首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Coffee plants exhibiting a range of symptoms including mild to severe curling of leaf margins, chlorosis and deformation of leaves, stunting of plants, shortening of internodes, and dieback of branches have been reported since 1995 in several regions of Costa Rica’s Central Valley. The symptoms are referred to by coffee producers in Costa Rica as “crespera” disease and have been associated with the presence of the bacterium Xylella fastidiosa. Coffee plants determined to be infected by the bacterium by enzyme linked immunosorbent assay (ELISA), were used for both transmission electron microscopy (TEM) and for isolation of the bacterium in PW broth or agar. Petioles examined by TEM contained rod-shaped bacteria inside the xylem vessels. The bacteria measured 0.3 to 0.5 μm in width and 1.5 to 3.0 μm in length, and had rippled cell walls 10 to 40 nm in thickness, typical of X. fastidiosa. Small, circular, dome-shaped colonies were observed 7 to 26 days after plating of plant extracts on PW agar. The colonies were comprised of Gram-negative rods of variable length and a characteristic slight longitudinal bending. TEM of the isolated bacteria showed characteristic rippled cell walls, similar to those observed in plant tissue. ELISA and PCR with specific primer pairs 272-l-int/272-2-int and RST31/RST33 confirmed the identity of the isolated bacteria as X. fastidiosa. RFLP analysis of the amplification products revealed diversity within X. fastidiosa strains from Costa Rica and suggest closer genetic proximity to strains from the United States of America than to other coffee or citrus strains from Brazil.  相似文献   

2.
Xylella fastidiosa (Xf) is a xylem-limited bacterium that lives as a harmless endophyte in most plant species but is pathogenic in several agriculturally important crops such as coffee, citrus, and grapevine (Vitis vinifera L.). In susceptible cultivars of grapevine, Xf infection results in leaf scorch, premature leaf senescence, and eventually vine death; a suite of symptoms collectively referred to as Pierce's disease. A qPCR assay was developed to determine bacterial concentrations in planta and these concentrations were related to the development of leaf-scorch symptoms. The concentration of Xf in leaves of experimental grapevines grown in the greenhouse was similar to the concentration of Xf in leaves of naturally infected plants in the field. The distribution of Xf was patchy within and among leaves. Some whole leaves exhibited severe leaf-scorch symptoms in the absence of high concentrations of Xf. Despite a highly sensitive assay and a range of Xf concentrations from 10(2) to 10(9) cells g(-1) fresh weight, no clear relationship between bacterial population and symptom development during Pierce's disease was revealed. Thus, high and localized concentrations of Xf are not necessary for the formation of leaf-scorch symptoms. The results are interpreted as being consistent with an atiology that involves a systemic plant response.  相似文献   

3.
Cucumber mosaic virus (CMV) accumulation in leaves and stems of infected bell pepper plants at specific symptom stages was evaluated with an emphasis on the transition from full infection to recovery from Cucumber mosaic disease. Four symptom phases occurred in successive order, designated chlorosis (leaves 6–8), mosaic (leaves 9–11/12), leaf distortion (first series of leaves on secondary and tertiary branches) and recovery (progressive recovery with newly emerging leaves in tertiary and younger branches). In situ detection of CMV in leaf tissues revealed widespread occurrence in leaves expressing chlorosis and mosaic symptoms but reduced, localized occurrence in leaves in the recovery phase. Similarly, CMV accumulated to high levels throughout stems expressing chlorosis and mosaic symptoms but with dramatically reduced levels for plants in the recovery symptom phase. Stunting of internodes occurred at all locations above the inoculated leaves by the first expression of systemic symptoms, suggesting an impact on stem growth in response to initial virus invasion of young developing tissues of the stem. Despite the recovery from CMV infection, plant growth was negatively impacted early in the infection process and remained so through the course of the experiment.  相似文献   

4.
With the aim to reduce the period of flowering and of fruit maturation, we investigated the effect of auxins on flower formation. For these experiments we used young decapitated plants with two plagiotropic branches. Both the auxins, indol-3-ylacetic acid (IAA) and 2,4-dichlorophenoxyacetic acid (2,4-D), retarded flower formation in coffee, the latter one being more effective. The effects of 2,4-D if applied on only one of the two plagiotropic branches can be observed only in this treated one. Furthermore, the auxins seem to act in coffee plant directly by affecting flower formation and not indirectly by inducing endogenous ethylene production.  相似文献   

5.

