首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of ipriflavone on glucocorticoid-induced osteoporosis in rats   总被引:2,自引:0,他引:2  
Ipriflavone, 7-isopropoxy-3-phenyl-4H-1-benzopyran-4-one, was administered orally for 12 weeks to male rats with prednisolone-induced osteoporosis. Microdensitometric analysis of a roentgenograph of the femurs revealed that ipriflavone increased the density of the distal metaphysis dose-dependently and tended to increase the density of the diaphysis. It also inhibited dose-dependently the decrease in the mechanical strength of the tibia, breaking strain and breaking energy, and the fractional content of ash in femurs. These results indicate that ipriflavone markedly suppresses bone resorption at the metaphysis where the content of trabecular bone with a rapid turnover rate is high, and possibly inhibits bone reduction at the diaphysis.  相似文献   

2.
The preventive effect of ipriflavone, 7-isopropoxy-isoflavone, on the development of experimental osteopenia in rats was studied. Male Wistar rats (4 weeks old) on a calcium restricted, vitamin D deficient diet were given a daily oral administration of ipriflavone. The administration of ipriflavone (100 mg/kg BW/day) for 40 days significantly inhibited a decrease in the cortical thickness (14.0 +/- 1.6 vs. 17.1 +/- 2.9%, mean +/- SD, p less than 0.05) and bone calcium content (62 +/- 4 vs. 67 +/- 2 mg, p less than 0.05) in the femora of rats induced by a mild calcium restricted (0.3%), vitamin D deficient diet. This compound did not affect serum calcium levels in this condition. But a dose of 20 mg/kg BW/day of ipriflavone was insufficient to inhibit a decrease in bone calcium content. In rats fed on a more severe calcium restricted (0.03%), vitamin D deficient diet, the administration of ipriflavone (100 mg/kg BW/day) did not significantly affect the cortical thickness or calcium content. Intestinal calcium absorption measured by the in situ loop method was not significantly different between rats fed with a severe calcium restricted (0.03%), D deficient diet with or without ipriflavone (20 or 100 mg/kg BW/day) These results demonstrate that the new compound, ipriflavone, partially prevents bone calcium loss induced by a mild calcium restricted (0.3%), vitamin D deficient diet in rats. However, the precise mechanism of action of this compound remains unknown.  相似文献   

3.
Kim SH  Lee MG 《Life sciences》2002,70(11):1299-1315
Pharmacokinetic parameters of ipriflavone were evaluated after intravenous administration of spray-dried ipriflavone with polyvinylpyrrolidone, SIP (5, 10, 20, and 40 mg/kg as ipriflavone) and oral administration of SIP (50, 100, and 200 mg/kg as ipriflavone) to rats. The hepatic, gastric, and intestinal first-pass effects of ipriflavone were also measured after intravenous, intraportal, intraduodenal, and oral administration of SIP (20 or 50 mg/kg as ipriflavone) to rats. After intravenous and oral administration, the pharmacokinetic parameters of ipriflavone were dose-independent. The extent of absolute oral bioavailability (F) was also independent of oral doses; the mean F value was approximately 24%. Considering the amount of unchanged ipriflavone recovered from 24-hr gastrointestinal tract (the mean value was approximately 12%), the low F values could be due to the hepatic, gastric, and/or intestinal first-pass effects. Based on total body clearance (CL) data of ipriflavone after intravenous administration, the first-pass effect in the heart and lung could be almost negligible, if any, in rats. Approximately 30% of ipriflavone absorbed into the portal vein was eliminated by liver (hepatic first-pass effect) based on intravenous and intraportal administration of SIP. The area under the plasma concentration-time curve from time zero to time infinity (AUC) values after oral administration and intraduodenal instillation of SIP, 50 mg/kg as ipriflavone, were not significantly different, but the values were significantly smaller (129 and 116 microg ml/min) than that after intraportal administration of SIP, 20 mg/kg as ipriflavone (513 microg ml/min based on 50 mg/kg), indicating that gastric first-pass effect of ipriflavone was negligible, but intestinal first-pass effect was considerable in rats. Therefore, the low F value of ipriflavone after oral administration to rats was mainly due to intestinal first-pass effect. The hepatic first-pass effect and incomplete absorption of ipriflavone from rat gastrointestinal tract could also contributed to the low F in rats.  相似文献   

