首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scandura M  Iacolina L  Cossu A  Apollonio M 《Heredity》2011,106(6):1012-1020
Game species are often manipulated by human beings, whose activities can deeply affect their genetic make-up and population structure. We focused on a geographically isolated wild boar population (Sardinia, Italy), which is classified, together with the Corsican population, as a separate subspecies (Sus scrofa meridionalis). Two hundred and ten wild boars collected across Sardinia were analysed with a set of 10 microsatellites and compared with 296 reference genotypes from continental wild populations and to a sample of domestic pigs. The Sardinian population showed remarkable diversity and a high proportion of private alleles, and strongly deviated from the equilibrium. A Bayesian cluster analysis of only the Sardinian sample revealed a partition into five subpopulations. However, two different Bayesian approaches to the assignment of individuals, accounting for different possible source populations, produced consistent results and proved the admixed nature of the Sardinian population. Indeed, introgressive hybridization with boars from multiple sources (Italian peninsula, central Europe, domestic stocks) was detected, although poor evidence of crossbreeding with free-ranging domestic pigs was unexpectedly found. After excluding individuals who carried exotic genes, the population re-entered Hardy-Weinberg proportions and a clear population structure with three subpopulations emerged. Therefore, the inclusion of introgressed animals in the Bayesian analysis implied an overestimation of the number of clusters. Nonetheless, two of them were consistent between analyses and corresponded to highly pure stocks, located, respectively, in north-west and south-west Sardinia. This work shows the critical importance of including adequate reference samples when studying the genetic structure of managed wild populations.  相似文献   

2.
The Mediterranean monk seal Monachus monachus , is a critically-endangered species of which only two populations, separated by c . 4000 km, remain: the eastern Mediterranean (150–300 individuals) and the Atlantic/western Sahara populations (100–130 individuals). We measured current levels of nuclear genetic variation at 24 microsatellite loci in 12 seals from the eastern Mediterranean and 98 seals from the western Sahara population and assessed differences between them. In both populations, genetic variation was found to be low, with mean allelic richness for the loci polymorphic in the species of 2.09 and 1.96, respectively. For most loci, the observed allele frequency distributions in both populations were discontinuous and the size ranges similar. The eastern Mediterranean population had 14 private alleles and the western Sahara had 18, but with a much larger sample size. Highly significant differences in allele frequencies between the two populations were found for 14 out of 17 loci. F ST between the two populations was 0.578 and the estimated number of migrants per generation was 0.046, both clearly indicating substantial genetic differentiation. From a conservation perspective, these results suggest that each population may act as a source for introducing additional genetic variation into the other population.  相似文献   

3.
Aim of the present work is the analysis (through the study of enzyme polymorphism) of Sicilian and African (Tunisian) populations of Ambrosina bassii, a small perennial endemic to the Central-Western Mediterranean basin, in order to verify if the complex geological history of this part of the Mediterranean area left its mark in the present-day genetic structure of this taxon. Starch gel allozyme electrophoresis of seven putative loci of A. bassii was employed to estimate genetic diversity, genetic structure and gene flow. Populations from Sicily, Tunisia and Sardinia (as outgroup) were sampled. Results show that Sicily populations have 4 private alleles, Sardinia 3, Tunisia just one. One allele is private to both Sardinia and Tunisia, another one to Sardinia and Sicily. Even if there are no alleles private to Sicily and Tunisia, “cluster analysis” (based on Nei's genetic distances), “non-metric multidimensional scaling” (computed on the basis of a matrix with FST values between populations) and Bayesian analysis point out a clear isolation of Sardinian populations, and a greater similarity between Sicilian and Tunisian populations compared to Sardinian ones. The strong genetic affinity between populations from Sicily and Tunisia, considering the very low dispersal ability of the species, gives evidence of a recent continuity between the populations as well as between the two areas. Considering also the estimates of divergence times, a post-Messinian terrestrial connection between the two landmasses can be hypothesized.  相似文献   

