers, along the chromosomes.  相似文献   

12.
W. Schnedl 《Chromosoma》1972,38(3):319-328
Almost all the 30 chromosome pairs of cattle can be identified by their banding patterns made be visible by a Giemsa staining technique described previously. The banding pattern of the X chromosome shows striking similarities with the banding pattern of the human X chromosome. — The centromeric region of the acrocentric autosomes contains a highly condensed DNA. This DNA is removed by the Giemsa staining procedure as can be shown by interference microscopic studies. If the chromosomes are stained with quinacrine dihydrochloride these centromeric regions are only slightly fluorescent. — Autoradiographic studies with 3H-thymidine show that the DNA at the centromeric regions starts and finishes its replication later than in the other parts of the chromosomes.  相似文献   

13.
Metaphase chromosomes from cultured Chinese Hamster Ovary cells were labelled in suspension with a monoclonal antibody to histone 2B, counterstained with propidium iodide (PI) and analysed by flow cytometry. Contour plots of antibody binding (FITC fluorescence) against DNA content (PI fluorescence) revealed two discrete forms of each individual chromosome, showing high and low levels of antibody binding respectively. The two types of chromosome were easily distinguishable by immunofluorescence microscopy. The distribution of individual chromosomes between the two populations was related to chromosome size, with larger chromosomes predominating in the low-labelling population and vice versa. Variations in ionic strength, pH, divalent cation concentration or preparation procedure influenced the absolute level of antibody binding but did not eliminate the two populations. In contrast, preincubation with intercalating dyes, such as ethidium and propidium, inhibited antibody binding and generated a single, low-labelling population. Preliminary evidence suggests that in vivo changes in chromosome structure can affect the distribution of chromosomes between the two populations. Prolonged exposure of cells to Colcemid prior to chromosome isolation, a procedure known to increase chromosome condensation, resulted in a progressive shift into the low-labelling population. Our results suggest that chromosomes undergo a relatively rapid transition from the high-labelling to the low-labelling form during the prometaphase-metaphase stage of mitosis. The timing of this transition appears to be size dependent, with the larger chromosomes preceding the smaller. The transition may represent a change in chromosome condensation.  相似文献   

14.
The ability of electronic energy transfer and direct binding competition between pairs of dyes to enhance contrast in human or bovine metaphase chromosome staining patterns is illustrated, and the relative effectiveness of these two mechanisms compared. The existence of energy transfer between quinacrine or 33258 Hoechst and 7-amino-actinomycin D in doubly stained chromosomes is demonstrated directly by microfluorometry. The ability of the dyes 7-amino-actinomycin D, methyl green, or netropsin, acting as counterstains, to displace quinacrine, 33258 Hoechst, or chromomycin A3 from chromosomes, is estimated by quantitative analysis of energy transfer data, by photobleaching of the counterstains, or by selective removal of counter-stains by appropriate synthetic polynucleotides. Effects on the fluorescence of soluble 33258 Hoechst-DNA complexes due to energy transfer or binding displacement, by actinomycin D or netropsin, respectively, are further differentiated by nanosecond fluorescence decay measurements. Examples are presented of dye combinations for which (a) energy transfer is the primary mechanism operative, (b) binding competition exists, with consequences reinforcing those due to energy transfer, or (c) binding competition is the most important interaction. These analyses of mechanisms responsible for contrast enhancement in doubly stained chromosomes are used to derive information about the relationship between chromosome composition and banding patterns.  相似文献   

15.
Chromosomes were prepared from mitotic munjac cells 48 to 72 h after infection with SV40 virus. When stained for SV40 T antigen by indirect immunofluorescence, all chromosomes within an infected cell were fluorescent, indicating the presence of T antigen. Furthermore, the chromosomes were not uniformly stained but appeared to have regions of high and low fluorescence intensity. A variety of controls showed that the banding patterns are specific and highly reproducible and may indeed reflect the binding sites of T antigen. The bright, fluorescent bands T antigen were found to correspond to bands visualized by trypsin-Giesma staining (G-bands) and also by quinacrine staining (Q-bands). Current knowledge of chromosome banding indicates that Q-bands reflect the distribution of AT-rich regions along the chromosome. From the DNA sequence of SV40, it is known that one of the T antigen binding sites contains AT-rich sequences; thus, T antigen banding might be due to the base-specific binding of T antigen to chromatin. In addition, these bands have been implicated as centers for chromosome condensation and units in control of DNA replication. While the functional significance of T antigen binding has yet to be determined, the SV40-muntjac system provides an unusual opportunity to study the interaction of a known regulatory protein with mammalian chromosomes.  相似文献   

16.
A T Sumner 《Histochemistry》1986,84(4-6):566-574
The mechanisms has been investigated whereby quinacrine binds to the DNA of nuclei and chromosomes in cytological preparations fixed in methanol-acetic acid. A variety of evidence is consistent with the idea that the quinacrine binds by intercalation. This is supported by a high value for the affinity of quinacrine for DNA, together with a saturation value of 0.2 quinacrine molecules/nucleotide; binding in the presence of strong salt solutions; and inhibition of fluorescence and banding by denaturation or depurination of DNA. At high quinacrine concentrations, weak binding of quinacrine to nuclei and chromosomes also occurs, but this is not relevant to the production of strong fluorescence or Q-banding patterns. A number of factors were tested which might have affected quinacrine fluorescence and banding. These included: pH; blocking protein amino groups by acetylation or benzoylation; introduction of hydrophobic groups by benzoylation; and dephosphorylation. All these treatments were without effect. However, comparison of the quinacrine fluorescence of human and onion nuclei, which differ substantially in the base composition of their DNA, shows that quinacrine fluorescence can be enhanced in cytological preparations by AT-rich DNA.  相似文献   