4.
This paper reports that the selective beta(2)-adrenergic receptor agonist clenbuterol affects bone metabolism in growing 3-mo-old male Wistar rats treated over 8 wk. Thirty-two 3-mo-old growing Wistar rats weighing 234 +/- 2 g were assigned to a progressive isometric force, strength-training exercise program plus oral clenbuterol (2 mg x kg body wt(-1) x day(-1)) for 5 days each week, exercise program without clenbuterol 5 days each week, no exercise program plus oral clenbuterol (2 mg x kg(-1) x day(-1)) for 5 days each week, or no exercise without clenbuterol 5 days each week. At the end of 8 wk, lean mass, fat mass, and right total femoral, distal metaphyseal femoral, and diaphyseal femoral bone mineral density were measured by Hologic QDR 4,500 dual X-ray absorptiometry (DEXA) technique. Left femoral bones were harvested after death on day 58, and femoral resistance was determined by three-point bending testing. We found that fat mass was decreased in rats given strength training exercise and decreased further in rats treated with clenbuterol. Lean mass was increased in clenbuterol-treated animals. Strength-training exercise appeared to have no effect on bone mineral density, serum osteocalcin, or urinary deoxypyridinoline. However, clenbuterol treatment decreased femoral length, diameter, bone mineral density, and mechanical resistance. Clenbuterol had no effect on osteocalcin but increased urinary deoxypyridinoline. We concluded that clenbuterol treatment decreased bone mineral density and increased bone resorption independent of the level of exercise rats were given.  相似文献   

5.
The present study was aimed at estimate, based on the rat model of human moderate and relatively high chronic exposure to cadmium (Cd), whether zinc (Zn) supplementation may prevent Cd-induced weakening in the bone biomechanical properties. For this purpose, male Wistar rats were administered Cd (5 or 50 mg/l) or/and Zn (30 or 60 mg/l) in drinking water for 6 and 12 months. Bone mineral density (BMD) and biomechanical properties (yield load, ultimate load, post-yield load, displacement at yield and at ultimate, stiffness, work to fracture, yield stress, ultimate stress and Young modulus of elasticity) of the femoral distal end and femoral diaphysis were examined. Biomechanical properties of the distal femur were estimated in a compression test, whereas those of the femoral diaphysis -- in a three-point bending test. Exposure to Cd, in a dose and duration dependent manner, decreased the BMD and weakened the biomechanical properties of the femur at its distal end and diaphysis. Zn supplementation during Cd exposure partly, but importantly, prevented the weakening in the bone biomechanical properties. The favorable Zn influence seemed to result from an independent action of this bioelement and its interaction with Cd. However, Zn supply at the exposure to Cd had no statistically significant influence on the BMD at the distal end and diaphysis of the femur. The results of the present paper suggest that Zn supplementation during exposure to Cd may have a protective influence on the bone tissue biomechanical properties, and in this way it can, at least partly, decrease the risk of bone fractures. The findings seem to indicate that enhanced dietary Zn intake may be beneficial for the skeleton in subjects chronically exposed to Cd.  相似文献   

6.
This study was designed to investigate the effect of quercetin (QE) on bone minerals and biomechanics in insulin-dependent diabetic rats. Diabetes was induced by 50 mg kg(-1) intraperitoneal streptozotocin (STZ) in a single dose. The rats were randomly allotted into four experimental groups: A (control), B (non-diabetic + QE), C (diabetic), and D (diabetic + QE) each containing 10 animals. The diabetic rats received QE (15 mg kg(-1) day(-1)) for 4 weeks following 8 weeks of STZ injection. Blood samples were taken to determine glucose, insulin, calcium, and magnesium levels. The rats' femora were assessed biomechanically at femoral mid-diaphysis and neck. It was found that QE treatment increased insulin, calcium, and magnesium levels. Three-point bending of the femoral mid-diaphysis and necks showed significantly lower maximum load values (F max) in animals in the STZ group than the QE + STZ or control groups (p < 0.05). The results support the conclusion that QE treatment may decrease blood glucose and increase plasma insulin, calcium, and magnesium. QE treatment may also be effective in bone mineral metabolism, biomechanical strength, and bone structure in STZ-induced diabetic rats.  相似文献   