Introduction

Gentian spotted bleaching disease (GSBD), a novel disease of unknown etiology, affects Gentiana triflora plants that are cultivated as ornamental flowers in Japan. This disease leads to the production of necrotic leaf spots, a delay in flowering, and has thus become a serious problem for gentian production.

Objectives

The objective of this study was to identify the cause of GSBD in G. triflora by analyzing differences between healthy and GSBD-affected leaves.

Method

Selected metabolite concentrations in healthy and GSBD-affected leaves were quantified using capillary electrophoresis and liquid chromatography-mass spectrometry, and statistically significant differences in metabolite concentrations were assessed. GSBD-affected metabolic pathways were identified followed by examination of pathway-related gene expression and enzyme activities. Furthermore, the effects of root hypoxia on metabolite concentrations and gene expression were investigated.

Results

We found that concentrations of Calvin cycle intermediates and ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity were significantly lower in GSBD-affected leaves, whereas sucrose cleavage and Ala accumulation were enhanced. Since these metabolic changes are frequently observed in plants exposed to hypoxia, the expression of hypoxia-responsive genes was investigated. Expression levels of hypoxia-responsive genes were higher in GSBD-affected plants than in the controls. Furthermore, root hypoxia induced similar symptoms and metabolic changes as those observed in GSBD-affected plants.

Conclusion

Our results indicate that GSBD was likely induced by root hypoxia and that metabolome analysis is an effective tool for identifying the cause of plant disease with unknown etiologies.
  相似文献   

6.
The green scale, Coccus viridis (Green) (Hemiptera: Coccidae), is an insect pest of coffee and several other perennial cultivated plant species. We investigated changes in alkaloid and phenolic contents in coffee plants as a response to herbivory by this insect. Greenhouse‐grown, 11‐month‐old coffee plants were artificially infested with the coccid and compared with control, uninfested plants. Leaf samples were taken at 15, 30, 45, and 60 days after infestation, and high‐performance liquid chromatography was used to identify and quantify alkaloid and phenolic compounds induced by the coccids at each sampling date. Of the compounds investigated, caffeine was the main coffee alkaloid detected in fully developed leaves, and its concentration in infested plants was twice as high as in the control plants. The main coffee phenolics were caffeic and chlorogenic acid, and a significant increase in their concentrations occurred only in plants infested by C. viridis. A positive and significant relationship was found between alkaloid and phenolic concentrations and the infestation level by adults and nymphs of C. viridis. Caffeine and chlorogenic acid applied on coffee leaves stimulated the locomotory activity of the green scale, thus reducing their feeding compared to untreated leaves. This is the first study to show increased levels of coffee alkaloids and phenolics in response to herbivory by scale insects. The elevation of caffeine and chlorogenic acid levels in coffee leaves because of C. viridis infestation seems to affect this generalist insect by stimulating the locomotion of crawlers.  相似文献   

7.
Snow (1931) showed that the fate of a branch of a plant that had suffered local herbivory could be determined by correlative effects of other branches. This neglected work was continued in the current study, herbivory being simulated by the removal of leaves of different ages from pea plants with two branches. A damaged branch was suppressed when an undamaged alternative branch was present; otherwise the damage never prevented continued development. The removal of mature leaves had a smaller effect than the removal of immature, expanding leaves. When leaves were removed from both branches it was the branches that suffered less damage to their immature leaves that continued shoot development. Branches from which all photosynthetic leaves were repeatedly removed developed only when they retained their immature leaves and remained dominant, inhibiting the development — but not the photosynthesis — of the other branch on the same plant. Accounting for these results requires mechanisms that compare the different branches of the plant and select for development the ones that have the greatest potential for future, rather than present, photosynthesis. It is concluded that a compartmentalized or sectorial distribution of essential substrates can be modified by correlative relations that are probably mediated by hormones.  相似文献   

