首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《朊病毒》2013,7(4):252-255
While prions share the ability to propagate strain information with nucleic acid based pathogens, it is unclear how they mutate and acquire fitness in the absence of this informational component. Because prion diseases occur as epidemics, understanding this mechanism is of paramount importance for implementing control strategies to limit their spread, and for evaluating their zoonotic potential. Here we review emerging evidence indicating how prion protein primary structures, in concert with PrPSc conformational compatibility, determine prion strain mutation.  相似文献   

2.
Prions are the infectious agents responsible for prion diseases, which appear to be composed exclusively by the misfolded prion protein (PrP(Sc)). Disease is transmitted by the autocatalytic propagation of PrP(Sc) misfolding at the expense of the normal prion protein. The biggest challenge of the prion hypothesis has been to explain the molecular mechanism by which prions can exist as different strains, producing diseases with distinguishable characteristics. Here, we show that PrP(Sc) generated in vitro by protein misfolding cyclic amplification from five different mouse prion strains maintains the strain-specific properties. Inoculation of wild-type mice with in vitro-generated PrP(Sc) caused a disease with indistinguishable incubation times as well as neuropathological and biochemical characteristics as the parental strains. Biochemical features were also maintained upon replication of four human prion strains. These results provide additional support for the prion hypothesis and indicate that strain characteristics can be faithfully propagated in the absence of living cells, suggesting that strain variation is dependent on PrP(Sc) properties.  相似文献   

3.
Prions are self-replicating proteins that can cause neurodegenerative disorders such as bovine spongiform encephalopathy (also known as mad cow disease). Aberrant conformations of prion proteins accumulate in the central nervous system, causing spongiform changes in the brain and eventually death. Since the inception of the prion hypothesis - which states that misfolded proteins are the infectious agents that cause these diseases - researchers have sought to generate infectious proteins from defined components in the laboratory with varying degrees of success. Here, we discuss several recent studies that have produced an array of novel prion strains in vitro that exhibit increasingly high titres of infectivity. These advances promise unprecedented insight into the structure of prions and the mechanisms by which they originate and propagate.  相似文献   

4.
Two prion strains with identical incubation periods in mice exhibited distinct incubation periods and different neuropathological profiles upon serial transmission to transgenic mice expressing chimeric Syrian hamster/mouse (MH2M) prion protein (PrP) genes [Tg(MH2M) mice] and subsequent transmission to Syrian hamsters. After transmission to Syrian hamsters, the Me7 strain was indistinguishable from the previously established Syrian hamster strain Sc237, despite having been derived from an independent ancestral source. This apparent convergence suggests that prion diversity may be limited. The Me7 mouse strain could also be transmitted directly to Syrian hamsters, but when derived in this way, its properties were distinct from those of Me7 passaged through Tg(MH2M) mice. The Me7 strain did not appear permanently altered in either case, since the original incubation period could be restored by effectively reversing the series of passages. Prion diversity enciphered in the conformation of the scrapie isoform of PrP (PrP(Sc)) (G. C. Telling et al., Science 274:2079-2082, 1996) seems to be limited by the sequence of the PrP substrates serially converted into PrP(Sc), while prions are propagated through interactions between the cellular and scrapie isoforms of PrP.  相似文献   

5.
Prions are infectious proteins that are responsible for transmissible spongiform encephalopathies (TSEs) and consist primarily of scrapie prion protein (PrPSc), a pathogenic isoform of the host-encoded cellular prion protein (PrPC). The absence of nucleic acids as essential components of the infectious prions is the most striking feature associated to these diseases. Additionally, different prion strains have been isolated from animal diseases despite the lack of DNA or RNA molecules. Mounting evidence suggests that prion-strain-specific features segregate with different PrPSc conformational and aggregation states.

Strains are of practical relevance in prion diseases as they can drastically differ in many aspects, such as incubation period, PrPSc biochemical profile (e.g., electrophoretic mobility and glycoform ratio) and distribution of brain lesions. Importantly, such different features are maintained after inoculation of a prion strain into genetically identical hosts and are relatively stable across serial passages.

