首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Catharanthus roseus (L.) G. Don is an economically and medicinally important plant since its leaves and flowers contain terpenoid indole alkaloids. The present study, for the first time, encompasses the influence of silver nitrate (AgNO3), in consort with cytokinins like N 6-benzyladenine (BA) and 6-furfurylaminopurine (kinetin), to regenerate multiple shoots from nodal segments explants and to induce high-frequency precocious flowering of C. roseus under in vitro condition. Synergistic effect of equal concentrations of BA and kinetin was enhanced following the amalgamation of AgNO3. As high as 98% explants responded to multiple shoot initiation and proliferation in Murashige and Skoog medium supplemented with 3 µM BA, 3 µM kinetin and 0.1 µM AgNO3. As many as 7 shoots were developed per explant following 12 days of inoculation. Continuous culture in the same medium for 21 days induced precocious flowering from 75% shoots, wherein a maximum of ~?6 (5.67?±?0.88) flowers was observed per in vitro shoot. On the other hand, in the combinations of BA and kinetin excluding AgNO3, a maximum of 6.67% explants responded and initiated merely 3.33 shoots per explant. Nevertheless, no induction of flower was observed in the media devoid of AgNO3. Our results on the induction and proliferation of multiple shoots with simultaneous flowering would help the global pharmaceutical industry to produce in vitro shoots and flowers in bulk, as an alternative source of alkaloids.  相似文献   

2.
An effective protocol was developed for in vitro regeneration of the Melothria maderaspatana via indirect organogenesis in liquid and solid culture systems. Organogenesis was achieved from liquid culture calluses derived from leaf and petiole explants of mature plants. Organogenic calluses (98.2?±?0.36 and 94.8?±?0.71%) were induced from both leaf and petiole explants on Murashige and Skoog (MS) liquid medium containing 6.0 µM 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 µM thidiazuron (TDZ); and 6.0 µM 2,4-D and 1.0 µM benzyladenine (BA) combinations, respectively. Adventitious shoot regeneration (68.2?±?0.06 shoots per explant) was achieved on MS medium supplemented with 2.0 µM BA, 4.0 µM TDZ, 10% v/v coconut water and 0.06 mM glutamine from leaf-derived calluses. Petiole-derived calluses produced adventitious shoots (45.4?±?0.09 shoots per explant) on MS medium fortified with 2.0 µM BA, 4.0 µM TDZ, 10% v/v coconut water, and 0.08 mM glutamine. Elongation of shoots occurred in MS medium with 2.0 µM gibberellic acid (GA3). Regenerated shoots (2–3 cm in length) rooted (74.2?±?0.38%) and hardened (85?±?1.24%) when they were transferred to 1/2-MS medium supplemented with 3.0 µM indole-3-butyric acid (IBA) followed by garden soil, vermiculate, and sand (2:1:1 ratio) mixture. The elongated shoots (4–5 cm in length) were exposed simultaneously for rooting as well as hardening (100%) in moistened [(1/8-MS basal salt solution with 5 µM IBA and 100 mg l?1 Bavistin® (BVN)] garden soil, vermiculate, and sand (2:1:1 ratio) mixture. Subsequently, the plants were successfully established in the field. The survival percentage differed with seasonal variations.  相似文献   

3.
In vitro propagation of northern red oak (Quercus rubra) shoots was successful from cotyledonary node explants excised from 8-wk-old in vitro grown seedlings. Initially, four shoots per explant were obtained on Murashige and Skoog (MS) medium supplemented with 4.4 μM 6-benzylaminopurine (BA), 0.45 μM thidiazuron (TDZ), and 500 mg l−1 casein hydrolysate (CH) with a regeneration frequency of 64.7% after 3 wk. Subculturing explants (after harvesting shoots) to fresh treatment medium significantly increased shoot bud regeneration (16.6 buds per explant), but the buds failed to develop into shoots. A higher percentage (73.3%) of the explants regenerated four shoots per explant on woody plant medium (WPM) supplemented with 4.4 μM BA, 0.29 μM gibberellic acid (GA3), and 500 mg l−1 CH after 3 wk. Explants subcultured to fresh treatment medium after harvesting shoots significantly increased shoot regeneration (16 shoots per explant). Shoot elongation was achieved (4 cm) when shoots were excised and cultured on WPM supplemented with 0.44 μM BA and 0.29 μM GA3. In vitro regenerated shoots were rooted on WPM supplemented with 4.9 μM indole-3-butyric acid. A higher percentage regeneration response and shoot numbers per explant were recorded on WPM supplemented with BA and GA3, than on MS medium containing BA and TDZ. Lower concentrations of BA and GA3 were required for shoot elongation and prevention of shoot tip necrosis. Each cotyledonary node yielded approximately 20 shoots within 12 wk. Rooted plantlets were successfully acclimatized.  相似文献   