17.
Ultraviolet irradiation of methanol: acetic acid-fixed human and mouse metaphase chromosomes rendered them capable of binding antibodies specific for purine or pyrimidine bases. Since these antibodies react with single-stranded but not with native DNA, our results indicate that UV irradiation generated single-stranded regions in chromosomal DNA. Using an indirect immuno-fluorescence technique to detect antibody binding, highly characteristic, nonrandom patterns of antibody binding were observed. Antibodies to adenosine (anti-A) and thymidine (anti-T) produced identical patterns of binding which in most respects matched the chromosome banding patterns produced by quinacrine. However, additional foci of intense fluorescence were seen in the paracentromeric regions of constitutive heterochromatin on chromosomes 1, 9 and 16, regions which had been shown by in situ DNA-RNA hybridization to be the locations of AT-rich human satellite DNA. Antibodies to cytidine also bound to the same region of chromosome 9. In mouse chromosome preparations, both anti-A and anti-T produced bright fluorescence of the region containing centromeric heterochromatin, which had been shown to be the location of the AT-rich satellite DNA of this species.  相似文献   

18.
Summary The mechanism has been investigated whereby quinacrine binds to the DNA of nuclei and chromosomes in cytological preparations fixed in methanol-acetic acid. A variety of evidence is consistent with the idea that the quinacrine binds by intercalation. This is supported by a high value for the affinity of quinacrine for DNA, together with a saturation value of 0.2 quinacrine molecules/nucleotide; binding in the presence of strong salt solutions; and inhibition of fluorescence and banding by denaturation or depurination of DNA. At high quinacrine concentrations, weak binding of quinacrine to nuclei and chromosomes also occurs, but this is not relevant to the production of strong fluorescence or Q-banding patterns.A number of factors were tested which might have affected quinacrine fluorescence and banding. These included: pH; blocking protein amino groups by acetylation or benzoylation; introduction of hydrophobic groups by benzoylation; and dephosphorylation. All these treatments were without effect. However, comparison of the quinacrine fluorescence of human and onion nuclei, which differ substantially in the base composition of their DNa, shows that quinacrine fluorescence can be enhanced in cytological preparations by AT-rich DNA.In honour of Prof. P. van Duijn  相似文献   

19.
Danilova TV  Birchler JA 《Chromosoma》2008,117(4):345-356
To study the correlation of the sequence positions on the physical DNA finger print contig (FPC) map and cytogenetic maps of pachytene and somatic maize chromosomes, sequences located along the chromosome 9 FPC map approximately every 10 Mb were selected to place on maize chromosomes using fluorescent in situ hybridization (FISH). The probes were produced as pooled polymerase chain reaction products based on sequences of genetic markers or repeat-free portions of mapped bacterial artificial chromosome (BAC) clones. Fifteen probes were visualized on chromosome 9. The cytological positions of most sequences correspond on the pachytene, somatic, and FPC maps except some probes at the pericentromeric regions. Because of unequal condensation of mitotic metaphase chromosomes, being lower at pericentromeric regions and higher in the arms, probe positions are displaced to the distal ends of both arms. The axial resolution of FISH on somatic chromosome 9 varied from 3.3 to 8.2 Mb, which is 12-30 times lower than on pachytene chromosomes. The probe collection can be used as chromosomal landmarks or as a "banding paint" for the physical mapping of sequences including transgenes and BAC clones and for studying chromosomal rearrangements.  相似文献   

20.
Friend leukemia cells from exponentially growing or differentiated (DMSO-induced) cultures were permeabilized and their DNA was stained with 4'6-diamidino-2-phenylindole (DAPI), Hoechst 33342, acridine orange, ethidium bromide, propidium iodide, quinacrine, 7-amino-actinomycin D, mithramycin, or chromomycin A3. Accessibility of DNA to each of the above fluorochromes was compared in differentiated and nondifferentiated cells before and after nuclear proteins, mostly histones, were extracted with 0.1N HCl. A decrease in the accessibility of DNA to several dyes, especially pronounced in the case of some intercalators, was observed in differentiated cells. After extraction of nuclear proteins with HCl there was an increase in DNA accessibility, of varying degree depending on the fluorochrome and the difference between differentiated and nondifferentiated cells was abolished for most of the intercalating dyes. The increase was the lowest for DAPI (45%), the highest for 7-amino-actinomycin D (13-fold), and in general was higher for the intercalating dyes that unwind DNA than for dyes binding externally to the double helix. The results are discussed in terms of the mode of interactions between DNA and the fluorochromes and factors associated with chromatin structure that may affect accessibility of DNA in situ in exponentially growing and differentiated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号