8.
The high costs of N fertilizers in the coffee production emphasizes the need to optimize fertilization practices and improve nitrogen use efficiency. Urea is widespread in nature, characterizing itself as a significant source of nitrogen for the growth and development of several organisms. Thus, the characterization of genes involved in urea transport in coffee plants is an important research topic for the sustainable production of this valuable cash crop. In the current study, we evaluated the expression of the DUR3 gene under abiotic and biotic stresses in coffee plants. Here, we show that the expression of a high-affinity urea transporter gene (CaDUR3) was up-regulated by N starvation in leaves and roots of two out of three C. arabica cultivars examined. Moreover, the CaDUR3 gene was differentially expressed in coffee plants under different abiotic and biotic stresses. In plants of cv. IAPAR59, CaDUR3 showed an increased expression in leaves after exposure to water deficit and heat stress, while it was downregulated in plants under salinity. Upon infection with H. vastatrix (coffee rust), the CaDUR3 was markedly up-regulated at the beginning of the infection process in the disease susceptible Catuaí Vermelho 99 in comparison with the resistant cultivar. These results indicate that besides urea acquisition and N-remobilization, CaDUR3 gene may be closely involved in the response to various stresses.  相似文献   

9.
Coffee leaf rust, caused by Hemileia vastatrix, is the most devastating disease of coffee. Since limited information is available in the literature on silicon (Si) affecting plant diseases in coffee, this study was designed to investigate foliar application of potassium silicate (PS), a source of soluble (Si), on infection process of coffee leaf rust at the microscopic level. The foliar Si concentration for plants sprayed with water and PS has no significant difference (0.24 and 0.30 dag kg?1, respectively). X‐ray microanalysis indicated that the deposition of Si on the leaves of the plants that were sprayed with PS was greater in comparison to the leaf samples from the plants sprayed with water. Rust severity on leaves of plants sprayed with water or sprayed with PS reached 44% and 32%, respectively, at 36 days after inoculation (dai). Plates of polymerised PS were observed on the leaf surfaces of the plants sprayed with the product, in contrast to its absence on the leaf surfaces of plants sprayed with water. At 36 dai, a greater number of uredia were observed on the leaf surfaces of plants sprayed with water in comparison to the leaf surfaces of plants sprayed with PS. On fractured leaf tissues that were sprayed with PS, less fungal colonisation was observed in comparison to the leaves of plants sprayed with water. In conclusion, the results of this study suggest that the effect of foliar‐applied Si on the control of the coffee leaf rust development may be attributed to the physical role of the polymerised PS, its osmotic effect against urediniospores germination, or both.  相似文献   

10.
AIMS: To isolate endophytic bacteria and Xylella fastidiosa and also to evaluate whether the bacterial endophyte community contributes to citrus-variegated chlorosis (CVC) status in sweet orange (Citrus sinensis [L.] Osbeck cv. Pera). METHODS AND RESULTS: The presence of Xylella fastidiosa and the population diversity of culturable endophytic bacteria in the leaves and branches of healthy, CVC-asymptomatic and CVC-symptomatic sweet orange plants and in tangerine (Citrus reticulata cv. Blanco) plants were assessed, and the in vitro interaction between endophytic bacteria and X. fastidiosa was investigated. There were significant differences in endophyte incidence between leaves and branches, and among healthy, CVC-asymptomatic and CVC-symptomatic plants. Bacteria identified as belonging to the genus Methylobacterium were isolated only from branches, mainly from those sampled from healthy and diseased plants, from which were also isolated X. fastidiosa. CONCLUSIONS: The in vitro interaction experiments indicated that the growth of X. fastidiosa was stimulated by endophytic Methylobacterium extorquens and inhibited by endophytic Curtobacterium flaccumfaciens. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides the first evidence of an interaction between citrus endophytic bacteria and X. fastidiosa and suggests a promising approach that can be used to better understand CVC disease.  相似文献   

11.
Plant activators are chemicals that induce plant defense responses to a broad spectrum of pathogens. Here, we identified a new potential plant activator, 5-(cyclopropylmethyl)-6-methyl-2-(2-pyridyl)pyrimidin-4-ol, named PPA (pyrimidin-type plant activator). Compared with benzothiadiazole S-methyl ester (BTH), a functional analog of salicylic acid (SA), PPA was fully soluble in water and increased fresh weight of rice (Oryza sativa) and Arabidopsis plants at low concentrations. In addition, PPA also promoted lateral root development. Microarray data and real-time PCR revealed that PPA-treated leaves not challenged with pathogen showed up-regulation of genes related to reactive oxygen species (ROS), defenses and SA. During bacterial infection, Arabidopsis plants pretreated with PPA showed dramatically decreased disease symptoms and an earlier and stronger ROS burst, compared with plants pretreated with BTH. Microscopy revealed that H2O2 accumulated in the cytosol, plasma membrane and cell wall around intracellular bacteria, and also on the bacterial cell wall, indicating that H2O2 was directly involved in killing bacteria. The increase in ROS-related gene expression also supported this observation. Our results indicate that PPA enhances plant defenses against pathogen invasion through the plant redox system, and as a water-soluble compound that can promote plant growth, has broad potential applications in agriculture.  相似文献   