7.
The purpose of the present study was to compare the effects of alendronate and alfacalcidol on cancellous and cortical bone mass and bone mechanical properties in ovariectomized rats. Twenty-six female Sprague-Dawley rats, 7 months of age, were randomized by the stratified weight method into four groups: the sham-operated control (Sham) group and the three ovariectomy (OVX) groups, namely, OVX + vehicle, OVX + alendronate (2.5 mg/kg, p.o., daily), and OVX + alfacalcidol (0.5 mug/kg, p.o., daily). At the end of the 8-week experimental period, bone histomorphometric analyses of cancellous bone at the proximal tibial metaphysis and cortical bone at the tibial diaphysis were performed, and the mechanical properties of the femoral distal metaphysis and femoral diaphysis were evaluated. OVX decreased cancellous bone volume per total tissue volume (BV/TV), and the maximum load of the femoral distal metaphysis, as a result of increases in serum osteocalcin (OC) levels, and also the number of osteoclasts (N.Oc), osteoclast surface (OcS) and bone formation rate (BFR) per bone surface (BS), and BFR/BV, without any effect on cortical area (Ct Ar), or maximum load of the femoral diaphysis. Alendronate prevented this decrease in cancellous BV/TV by suppressing increases in N.Oc/BS, OcS/BS, BFR/BS, and BFR/BV, without any apparent effect on Ct Ar, or maximum load of the femoral distal metaphysis and femoral diaphysis. On the other hand, alfacalcidol increased cancellous BV/TV, Ct Ar, and the maximum load of the femoral distal metaphysis and femoral diaphysis, by mildly decreasing trabecular BFR/BV, maintaining trabecular mineral apposition rate and osteoblast surface per BS, increasing periosteal and endocortical BFR/BS, and preventing an increase in endocortical eroded surface per BS. The present study clearly showed the differential skeletal effects of alendronate and alfacalcidol in ovariectomized rats. Alendronate prevented OVX-induced cancellous bone loss by suppressing bone turnover, while alfacalcidol improved cancellous and cortical bone mass and bone strength by suppressing bone resorption and maintaining or even increasing bone formation.  相似文献   

8.
Calcitonin secreting property of ipriflavone in the presence of estrogen   总被引:3,自引:0,他引:3  
I Yamazaki  M Kinoshita 《Life sciences》1986,38(17):1535-1541
Calcitonin secretion is influenced by estrogen. In the present study, basal and calcium-stimulated serum calcitonin levels were reduced in ovariectomized rats, and replacement estrogen administered for 3 weeks increased both calcitonin levels to those in intact rats. Ipriflavone, 7-isopropoxy-3-phenyl-4H-1-benzopyran-4-one, alone did not influence either calcitonin level. However, ipriflavone and subeffective doses of estrogen administered simultaneously increased both levels; the increase depended upon the dose of ipriflavone. Furthermore, pretreatment with estrone resulted in greater calcitonin release in response to various doses of calcium and pretreatment with estrone and ipriflavone caused an even greater release. These findings indicate that ipriflavone increases the sensitivity of the thyroid gland to estrogen to secrete calcitonin in response to calcium.  相似文献   