This review focuses on the characterization of prion strains and on the wide range of important implications that the study of prion strains involves.  相似文献   

6.
Insights into prion strains and neurotoxicity   总被引:7,自引:0,他引:7  
Transmissible spongiform encephalopathies (TSEs) are neurodegenerative diseases that are caused by prions and affect humans and many animal species. It is now widely accepted that the infectious agent that causes TSEs is PrP(Sc), an aggregated moiety of the host-derived membrane glycolipoprotein PrP(C). Although PrP(C) is encoded by the host genome, prions themselves encipher many phenotypic TSE variants, known as prion strains. Prion strains are TSE isolates that, after inoculation into distinct hosts, cause disease with consistent characteristics, such as incubation period, distinct patterns of PrP(Sc) distribution and spongiosis and relative severity of the spongiform changes in the brain. The existence of such strains poses a fascinating challenge to prion research.  相似文献   

7.
Nucleic acid mutation analysis using catalytic DNA   总被引:3,自引:0,他引:3       下载免费PDF全文
The sequence specificity of the ‘10–23’ RNA-cleaving DNA enzyme (deoxyribozyme) was utilised to discriminate between subtle differences in nucleic acid sequence in a relatively conserved segment of the L1 gene from a number of different human papilloma virus (HPV) genotypes. DNA enzymes specific for the different HPV types were found to cleave their respective target oligoribonucleotide substrates with high efficiency compared with their unmatched counterparts, which were usually not cleaved or cleaved with very low efficiency. This specificity was achieved despite the existence of only very small differences in the sequence of one binding arm. As an example of how this methodology may be applied to mutation analysis of tissue samples, type-specific deoxyribozyme cleavable substrates were generated by genomic PCR using a chimeric primer containing three bases of RNA. The RNA component enabled each amplicon to be cleavable in the presence of its matching deoxyribozyme. In this format, the specificity of deoxyribozyme cleavage is defined by Watson–Crick interactions between one substrate-binding domain (arm I) and the polymorphic sequence which is amplified during PCR. Deoxyribozyme-mediated cleavage of amplicons generated by this method was used to examine the HPV status of genomic DNA derived from Caski cells, which are known to be positive for HPV16. This method is applicable to many types of nucleic acid sequence variation, including single nucleotide polymorphisms.  相似文献   

8.
Prion protein is capable of folding into multiple self-replicating prion strains that produce phenotypically distinct neurological disorders. Although prion strains often breed true upon passage, they can also transform or “mutate” despite being devoid of nucleic acids. To dissect the mechanism of prion strain transformation, we studied the physicochemical evolution of a mouse synthetic prion (MoSP) strain, MoSP1, after repeated passage in mice and cultured cells. We show that MoSP1 gradually adopted shorter incubation times and lower conformational stabilities. These changes were accompanied by structural transformation, as indicated by a shift in the molecular mass of the protease-resistant core of MoSP1 from approximately 19 kDa [MoSP1(2)] to 21 kDa [MoSP1(1)]. We show that MoSP1(1) and MoSP1(2) can breed with fidelity when cloned in cells; however, when present as a mixture, MoSP1(1) preferentially proliferated, leading to the disappearance of MoSP1(2). In culture, the rate of this transformation process can be influenced by the composition of the culture media and the presence of polyamidoamines. Our findings demonstrate that prions can exist as a conformationally diverse population of strains, each capable of replicating with high fidelity. Rare conformational conversion, followed by competitive selection among the resulting pool of conformers, provides a mechanism for the adaptation of the prion population to its host environment.  相似文献   

9.
Richt JA  Hall SM 《PLoS pathogens》2008,4(9):e1000156
Bovine spongiform encephalopathy (BSE) is a transmissible spongiform encephalopathy (TSE) of cattle and was first detected in 1986 in the United Kingdom. It is the most likely cause of variant Creutzfeldt-Jakob disease (CJD) in humans. The origin of BSE remains an enigma. Here we report an H-type BSE case associated with the novel mutation E211K within the prion protein gene (Prnp). Sequence analysis revealed that the animal with H-type BSE was heterozygous at Prnp nucleotides 631 through 633. An identical pathogenic mutation at the homologous codon position (E200K) in the human Prnp has been described as the most common cause of genetic CJD. This finding represents the first report of a confirmed case of BSE with a potential pathogenic mutation within the bovine Prnp gene. A recent epidemiological study revealed that the K211 allele was not detected in 6062 cattle from commercial beef processing plants and 42 cattle breeds, indicating an extremely low prevalence of the E211K variant (less than 1 in 2000) in cattle.  相似文献   