12.
Coffee is one of the most important agricultural export commodities in the world and it represents the main export from some developing countries. Therefore, the development of new methods of coffee management that improves production without causing any damage to the environment is an attractive alternative for producers. Much effort has been invested towards understanding the mode of action of compounds that can induce resistance against several pathogens without injuring the environment. Many researches have considered silicon efficient in avoiding plant pathogen penetration and development. Our aim was to verify the effect of potassium silicate and calcium/magnesium silicate in the development of coffee seedlings ( Coffea arabica cv. Mundo Novo ) as well as to evaluate the incidence of coffee leaf rust development under greenhouse conditions. The experiment was a completely randomized design with 12 treatments with 10 plants per treatment. The treatments were 0, 0.25, 1.25, 2.5, 4 and 5  μ m of Si for each source of silicon incorporated into the soil. The seedlings were inoculated with a urediniospores suspension of Hemileia vastatrix (2 mg/ml) at the seventh month after planting (six pair of leaves). Evaluations were performed by counting the number of lesions per leaf. The statistical analysis showed that the number of lesions reduced by up to 66% at the highest silicon dose when compared to the number of lesions in control plants. Infected plants were found to have a linear decrease of lesions with the increase of silicate concentration. The lowest number of lesions per leaf area was observed in plants that received 5  μ m of Si from potassium silicate. This result indicates the use of silicon as an alternative for an ecological management system for coffee disease protection.  相似文献   

13.
Light climates strongly influence plant architecture and mass allocation. Using the metamer concept, we quantitatively described branching architecture and growth of Chenopodium album plants grown solitarily or in a dense stand. Metamer is a unit of plant construction that is composed of an internode and the upper node with a leaf and a subtended axillary bud. The number of metamers on the main-axis stem increased with plant growth, but did not differ between solitary and dense-stand plants. Solitary plants had shorter thicker internodes with branches larger in size and number than the plant in the dense stand. Leaf area on the main stem was not different. Larger leaf area in solitary plants was due to a larger number of leaves on branches. Leaf mass per area (LMA) was higher in solitary plants. It did not significantly differ between the main axis and branches in solitary plants, whereas in the dense stand it was smaller on branches. Dry mass was allocated most to leaves in solitary plants and to stems in the dense stand in vegetative growth. Reproductive allocation was not significantly different. Branch/main stem mass ratio was higher in solitary than dense-stand plants, and leaf/stem mass ratio higher in branches than in the main axis. Nitrogen use efficiency (NUE) (dry mass growth per unit N uptake) was higher and light use efficiency (LUE) (dry mass growth per unit light interception) was lower in the plant grown solitarily than in the dense stand.  相似文献   

14.
Coffee is the most traded commodity in the world, and Brazil is its largest producer. Coffee leaf rust, caused by the biotrophic fungus Hemileia vastatrix, is the most important coffee disease, reducing coffee yield by 35–50%. This study aimed to use the ratio of variable and maximum fluorescence of dark‐adapted tissue (Fv/Fm) as a parameter to differentiate presymptomatic tissue from healthy tissue during disease development in plants sprayed with pyraclostrobin and epoxiconazole after 4 days postinoculation. Visual severity was considered as an indicative of apparent disease and true severity as an indicative of both apparent and non‐apparent disease. There was a significant linear relationship between the areas of true severity and visual severity, and for each additional unit in the visual severity, there was an increase of 1.53 units on the true severity. For the epoxiconazole and pyraclostrobin treatments, coffee leaf rust symptoms decreased according to both visual and Fv/Fm images. Pustules on the leaves sprayed with epoxiconazole were smaller in size than those on the leaves of non‐sprayed plants but bigger than those sprayed with pyraclostrobin. The reduction in Fv/Fm values at the pustule epicentres present on the leaves of plants sprayed with epoxiconazole, and pyraclostrobin was greater than those of the non‐sprayed plants. This finding was expected and reflects the importance of these fungicides in prohibiting the progress of coffee leaf rust. The photosynthetic capacity of Coffea arabica was affected by H. vastatrix infection, and the Fv/Fm parameter was able to show this effect before the visual symptoms were noticed.  相似文献   