9.
The purpose of the present study was to compare the therapeutic effects of risedronate (RIS) and alfacalcidol (ALF) on cancellous and cortical bone in ovariectomized osteopenic rats. Forty-two female Sprague-Dawley rats, 7 months of age, were randomized by the stratified weight method into six groups: the sham-operated control (Sham) group, and five ovariectomized groups: treated with vehicle, RIS (0.1, 1.0, or 2.5 mg/kg, p.o., daily), and ALF (0.5 microg/kg, p.o., daily). Treatment was started 6 weeks after surgery and continued for 6 weeks. Evaluation at 12 weeks after surgery revealed that ovariectomy (OVX) decreased the cancellous bone volume/total tissue volume (BV/TV) of the proximal tibial metaphysis as a result of an increase of the bone formation rate/bone surface (BFR/BS), BFR/BV, and eroded surface (ES/BS), while having no effect on the cortical area (Ct Ar) of the tibial diaphysis. OVX also decreased the maximum load of the femoral distal metaphysis, while having no effect on any mechanical property parameters of the femoral diaphysis. RIS (at all the doses) increased the BV/TV relative to the value in the OVX-Vehicle group, but the value was not restored to that observed in the Sham group. The effects of RIS (1.0 mg/kg and 2.5 mg/kg) were similar, and greater than those of RIS (0.1 mg/kg). ALF also increased the BV/TV relative to the OVX-Vehicle group, but the value was not restored to that observed in the Sham group, similar to the results of RIS (1.0 mg/kg and 2.5 mg/kg) treatment. The alterations of the structural parameters induced by RIS (at the doses) were attributable to suppression of the increase of ES/BS, BFR/BS, and BFR/BV. The alterations of the structural parameters induced by ALF were attributable to suppression of the increase of ES/BS and attenuation of the increase of BFR/BV, while the BFR/BS was maintained. ALF also increased the Ct Ar to beyond the value observed in the Sham group. RIS (at all the doses) had no effect on the mechanical properties of the femoral distal metaphysis, whereas ALF prevented the loss of the maximum load of the femoral distal metaphysis. Thus, the results of the present study show differential effects of RIS and ALF on cancellous and cortical bone in ovariectomized osteopenic rats.  相似文献   

10.
In this study, we investigated 1) whether the administration of phenytoin induced bone loss; and 2) whether menatetrenone could prevent bone loss induced by phenytoin. For this purpose, we previously developed a procedure to measure the bone mineral density using a conventional X-ray absorptiometry method. A long-termed administration of phenytoin (20 mg/kg per day for 5 weeks) produced bone loss in the tibiae of growing rats. The values of bone mineral density (BMD) were significantly decreased in the tibial diaphysis and metaphysis in the phenytoin-treated group. In this period, we measured the serum level of vitamin K-dependent protein, osteocalcin, a marker of bone formation. The serum level of osteocalcin showed a decrease in the phenytoin-treated group compared with the vehicle-treated group. Combined administration of menatetrenone (30 mg/kg in diet per day) with phenytoin for 5 weeks prevented the reduction of BMD, and the level of osteocalcin was slightly increased. Thus, it is suggested that long-termed phenytoin exposure may inhibit bone formation concomitantly with insufficient vitamin K, which, at least in part, contributed to bone loss in rats. Finally, these findings implicated the therapeutic usefulness of menatetrenone on a moderate degree of bone abnormality such as drug-induced osteopenia.  相似文献   

11.
The alternative phosphate binder calcium acetate/magnesium carbonate (CaMg) effectively reduces hyperphosphatemia, the most important inducer of vascular calcification, in chronic renal failure (CRF). In this study, the effect of low dose CaMg on vascular calcification and possible effects of CaMg on bone turnover, a persistent clinical controversy, were evaluated in chronic renal failure rats. Adenine-induced CRF rats were treated daily with 185 mg/kg CaMg or vehicle for 5 weeks. The aortic calcium content and area% calcification were measured to evaluate the effect of CaMg. To study the effect of CaMg on bone remodeling, rats underwent 5/6th nephrectomy combined with either a normal phosphorus diet or a high phosphorus diet to differentiate between possible bone effects resulting from either CaMg-induced phosphate deficiency or a direct effect of Mg. Vehicle or CaMg was administered at doses of 185 and 375 mg/kg/day for 8 weeks. Bone histomorphometry was performed. Aortic calcium content was significantly reduced by 185 mg/kg/day CaMg. CaMg ameliorated features of hyperparathyroid bone disease. In CRF rats on a normal phosphorus diet, the highest CaMg dose caused an increase in osteoid area due to phosphate depletion. The high phosphorus diet combined with the highest CaMg dose prevented the phosphate depletion and thus the rise in osteoid area. CaMg had no effect on osteoblast/osteoclast or dynamic bone parameters, and did not alter bone Mg levels. CaMg at doses that reduce vascular calcification did not show any harmful effect on bone turnover.  相似文献   