10.
Prion diseases are a group of neurodegenerative diseases affecting a wide range of mammalian species, including humans. During the course of the disease, the abnormally folded scrapie prion protein (PrPSc) accumulates in the central nervous system where it causes neurodegeneration. In prion disorders, the diverse spectrum of illnesses exists because of the presence of different isoforms of PrPSc where they occupy distinct conformational states called strains. Strains are biochemically distinguished by a characteristic three-band immunoblot pattern, defined by differences in the occupancy of two glycosylation sites on the prion protein (PrP). Characterization of the exact N-glycan structures attached on either PrPC or PrPSc is lacking. Here we report the characterization and comparison of N-glycans from two different sheep prion strains. PrPSc from both strains was isolated from brain tissue and enzymatically digested with trypsin. By using liquid chromatography coupled to electrospray mass spectrometry, a site-specific analysis was performed. A total of 100 structures were detected on both glycosylation sites. The N-glycan profile was shown to be similar to the one on mouse PrP, however, with additional 40 structures reported. The results presented here show no major differences in glycan composition, suggesting that glycans may not be responsible for the differences in the two analyzed prion strains.  相似文献   

11.
A considerable body of data supports the model that the infectious agent (called a prion) which causes the transmissible spongiform encephalopathies is a replicating polypeptide devoid of nucleic acid. Prions are believed to propagate by changing the conformation of the normal cellular prion protein (PrPc) into an infectious isoform without altering the primary sequence. Proteins equivalent to the mature form of the wild-type mouse prion protein (residues 23-231) or with a mutation equivalent to that associated with Gerstmann-Straüssler-Scheinker disease (proline to leucine at codon 102 in human; 101 in mouse) were expressed in E. coli. The mutation did not alter the relative proteinase K susceptibility properties of the mouse prion proteins. The wild-type and mutant proteins were analyzed by circular dichroism under different pH and temperature conditions. The mutation was associated with a decrease in alpha-helical content, while the beta-sheet content of the two proteins was unchanged. This suggests the mutation, while altering the secondary structure of PrP, is not sufficient to induce proteinase K resistance and could therefore represent an intermediate isoform along the pathway toward prion formation.  相似文献   

12.
Nucleic acid can catalyze the conversion of α‐helical cellular prion protein to β‐sheet rich Proteinase K resistant prion protein oligomers and amyloid polymers in vitro and in solution. Because unfolding of a protein molecule from its ordered α‐helical structure is considered to be a necessary step for the structural conversion to its β‐sheet rich isoform, we have studied the unfolding of the α‐helical globular 121–231 fragment of mouse recombinant prion protein in the presence of different nucleic acids at neutral and acid pH. Nucleic acids, either single or double stranded, do not have any significant effect on the secondary structure of the protein fragment at neutral pH; however the protein secondary structure is modified by the nucleic acids at pH 5. Nucleic acids do not show any significant effect on the temperature induced unfolding of the globular prion protein domain at neutral pH which, however, undergoes a gross conformational change at pH 5 as evidenced from the lowering of the midpoint of thermal denaturation temperatures, Tm, of the protein. The extent of Tm decrease shows a dependence on the nature of nucleic acid. The interaction of nucleic acid with the nonpolar groups exposed from the protein interior at pH 5 probably contributes substantially to the unfolding process of the protein.  相似文献   

13.
Several lines of evidence suggest that microglia have important roles in the pathogenesis of prion diseases. Here, we establish a novel microglial cell line (MG20) from neonatal tga20 mice that overexpress murine prion protein. After exposure to Chandler scrapie, we observed the replication and accumulation of disease-associated forms of the prion protein in MG20 cells up to the 15th passage. Furthermore, MG20 cells were susceptible to ME7, Obihiro scrapie, and bovine spongiform encephalopathy agents. Thus, MG20 cell lines persistently infected with various murine prion strains provide a useful model for the study of the pathogenesis of prion diseases.  相似文献   

14.
[URE3] is a non-Mendelian genetic element in Saccharomyces cerevisiae, which is caused by a prion-like, autocatalytic conversion of the Ure2 protein (Ure2p) into an inactive form. The presence of [URE3] allows yeast cells to take up ureidosuccinic acid in the presence of ammonia. This phenotype can be used to select for the prion state. We have developed a novel reporter, in which the ADE2 gene is controlled by the DAL5 regulatory region, which allows monitoring of Ure2p function by a colony color phenotype. Using this reporter, we observed induction of different [URE3] prion variants ("strains") following overexpression of the N-terminal Ure2p prion domain (UPD) or full-length Ure2p. Full-length Ure2p induced two types of [URE3]: type A corresponds to conventional [URE3], whereas the novel type B variant is characterized by relatively high residual Ure2p activity and efficient curing by coexpression of low amounts of a UPD-green fluorescent protein fusion protein. Overexpression of UPD induced type B [URE3] but not type A. Both type A and B [URE3] strains, as well as weak and strong isolates of type A, were shown to stably maintain different prion strain characteristics. We suggest that these strain variants result from different modes of aggregation of similar Ure2p monomers. We also demonstrate a procedure to counterselect against the [URE3] state.  相似文献   

15.