15.
Sampling studies were conducted in coffee plantations in South Yunan to assess the incidence, symptoms, and intensity of damage by three stem borers: Xylotrechus quadripes (Chevrolat), Acalolepta cervina (Hope), and Bacchisa sp. near pallidiventris (Thomson). Of 5,690 plants sampled in eight plantations, 440 were infested with A. cervina, 63 with X. quadripes, and three with B. pallidiventris. Plants 5-7 yr old were 10 times more heavily infested with X. quadripes than 3- to 4-yr-old plants, whereas both age groups of plants had similar levels of infestation with A. cervina. Larval galleries of the three borer species markedly differ: A. cervina and B. pallidiventris larvae develop in subcortical galleries in the main stem (A. cervina) and lateral branches (B. pallidiventris), whereas larval galleries of X. quadripes intermittently punctuate and transverse the xylem of main stems or lateral branches. Significantly more plant tissue was damaged in stems infested with X. quadripes than in those infested with A. cervina or B. pallidiventris. Stems infested with A. cervina or B. pallidiventris generally had only one or a few pupation chambers, whereas stems infested with X. quadripes contained numerous chambers. Quantitative and qualitative data collected through this study provide farmers with diagnostic tools to determine which borer species infested coffee plants. Comparison of life history traits and intensity of damage for the three borer species indicates that X. quadripes is the most severe pest of coffee in Yunan, and suggests that populations of X. quadripes have the greatest potential to steadily increase with time.  相似文献   

16.
Bundt  Maya  Kretzschmar  Sigrid  Zech  Wolfgang  Wilcke  Wolfgang 《Plant and Soil》1997,197(1):157-166
The northwestern province of Costa Rica is a marginal coffee growing area. At the onset of the rainy season low redox potentials probably induce the mobilization of soil Mn resulting in enhanced plant uptake of Mn. To test this hypothesis we monitored from April to the end of June 1995 the mobile Mn in the soil and nutrient and Mn concentrations in leaves and xylem sap of coffee plants. Every 2 weeks we took aggregate and bulk soil samples. The aggregates were mechanically separated into interior and exterior, air-dried and all soil samples were extracted with 1 M NH4NO3. We also extracted the field moist soil with distilled water. In addition, the 3rd and the youngest pair of coffee leaves and xylem sap were sampled and analyzed. According to the results of leaf analyses the nutrient supply of the coffee plants in general seemed to be balanced. However, Mn concentrations of 223 mg kg-1 in the 3rd leaf pair at 18 April were above the optimum and the youngest leaves indicated Fe deficiency, but senescent leaves accumulated Fe and overcame the deficiency. Manganese concentrations in the xylem sap showed a pronounced maximum 2 weeks prior to a similar maximum of mobile Mn in the aggregate exterior. But in general the temporal variation of nutrient concentrations (especially Ca and Mg) in the plants are well correlated with the easily extractable nutrient concentrations in bulk soil. Probably due to its specific absorption and high rates of redistribution within the plant, K in the soil extracts did not correlate with plant concentrations. Element concentrations of youngest leaves could not be correlated with soil concentrations and are not considered to be an adequate tool for monitoring current nutrient uptake. Since plant element concentrations did not correlate with the aggregate interior, plants probably cannot use that nutrient source efficiently.  相似文献   