12.
Castration of male rats leads to increased bone turnover and osteopenia. This study was conducted to examine the effects of the aminobisphosphonate alendronate on castration-induced bone changes. Bisphosphonates are drugs that inhibit bone turnover by decreasing the resorption. Since they suppress bone remodeling, they may also prevent the repair of microdamage and decrease bone strength. Although the mechanical properties of bones are directly related to the determination of fracture risk, bisphosphonate effects on the related variables have scarcely been investigated. Twenty-four male Wistar rats at two months of age were castrated or sham-operated to evaluate the effects of long-term administration (six months) of sodium alendronate at a dose of 1 mg/kg/day. The bones were tested mechanically by a three-point bending test in a Mini Bionix (MTS) testing system. High bone remodeling seen in castrated rats expressed by increased TrACP and B-ALP was suppressed by alendronate administration. Bone from castrated rats was characterized by a reduction in bone density as well as ash, calcium and phosphate content. Castration significantly altered mechanical properties of bone and femoral cortical thickness. When castrated rats were treated with high dose of alendronate, the changes in bone density resulting from castration were entirely prevented, and mechanical analysis revealed preserved mechanical strength of femur and cortical thickness. We conclude that castration induces cortical bone loss associated with high bone turnover in the male rat, and this bone loss can be prevented by alendronate through the inhibition of osteoclastic activity, while preserving the mechanical properties of bone. These results document the efficacy of alendronate, even at high doses, in preventing bone loss, loss of bone mechanical strength, and the rise in biochemical bone turnover indicators due to castration in rats, and raises the possibility that a alendronate could be equally effective in humans.  相似文献   

13.
Tobacco, containing nicotine as the principal pharmacologically active chemical, has been identified as being a risk factor for the development of osteoporosis. Thirty-two male Wistar rats of two months of age were castrated or sham operated to evaluate the effects of long-term administration (four months) of nicotine in drinking water (9.0 mg/kg/day). The presence of cotinine in urine confirmed successful delivery of nicotine. The bones were tested mechanically by a three point bending test in a Mini Bionix (MTA) testing system. The bones from castrated rats were characterized by a reduction in bone density as well as ash, calcium and phosphate content. Castration significantly altered mechanical properties of bone (9%) and femoral cortical thickness. When intact rats were treated with a high dose of nicotine, nicotine had negative effect on tibial bone density as well as ash, calcium, phosphate content and significantly altered the mechanical properties of bone (12%) and femoral cortical thickness compared to intact animals. Nicotine itself does not exert any anti-androgenic effect and does not produce changes in the weight of seminal vesicles. Nicotine-induced bone loss is associated with high bone turnover in the male rats as expressed by increased TrACP and B-ALP. When castrated rats were treated with the high dose of nicotine the changes in bone density resulting from castration were not further potentiated. These results document the efficacy of nicotine at high doses to cause bone loss and loss of bone mechanical strength in intact rats. The results of the present study may be interpreted as supporting the hypothesis of nicotine as a risk factor for osteoporosis.  相似文献   