4.
Red deer Cervus elaphus of the endangered populations from Sardinia and Mesola Wood, northern Italy, were analysed for genetic variation at 531 bp of the mitochondrial control region and 12 polymorphic nuclear microsatellite loci. A phylogenetic analysis was conducted including additional data from the literature to gain insight into the phylogeographical origin of the Sardinian subspecies C. e. corsicanus . Microsatellite variation was low in both populations but Sardinia showed comparatively high variability at the control region. Management recommendations are discussed. In particular, the Mesola red deer, the only remaining indigenous Italian population, ought to be managed to increase the effective population size and should be subdivided into two or more populations. As to the phylogeography of the Sardinian population, microsatellite data favoured mainland Italy as the place of origin in that Sardinia and Mesola showed the smallest distance values and were paired together in trees with high bootstrap support. However, the mitochondrial data only partially confirmed this conclusion but showed great similarity between Sardinian and Spanish red deer. Possible explanations for this discrepancy and general limits of mitochondrial sequences in resolving demographic and biogeographical processes of the recent past are discussed.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 691–701.  相似文献   

5.
Amorpha georgiana (Fabaceae) is an endangered legume species found in longleaf pine savannas in the Southeastern United States. Approximately 900 individuals and 14 populations remain, most of which are concentrated in North Carolina. Eleven microsatellite loci were used to explore genetic diversity, population structure and recent population bottlenecks using genotypic data from 132 individuals collected at ten different localities. Although A. georgiana is quite rare, it exhibited high levels of genetic diversity (17.7 alleles/locus; H o = 0.65, H E = 0.75). Most of the genetic variation was found within rather than between populations of this species. The single remaining Georgia population was well differentiated from populations of the Carolinas ( F ST > 0.1), which had weaker structure among them ( F ST < 0.1). Only a geographically disjunct population showed strong evidence of a recent population bottleneck, perhaps due to a recent founder event. Hybridization with A. herbacea was also detected. For conservation management plans, A. georgiana populations in each geographic region (North Carolina, South Carolina and Georgia) plus a disjunct population in North Carolina (Holly Shelter) should be treated as separate management units for which in situ conservation, including habitat restoration and use of prescribed burns, should ensure persistence of this species and preservation of its evolutionary potential.  相似文献   

6.
We investigated the evolutionary history of the spotted flycatcher Muscicapa striata, a long distance migratory passerine having a widespread range, using mitochondrial markers and nuclear introns. Our mitochondrial results reveal the existence of one insular lineage restricted to the western Mediterranean islands (Balearics, Corsica, Sardinia) and possibly to the Tyrrhenian coast of Italy that diverged from the mainland lineages around 1 Mya. Mitochondrial genetic distance between insular and mainland lineages is around 3.5%. Limited levels of shared nuclear alleles among insular and mainland populations further support the genetic distinctiveness of insular spotted flycatchers with respect to their mainland counterparts. Moreover, lack of mitochondrial haplotypes sharing between Balearic birds (M. s. balearica) and Corso‐Sardinian birds (M. s. tyrrhenica) suggest the absence of recent matrilineal gene flow between these two insular subspecies. Accordingly, we suggest that insular spotted flycatchers could be treated as one polytypic species (Muscicapa tyrrhenica) that differs from M. striata in morphology, migration, mitochondrial and nuclear DNA and comprises two subspecies (the nominate and M. t. balearica) that diverged recently phenotypically and in mitochondrial DNA and but still share the same nuclear alleles. This study provides an interesting case‐study illustrating the crucial role of western Mediterranean islands in the evolution of a passerine showing high dispersal capabilities. Our genetic results highlight the role of glacial refugia of these islands that allowed initial allopatric divergence of insular populations. We hypothesize that differences in migratory and breeding phenology may prevent any current gene flow between insular and mainland populations of the spotted flycatcher that temporarily share the same insular habitats during the spring migration.  相似文献   