17.
The aim of this study was to establish a protocol for the efficient production of flax plants of microspore origin. The results were compared to those obtained for plants regenerated from somatic explants from hypocotyls, cotyledons, leaves, stems and roots. All the plants obtained during the experiments were regenerated from callus that was grown for periods from a few weeks to a few months before the regeneration was achieved. Anther cultures were less effective in plant regeneration than somatic cell cultures. However, regenerants derived from anther cells showed valuable breeding features, including increased resistance to fungal wilt. The age of the donor plants and the season they grew in had a noticeable effect on their anther callusing and subsequent plant regeneration. Low temperature had a negative effect and dark pre-treatment a positive effect on callusing and plant regeneration. Different media were most effective for callus induction, shoot induction and rooting. For callus induction two carbon sources (2.5% sucrose and 2.5% glucose) were most effective; for shoots, only sucrose at lower concentration (2%) was effective. Rooting was most efficient in 1% sucrose and reduced (50%) mineral concentration in the medium. It was found that the length of in vitro cultivation significantly increases the ploidy and affects such features as regenerant morphological characteristics, petal colour, and resistance to Fusarium oxysporum-induced fungal wilt. The established plant regeneration system provides a basis for the creation of transgenic flax.Abbreviations BAP 6-Benzyl-aminopurine - IAA Indole-3-acetic acid - MS Murashige and Skoog medium - NAA -Naphthalene-acetic acidCommunicated by H. Lörz  相似文献   

18.
Tomato spotted wilt virus (TSWV) is an economically important viral pathogen of flue‐cured tobacco, Nicotiana tabacum. Disease development and in planta distribution of TSWV were studied following mechanical inoculation of cv. K326 at various stages of growth. The effect of plant age on the disease development, distribution of symptoms and TSWV were studied by inoculating plants in five age groups, 40, 60, 75, 95 and 100 days after sowing (DAS). The plant age at the time of infection had no significant influence on the incidence of localised infection; however, it had a significant effect on the development of systemic symptoms and distribution of TSWV in the plant. In a higher proportion of plants (89.2%), no systemic symptoms developed when plants were inoculated at 60–100 DAS. However, 90% of plants became systemically infected when plants were inoculated at 40 DAS. The systemic symptom expression was severe and distributed in all the leaves in 40‐DAS plants, whereas in 60‐ to 100‐DAS plants, it was erratic and restricted only to a few upper leaves. Results show that plant age is an important factor for TSWV infection of tobacco and mature tobacco plants significantly reduced the systemic development of the disease.  相似文献   

19.
Phytochemicals may modify the food quality, reduce a plant's palatability to insects, or defend against pests. This work aimed to study 1) relationships between the nitrogen and potassium levels given to plants in nutritive solutions and the foliar phytochemical concentrations, 2) the effect of nutrients and secondary compounds of Coffea arabica on the behavior of Coccus viridis, and 3) tolerance of C. arabica to losses. Deficient, normal, and excessive nitrogen and potassium fertilization treatments were used. Each treatment had two plants (one infested and one noninfested plant). The contents of phytochemicals in the infested plants' leaves and their dry matter of roots, stems, and leaves as well as the total contents in noninfested plants, were determined. The adults and nymphs of C. viridis were counted for 60 d in all treatments. It was verified that elevated nitrogen and potassium levels in the nutritional solutions led to increased of nymphs and adults of C. viridis to the coffee plants over time. Potassium and nitrogen had both direct and indirect effects on C. viridis. The direct effect was because of the increase of the nitrogen content in the leaves. The indirect effect instead was because of reductions in the caffeine and chlorogenic acid contents in the leaves. This is the first study to show relationship nutrient levels of coffee phytochemicals in response to herbivory by scale insects. Caffeine and chlorogenic acid applied on coffee leaves stimulated the locomotory activity of the green scale, thus reducing their feeding compared with untreated leaves. The elevation of caffeine and chlorogenic acid levels in coffee leaves affect this generalist insect by stimulating the locomotion of crawlers.  相似文献   

20.
Huanglongbing is known as a destructive disease in citrus production. Investigation on plant response and development of huanglongbing disease against heat treatment on ‘Siam Purworejo’ (Citrus nobilis (Lour)) and ‘Nambangan’ (C. maxima (Burm.) Merr.) was done. High-temperature treatment was applied by covering plants with an enclosed screen. The treatment plant has three types of CLas pathogen infection status. The result showed that heat treatments could significantly increase new flushes. It was found that intensity of HLB infected plant decreased. The treatments effect on the proline level was dependent on cultivar, leaves age and HLB-infection status. Chlorophyll content of HLB infected plants increased due to high temperature. High-temperature increased Fe content in the artificially infected plant, whereas Zn contents increased in the leaves of infected plants by vector. ‘Nambangan’ had higher Fe content than ‘Siam Purworejo’ on uncovered plants. CLas bacteria still persisted in infected plant based on real-time PCR analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号