14.
Hypophysectomy (HX) arrests bone growth and induces osteopenia in the long bones of rats. The present study investigated the combined effect of vitamin K(2) and risedronate on long bone mass in HX rats, in order to determine whether treatment with these two agents had an additive effect. Forty female Sprague-Dawley rats were hypophysectomized at 6 weeks of age by the supplier, and were shipped to our laboratory at three days after surgery along with ten intact rats that served as age-matched controls. The study was started on the day when the rats were received. Three HX rats were excluded from the study because of the failure of HX. Forty-seven rats (6 weeks old) were assigned to the following 5 groups by the stratified weight randomization method: intact controls, HX alone, HX + vitamin K(2) (30 mg/kg, p.o., daily), HX + risedronate (2.5 microg/kg, s.c., 5 days a week), and HX + vitamin K(2) + risedronate. The dosing period was 4 weeks. HX resulted in a decrease of the femoral bone area, bone mineral content (BMC) and bone mineral density (BMD), as well as a decrease in the cancellous bone mass of the proximal tibial metaphysis and the total tissue and cortical areas of the tibial diaphysis. These changes were associated with a marked reduction in the serum level of insulin like growth factor (IGF)-I and with elevation of serum alkaline phosphatase (ALP) and pyridinoline. Administration of vitamin K(2) increased the serum ALP level in HX rats, but did not affect any of the other parameters. On the other hand, risedronate ameliorated the decrease of femoral BMD and cancellous bone mass at the proximal tibial metaphysis in HX rats without affecting the serum IGF-I level, as a result of not causing a significant elevation of serum pyridinoline. Vitamin K(2) and risedronate combined had an additive effect on the femoral bone area, BMC and BMD, and the combined treatment group did not show any significant reduction of the total tissue and cortical areas at the tibial diaphysis, as well as a reduced serum pyridinoline level compared with untreated rats and an increased serum ALP level compared with untreated or risedronate-treated rats. These results suggest that risedronate had a positive effect on the BMD and cancellous bone mass of long bones in HX rats. Despite the lack of a significant effect of vitamin K(2) on bone mass parameters, it had an additive effect with risedronate on the BMC, BMD and cortical bone mass of long bones in HX rats.  相似文献   

15.
In the present study, a homogenous polysaccharide (DFPW) was isolated and purified from the dried rhizome of Drynaria fortunei, and its protective effect against osteoporosis was investigated in ovariectomized (OVX) rats. Histological analysis indicated that oral administration of DFPW (100 and 400 mg/kg) for 12 weeks significantly improved trabecular bone mass, as demonstrated by the increase in trabecular area, trabecular thickness and its number in OVX rats. Furthermore, the decline of bone mineral density and bone mineral content including Ca, P and Mg induced by OVX was reversed by the DFPW administration. This function was achieved by the decreased levels of the bone turnover markers, such as serum ALP, urinary deoxypyridinoline (DPD), Ca and P excretions. Besides, DFPW improved biomechanical parameters (maximum load, energy, Young's, modulus and maximum stress) to strengthen the hardness and strength femoral diaphysis in OVX rats. These results strongly suggested that DFPW might be a hopeful alternative therapeutics to treat postmenopausal osteoporosis.  相似文献   

16.
With a fixed time period of galactose feeding, the rate of appearance of lenticular opacities depended on the severity of galactosemia, while with a fixed amount of galactose fed, the rate was time dependent. The capacity of tolrestat, a structurally novel inhibitor of aldose reductase (AR), to control cataract development was assessed in rats fed 30-50% galactose with the diet for 7 to 277 days. In rats fed 30% galactose for 31 days, the controlling effect of tolrestat was dose dependent, and no cataracts were detected at a dose of 35 mg/kg/day. In rats given tolrestat with the diet for 14 days, then rendered severely galactosemic with a diet containing 50% galactose, and subjected to continued treatment with tolrestat at a dose of 43 mg/kg/day, no changes were detected by slit-lamp microscopy after 207 days. The preventive effect was also dose dependent. In view of the established similarity in the pathogenesis of galactosemic and diabetic cataracts, the results obtained with tolrestat support its potential for controlling cataract development in diabetics.  相似文献   

17.
Glucocorticoids and β(2)-adrenergic receptor agonists are the most commonly used drugs in the treatment of asthma. Both therapies are potentially dangerous to the skeletal system. The aim of the present study was to investigate the effects of fenoterol, a β(2)-receptor agonist, on the development of bone changes induced by glucocorticoid (prednisolone) administration in mature male rats. The experiments were carried out on 24-week-old male Wistar rats. The effects of prednisolone 21-hemisuccinate sodium salt (7 mg/kg s.c. daily) or/and fenoterol hydrobromide (1.4 mg/kg i.p. daily), administered for 4 weeks, on the skeletal system were studied. Bone turnover markers, geometric parameters, mass, mass of bone mineral in the tibia, femur and L-4 vertebra, bone histomorphometric parameters and mechanical properties of tibial metaphysis, femoral diaphysis and femoral neck were determined. Both prednisolone and fenoterol had damaging effects on the skeletal system of mature male rats. However, concurrent administration of fenoterol and prednisolone did not result in the intensification of the deleterious skeletal effect of either drug administered separately.  相似文献   