7.
The evolution of island populations in natural systems is driven by local adaptation and genetic drift. However, evolutionary pathways may be altered by humans in several ways. The wild boar (WB) (Sus scrofa) is an iconic game species occurring in several islands, where it has been strongly managed since prehistoric times. We examined genomic diversity at 49 803 single-nucleotide polymorphisms in 99 Sardinian WBs and compared them with 196 wild specimens from mainland Europe and 105 domestic pigs (DP; 11 breeds). High levels of genetic variation were observed in Sardinia (80.9% of the total number of polymorphisms), which can be only in part associated to recent genetic introgression. Both Principal Component Analysis and Bayesian clustering approach revealed that the Sardinian WB population is highly differentiated from the other European populations (FST=0.126–0.138), and from DP (FST=0.169). Such evidences were mostly unaffected by an uneven sample size, although clustering results in reference populations changed when the number of individuals was standardized. Runs of homozygosity (ROHs) pattern and distribution in Sardinian WB are consistent with a past expansion following a bottleneck (small ROHs) and recent population substructuring (highly homozygous individuals). The observed effect of a non-random selection of Sardinian individuals on diversity, FST and ROH estimates, stressed the importance of sampling design in the study of structured or introgressed populations. Our results support the heterogeneity and distinctiveness of the Sardinian population and prompt further investigations on its origins and conservation status.  相似文献   

8.
To clarify the genetic status and provide effective information for the conservation of Athyrium viridescentipes, a critically endangered fern species with only 103 individuals remaining in the wild, we conducted ubiquitous genotyping to determine the genotypes of all remnant individuals of the target species. We analyzed the genetic variation of the 103 known individuals in four populations by using 13 microsatellite loci. The genotypes of single spores from a sporophytic individual were also determined in order to reveal the breeding system of this species. The level of allelic variation in A. viridescentipes was significantly lower than that of closely related Athyrium species. The genetic composition of the four populations was rather similar. Sixty-nine individuals (67%) possessed an identical pattern in the allele combinations at 13 microsatellite loci. The mean pairwise F (ST) among four populations was 0.018. The segregated pattern of alleles, determined by single-spore genotyping, revealed that allelic recombination occurs through meiosis. The results indicate that this species contains a low level of genetic variation, has low population differentiation, and maintains populations by sexual reproduction. These findings could lead to more effective conservation programs, the selection of the most appropriate individuals for ex situ conservation efforts, and separate management of extant populations.  相似文献   

9.
The Blakiston's fish owl (Bubo blakistoni) population on Hokkaido Island, Japan, decreased to less than one hundred individuals over the last century due to habitat disruption by human activity. Although the ongoing conservation management has slightly restored the population, it remains endangered. In order to assess the genetic variation and population structure of the Blakiston's fish owl in Hokkaido, we genotyped eight microsatellite loci on 120 individuals sampled over the past three decades. The genotype data set showed low levels of genetic variation and gene flow among the geographically isolated five subpopulations. Comparative analysis of past and current populations indicated that some alleles shared by past individuals had been lost, and that genetic variation had declined over the last three decades. The result suggests that the genetic decline may have resulted from inbreeding and/or genetic drift due to bottlenecks in the Hokkaido population. The present study provides invaluable genetic information for the conservation and management of the endangered Blakiston's fish owl in Hokkaido.  相似文献   

10.
There is intense debate whether genetic diversity measured via neutral molecular markers can be used as a surrogate for fitness and as an indirect estimate of the amount of genetic variation for fitness-related traits in a population. Here, we measured microsatellite DNA genetic diversity (before the onset of drought) and mortality after prolonged drought in 15 populations of Banksia hookeriana in the species-rich southwestern Australian flora, to test the relationship between population genetic diversity and resistance to extreme climate fluctuations. Number of alleles per locus varied from 5.2 to 8.2 at eleven microsatellite loci among 30 individuals in each population. Mortality varied from 25 to 50% in individual populations after prolonged drought. Lower mortality was not observed in populations with higher genetic diversity, but in populations with lower genetic diversity. Thus, higher microsatellite genetic diversity fails to predict lower population mortality during extreme drought in B. hookeriana. Our results imply that it may be misleading to use studies of neutral genetic variation exclusively as the basis for inferring population and species capacity for resisting extreme climate events and for species conservation and management decisions.  相似文献   