Background

Sheep scrapie is caused by multiple prion strains, which have been classified on the basis of their biological characteristics in inbred mice. The heterogeneity of natural scrapie prions in individual sheep and in sheep flocks has not been clearly defined.

Methodology/Principal Findings

In this study, we intravenously injected 2 sheep (Suffolk and Corriedale) with material from a natural case of sheep scrapie (Suffolk breed). These 3 sheep had identical prion protein (PrP) genotypes. The protease-resistant core of PrP (PrPres) in the experimental Suffolk sheep was similar to that in the original Suffolk sheep. In contrast, PrPres in the Corriedale sheep differed from the original PrPres but resembled the unusual scrapie isolate, CH1641. This unusual PrPres was not detected in the original sheep. The PrPres distributions in the brain and peripheral tissues differed between the 2 breeds of challenged sheep. A transmission study in wild-type and TgBoPrP mice, which overexpressing bovine PrP, led to the selection of different prion strains. The pathological features of prion diseases are thought to depend on the dominantly propagated strain.

Conclusions/Significance

Our results indicate that prion strain selection occurs after both inter- and intraspecies transmission. The unusual scrapie prion was a hidden or an unexpressed component in typical sheep scrapie.  相似文献   

16.
17.
18.
D-苯丙氨酸产生菌的诱变育种   总被引:3,自引:0,他引:3  
先后使用紫外与5-FU复合处理及Nd:YAG倍频脉冲激光辐照等方法对D-苯丙氨酸产生菌Pseudomonas putida JS-01进行诱变,筛选到一株稳定高产的D-苯丙氨酸产生菌1003。对底物5-苄基海因的转化率由55.3%上升到85.5%,提高率为54.6%。较高的底物浓度亦能保持较高的转化能力。  相似文献   

19.
Prions consist of PrPSc, a misfolded version of the cellular protein PrPC. They occur in a variety of strains that share the amino acid sequence of PrP but differ in phenotypic properties, such as cell tropism and pathogenicity; strain-ness is attributed to the conformation of PrPSc. To gain insight as to how susceptibility of cells to a given prion strain comes about, we compared amplification of RML prions by PMCA, using cell lysates from related, RML-resistant and RML-susceptible cell lines as substrate. We found that both lysates supported amplification of RML PrPSc equally well, despite a 280-fold difference in the susceptibility of the cells from which they were derived. Thus, susceptibility is an attribute of the intact cell.  相似文献   

20.
The agent responsible for prion disease may exist in different forms, commonly referred to as strains, with each carrying the specific information that determines its own distinct biological properties, such as incubation period and lesion profile. Biological strain typing of ovine scrapie isolates by serial passage in conventional mice has shown some diversity in ovine prion strains. However, this biological diversity remains poorly supported by biochemical prion strain typing. The protein-only hypothesis predicts that variation between different prion strains in the same host is manifest in different conformations adopted by PrPSc. Here we have investigated the molecular properties of PrPSc associated with two principal Prnp(a) mouse-adapted ovine scrapie strains, namely, RML and ME7, in order to establish biochemical prion strain typing strategies that may subsequently be used to discriminate field cases of mouse-passaged ovine scrapie isolates. We used a conformation-dependent immunoassay and a conformational stability assay, together with Western blot analysis, to demonstrate that RML and ME7 PrPSc proteins show distinct biochemical and physicochemical properties. Although RML and ME7 PrPSc proteins showed similar resistance to proteolytic digestion, they differed in their glycoform profiles and levels of proteinase K (PK)-sensitive and PK-resistant isoforms. In addition, the PK-resistant core (PrP27-30) of ME7 was conformationally more stable following exposure to guanidine hydrochloride or Sarkosyl than was RML PrP27-30. Our data show that mouse-adapted ovine scrapie strains can be discriminated by their distinct conformers of PrPSc, which provides a basis to investigate their diversity at the molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号