18.
Gossypol acetic acid was administered orally (30, 60, 90 and 120 mg/kg/day) on Days 1-5 post coitum to mature female rats. At autopsy on Day 10, pregnancy in most treated animals (6/7 and 6/8) was blocked at high doses (90 and 120 mg/kg/day respectively). As the daily dose decreased to 60 mg/kg/day half (4/8) were not pregnant. However, at a lower dose (30 mg/kg/day), or at a single dose of 200 mg/kg at Day 1 p.c., pregnancy was not blocked. The concentrations of progesterone in the serum of these females were significantly decreased except at the low dose. The numbers of implantation sites in the treated females that did remain pregnant were similar to those in control females except at the dose of 120 mg/kg/day. Gossypol did not retard the development of the preimplantation embryo or cavitation. The Pontamine Blue test revealed that the drug did not interfere with the initiation of implantation. We suggest that gossypol has an antifertility effect in the female rat because it is luteolytic and disrupts post-implantation development.  相似文献   

19.
Mancozeb, an ethylenebisdithiocarbamate fungicide was administered orally to male rats at doses 0, 500, 1000 and 1500 mg/kg/day for 90, 180 and 360 days produced dose dependent signs of poisoning, loss in body weight gain and mortality. However the signs of toxicity and mortality were more pronounced initially at 0-90 days as compared to 90-360 days of treatment period. A significant increase in the relative weight of liver and slight decrease in the kidney weight were observed in animals exposed to mancozeb (1000 and 1500 mg/kg/day) for 180 and 360 days associated with pathomorphological changes in liver, brain and kidney. Mancozeb has produced significant enzymatic changes in the activities of aspartate aminotransferase (ASAT), alanine aminotransferase (ALAT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and acetylcholinesterase (AChE) throughout the period of study in a dose dependent manner. The alterations in the activity of enzymes associated with pathomorphological changes suggest that the chronic exposure of mancozeb produced significant toxicological effects in rats.  相似文献   

20.
This experiment was performed to study the effects on femoral bone of endurance training performed during the 3 months before orchidectomy in rats which were then killed 90 days later. A total of 70 male Wistar rats were used at 8 weeks old. One day 0 of the experiment, 10 rats were killed by cervical dislocation and used as first controls. Among the 60 others, 30 were selected for treadmill running (60% maximal oxygen uptake, 1 h x day(-1), 6 days x week(-1) for 90 days). The 30 other rats remained at rest. On day 90, 10 exercised (IE) and resting (IR) rats were killed and used as intermediary controls. Among the 20 other animals of each group, 10 were surgically castrated (CXE, CXR) or 10 sham-operated (SHE, SHR) and killed on day 180. On day 90 femoral failure load (three-point bending test) was greater in IE than in IR. Simultaneously, the deoxypyridinolinuria was lower in IE than in IR. On day 180, femoral bones were thinner in CXR than in CXE. The lowest values for trabecular bone are in the distal femoral metaphysis were measured in CXE and CXR rats, but the value measured in CXE was no different from that measured in SHR. Simultaneously total femoral bone density was lower in CXR than in SHE, while no difference concerning femoral metaphyseal density was observed between CXE and SHR. These results confirmed that endurance running increased femoral bone growth and modelling and femoral trabecular area, and thereby peak bone mass, in 8-month-old male rats. In resting animals, castrated after the training period, androgen deficiency decreased femoral density, mineral content and trabecular area. This decrease was not observed in castrated but previously exercised rats. Thus, by increasing peak bone mass, it was considered that endurance training may have a preventive effect against orchidectomy-induced bone loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号