11.
Genetic diversity and differentiation of Kermode bear populations   总被引:5,自引:0,他引:5  
The Kermode bear is a white phase of the North American black bear that occurs in low to moderate frequency on British Columbia's mid-coast. To investigate the genetic uniqueness of populations containing the white phase, and to ascertain levels of gene flow among populations, we surveyed 10 highly polymorphic microsatellite loci, assayed from trapped bear hairs. A total of 216 unique bear genotypes, 18 of which were white, was sampled among 12 localities. Island populations, where Kermodes are most frequent, show approximately 4% less diversity than mainland populations, and the island richest in white bears (Gribbell) exhibited substantial genetic isolation, with a mean pairwise FST of 0.14 with other localities. Among all localities, FST for the molecular variant underlying the coat-colour difference (A893G) was 0.223, which falls into the 95th percentile of the distribution of FST values among microsatellite alleles, suggestive of greater differentiation for coat colour than expected under neutrality. Control-region sequences confirm that Kermode bears are part of a coastal or western lineage of black bears whose existence predates the Wisconsin glaciation, but microsatellite variation gave no evidence of past population expansion. We conclude that Kermodism was established and is maintained in populations by a combination of genetic isolation and somewhat reduced population sizes in insular habitat, with the possible contribution of selective pressure and/or nonrandom mating.  相似文献   

12.
In population and conservation genetics, there is an overwhelming body of evidence that genetic diversity is lost over time in small populations. This idea has been supported by comparative studies showing that small populations have lower diversity than large populations. However, longitudinal studies reporting a decline in genetic diversity throughout the whole history of a given wild population are much less common. Here, we analysed changes in heterozygosity over time in an insular mouflon (Ovis aries) population founded by two individuals in 1957 and located on one of the most isolated locations in the world: the Kerguelen Sub-Antarctic archipelago. Heterozygosity measured using 25 microsatellite markers has actually increased over 46 years since the introduction, and exceeds the range predicted by neutral genetic models and stochastic simulations. Given the complete isolation of the population and the short period of time since the introduction, changes in genetic variation cannot be attributed to mutation or migration. Several lines of evidence suggest that the increase in heterozygosity with time may be attributable to selection. This study shows the importance of longitudinal genetic surveys for understanding the mechanisms that regulate genetic diversity in wild populations.  相似文献   

13.
The Atlantic Iberian brown trout is at the southwestern limit of its distribution. At this ecological edge, which was once a glacial refugia, anadromy becomes less common as increased water temperatures restricted populations closer to the headwaters. We examined 847 individuals from 20 populations from throughout this region and assessed spatial genetic structure using 11 protein and four microsatellite loci. The higher levels of heterozygosity and allelic diversity north of the southernmost limit of anadromy (SLA), as well as an isolation-by-distance model of population structure, likely influenced by the anadromous forms, suggest that more stable demographic conditions existed over time in this region. Populations south of the SLA were highly differentiated given the restricted size of the area (protein F(ST) = 0.16 in the north and 0.63 in the south of the SLA; microsatellite F(ST) = 0.18 in the north and 0.70 in the south of the SLA). The low levels of heterozygosity and the pattern of southward allele depletion in resident populations is indicative of fragmentation, caused by stressful ecological conditions that reduced the anadromy (restricting gene flow) and the effective population sizes (higher genetic drift), which, in combination, dramatically decreased within-population genetic variation and increased among-population genetic variation. The higher gene diversity north of the SLA does not reflect ancestry but rather the signature of a population size expansion, as evidence suggest the persistence of older populations (with several private alleles) south of the SLA. These data support a scenario that demonstrates how contemporary events (critical ecological conditions) can moderate historical influences, suggesting that careful interpretation of the evolutionary history of glacial refugia is necessary, especially where populations persisted for a long time but not always with optimal ecological conditions. These peripheral populations are of high conservation value and should be preserved to help conserve the future potential of the species.  相似文献   

14.
DNA microsatellite markers were used to characterize the population genetic structure of the lemon shark, Negaprion brevirostris, in the western Atlantic. This study demonstrates for the first time the usefulness of microsatellites to study population genetic structure and mating systems in the Chondricthyes. Lemon sharks (mostly juveniles) were sampled non-destructively from four locations, Gullivan Bay and Marquesas Key in Florida, Bimini, Bahamas, and Atol das Rocas, Brazil. At least 545 individuals were genotyped at each of four dinucleotide loci. The number of alleles per locus ranged from 19 to 43, and expected heterozygosities ranged from 0.69 to 0.90. Relatively little genetic structure was found in the western Atlantic, with small but significant values for estimators of F(ST) and R(ST) among populations, theta (0.016) and rho (0.026), respectively. No sharp discontinuities were found between the Caribbean sites and Brazil, and most alleles were found at all four sites, indicating that gene flow occurs throughout the western Atlantic with no evidence for distinct stocks.  相似文献   

15.
? Premise of the study: The development of compound microsatellite markers was conducted in Neolitsea sericea to investigate genetic diversity and population genetic structure of this endangered insular species. ? Methods and Results: Using the compound microsatellite marker technique, 10 compound microsatellite markers that were successfully amplified showed polymorphism when assessed in 55 individuals from two populations in East China and Japan. Overall, the number of alleles ranged from 3 to 17, with an average of 7.9 alleles per locus. In addition, these primers could be easily amplified in Neolitsea aurata var. paraciculata and N. aurata var. chekiangensis. ? Conclusions: The highly polymorphic markers developed and characterized in this study will be useful for population genetic studies of N. sericea.  相似文献   

16.
Most conifer species occur in large continuous populations, but radiata pine, Pinus radiata, occurs only in five disjunctive natural populations in California and Mexico. The Mexican island populations were presumably colonized from the mainland millions of years ago. According to Axelrod (1981), the mainland populations are relicts of an earlier much wider distribution, reduced some 8,000 years ago, whereas according to Millar (1997, 2000), the patchy metapopulation-like structure is typical of the long-term population demography of the species. We used 19 highly polymorphic microsatellite loci to describe population structure and to search for signs of the dynamics of population demography over space and time. Frequencies of null alleles at microsatellite loci were estimated using an approach based on the probability of identity by descent. Microsatellite genetic diversities were high in all populations [expected heterozygosity (H(e)) = 0.68-0.77], but the island populations had significantly lower estimates. Variation between loci in genetic differentiation (F(ST)) was high, but no locus deviated statistically significantly from the rest at an experiment wide level of 0.05. Thus, all loci were included in subsequent analysis. The average differentiation was measured as F(ST) = 0.14 (SD 0.012), comparable with earlier allozyme results. The island populations were more diverged from the other populations and from an inferred common ancestral gene pool than the mainland ones. All populations showed a deficiency of expected heterozygosity given the number of alleles, the mainland populations more so than the island ones. The results thus do not support a recent important contraction in the mainland range of radiata pine.  相似文献   

17.
Aim Genetically differentiated insular populations are candidates for independent units for conservation. However, occasional immigration to reduced island populations may occur and potentially have important consequences in their future viability and evolutionary potential. In this study, we investigate the conservation implications of population structure and connectivity of insular and continental populations of a migratory raptor as determined using genetic tools and satellite tracking. Location Western European populations in the Iberian Peninsula and two insular populations in the Mediterranean Sea (Balearic Islands) and Atlantic Ocean (Canary Islands). Methods We genotyped 22 microsatellite loci in 96 Egyptian vultures (Neophron percnopterus) from the Iberian Peninsula, 36 from Menorca (Balearic archipelago) and 242 (85% of the current population) from Fuerteventura (Canary Islands). We analysed genetic variation to estimate structure, gene flow, genetic diversity, effective size and recent demographic history of the populations. Additionally, 19 vultures were marked with satellite transmitters to track their migration routes. Results Insular populations were genetically differentiated from those of the mainland. We detected immigration in the insular populations and within the continental counterpart. We found similar levels of genetic variability between the continent and the islands, and a bottleneck analysis indicated recent sharp population declines in both archipelagos but not on the continent. Main conclusions Our study provides evidence that, in spite of significant differentiation, insular populations of highly mobile species may remain connected with the mainland. Conservation programmes should take into account population connectivity and integrate differentiated units of management within complex units of conservation that can best maintain processes and potential for evolutionary change.  相似文献   

18.
Aphanius fasciatus is a cyprinodont distributed in the salty coastal water of the central and eastern Mediterranean Sea and occasionally in internal fresh water. In this work, the authors have investigated the genetic structure of eight populations of the killifish A. fasciatus from Sardinia and Sicily. The comparison of the mtDNA control region of 237 individuals revealed a total of 49 haplotypes. Several unique haplotypes were present in each population, and no common haplotype was found among Sicilian and Sardinian populations. Almost all Sardinian populations shared a common haplotype, and indeed the four Sicilian populations examined did not share any as determined by the parsimony network analysis. The analysis of molecular variance showed that the percentage of variation among populations is much higher than within each population of A. fasciatus . The overall F ST value is very high (0·78) and supports an extensive genetic structure of the populations. The observed genetic differentiations of A. fasciatus populations were discussed taking into account the palaeogeographic and palaeoclimatic events that interested the Mediterranean area from Miocenic to Pleistocenic age. The results provide new insight into the knowledge of the pattern of genetic structure and of evolutionary processes occurring in this species.  相似文献   

19.
采用微卫星分子标记对中华水韭(Isoetessinensis)安徽休宁、浙江建德和东方水韭(I.orientalis)浙江松阳三个孑遗居群的迁地保护居群开展了遗传多样性检测与遗传结构分析。7对多态性微卫星引物在36个迁地保护亚居群的720个样本中共检测到59个等位基因,每位点平均等位基因数(A)为8·43。迁地保护亚居群均维持很高的遗传多样性,多态信息含量(PIC)平均为0·707。迁地保护亚居群间遗传分化较低,遗传分化系数GST仅为0·070,居群间具有较大基因流(Nm=3·59)。单因素方差分析发现水韭孢子或孢子体在沿主要水流方向上的长距离传播能力要强于弱水流方向上的短距离传播能力,水流动态对水韭植物的基因流有重要影响。这与UPGMA聚类分析中迁地保护亚居群按邻近位置或水流相通程度优先聚类的结果相一致,水流所带动的强大基因流导致了不同孑遗居群来源的迁地保护亚居群间的遗传混杂。建议在开展水韭植物的迁地保护或回归自然重建时,对具有地方适应分化或者显著性进化的水韭植物居群应相互隔离而不宜配置在一起,以避免远交衰退的遗传风险。  相似文献   

20.
The Miyaluo captive forest musk deer population (Sichuan Province, China) is one of the largest captive breeding populations in the world. In order to evaluate the genetic quality and provide available genetic management strategy, seven polymorphism microsatellite loci were applied to assess the genetic variation of the Miyaluo forest musk deer. The results indicated that a total of 168 alleles were detected from these seven microsatellite loci in 361 individuals, and the number of the alleles per locus ranged from 12 to 41 with a mean of 24. The average observed heterozygosity, expected heterozygosity, and PIC were 0.782, 0.854, and 0.837, respectively. Considering the results of the loci Hardy–Weinberg equilibrium test, the comparison of the common allele frequency as well as the private allele between the adults and juveniles, we concluded that the heterozygosity and the genetic diversity of the Miyaluo captive breeding population are increasing due to the input of new individuals from other populations. However, the frequency of some alleles declined sharply, and some were even lost indicating that there is a risk for diversity loss. Thus, we proposed an improved management and breeding strategy for the captive breeding population of the forest musk deer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号