4.
The influence of 2,4-dichlorophenoxyacetic acid (2,4-D), benzyladenine (BA), and thidiazuron (TDZ) on direct rhizome induction and shoot formation from rhizome explants of Cymbidium goeringii was explored. Rhizome segments obtained from in vitro seed cultures of C. goeringii were placed on Murashige and Skoog (MS) medium incorporated with 5, 10, 20, or 40 µM 2,4-D and 1, 2, 4, or 8 µM BA or TDZ alone or in combination with 20 µM 2,4-D. The explants developed only rhizomes on MS medium with or without 2,4-D. The highest percent of rhizome formation (100%) was obtained on MS medium incorporated with 20 μM of 2,4-D. The morphology and number of rhizomes varied with the level of 2,4-D in the medium. Direct adventitious shoot formation was achieved on medium incorporated with BA or TDZ. The adventitious shoots produced per explant significantly increased with the supplementation of 2,4-D to cytokinin-containing medium. The highest mean of 21.8 ± 1.8 shoot buds per rhizome segment was obtained in medium fortified with 20 μM 2,4-D and 2 μM TDZ. The greatest percent of root induction (100%) and the mean of 5.3 ± 1.1 roots per shoot were achieved on ½ MS medium incorporated with 2 μM of α-naphthaleneacetic acid. About 97% of the in vitro-produced plantlets acclimatized in the greenhouse. An efficient in vitro propagation protocol was thus developed for C. goeringii using rhizome explants.  相似文献   

5.
Direct somatic embryogenesis is favoured over indirect methods for the in vitro propagation of Coffea canephora, as the frequency of somaclonal variation is usually reduced. Ethylene action inhibitors improve the tissue culture response and thus silver nitrate (AgNO3) is used for direct somatic embryogenesis in coffee. It was observed that silver thiosulphate (STS) that is a more potent ethylene action inhibitor, induced a much robust response in C. canephora cotyledonary leaf explants with 7.49?±?0.57 and 7.08?±?0.12 embryos/explant at 60 and 80 µM AgNO3, respectively compared to 3.3?±?0.18 embryos/explant at 40 µM AgNO3. Transient transformation indicated that STS improved the transformation potential of embryos by enhancing Agrobacterium tumefaciens adherence to surfaces. In vitro adherence assays demonstrated that the cell wall material from STS-derived embryos provide a better substratum for adherence of Agrobacterium. Furthermore, blocking this substratum with anti-mannan hybridoma supernatant negatively effects the adherence. The presence of galactose and mannose residues in the decomposed cellulose fraction of STS treated somatic embryos are indicative of de-branching and re-modelling of galactomannan in response to ethylene inhibition. Genes of mannan biosynthesis, degradation and de-branching enzyme were affected to different extents in embryos derived in AgNO3 and STS containing somatic embryogenesis medium. The results indicate that ethylene-mediated cell wall galactomannan remodelling is vital for improving the transgenic potential in coffee.  相似文献   

6.
Somatic embryogenesis from in vitro leaf and shoot apex explants excised from axillary shoot cultures established from two mature Quercus ilex trees has been developed. Somatic embryos (SE) were obtained from both explant types and genotypes evaluated, although embryogenic frequencies were influenced by the genotype, auxin concentration, and explant type. The explants were cultured on Murashige and Skoog salts and vitamins, supplemented with 500 mg L?1 casein hydrolysate (CH) and different concentrations of indole-3-acetic acid or α-naphthalene acetic acid (NAA) in combination with 2.22 µM 6-benzylaminopurine (BA). In both genotypes, shoot apex explants were more responsive than leaf explants. The best results were obtained with apex explants of clone Q3 (11%) cultured on medium with 21.48 µM NAA plus 2.22 µM BA. This combination was also effective for initiating SE from leaf explants, although the induction rates were lower (1–3%). Embryogenic lines were maintained by repetitive embryogenesis following culture of nodular embryogenic structures on Schenk and Hildebrand medium without plant growth regulators. Low embryo multiplication rates were obtained when torpedo or early cotyledonary SE were used as initial explant for embryo proliferation, or when glutamine or CH (500 mg L?1) was added to proliferation medium. For germination, cotyledonary-stage SE were isolated and stored at 4 °C for 2 months. After cold storage, SE were cultured on germination medium consisting of Gresshoff and Doy medium, supplemented with 0.44 μM BA and 20 μM silver thiosulphate. Under these conditions, plantlets were regenerated from 21 to 66.7% of the SE generated for both genotypes.  相似文献   

7.
Shoot tip explants prepared from seedlings of ML-267 genotype of green gram were inoculated on MSB5 medium supplemented with BAP (0–20 μM) individually or in combination with minimal concentration of auxins (NAA/IAA/IBA) for adventitious shoots formation. BAP alone without auxins was observed to be efficient in multiple shoot induction and optimum shoot proliferation was achieved on MSB5 medium containing 10 μM BAP with 100?% shoot induction frequency. 3-day-old explants gave best shoot multiplication response and the mean shoot number decreased significantly in 4-day and 5-day-old explants. The induced shoots rooted profusely on ½ MSB5?+?2.46 µM IBA and about 90?% of the plantlets survived after acclimatization and set seed normally. Shoot tip explants infected with A.tumefaciens (LBA4404) harboring pCAMBIA 2301?+?AnnBj1 recombinant vector. Various factors which influence the competence of transformation were optimized based on the frequency of transient GUS expression in shoot tip explants. Optimum levels of transient GUS expression were recorded at pre-culture of explants for 2 days, infection for 10 min with Agro-culture of 0.8 OD and co-cultivation for 3 days on co-cultivation medium containing 100 µM acetosyringone in dark at 23?°C. Putative transformed shoots were produced on selection medium (shoot inductionmedium with100 mg/l kanamycin and 250 mg/l cefotaxim). PCR analysis confirmed the presence of AnnBj1, nptII, and uidA genes in T0 plants. Stable GUS activity was detected in flowers of T0 plants and leaves of T1 plants. PCR analysis of T1 progeny revealed AnnBj1 gene segregated following a Mendelian segregation pattern.  相似文献   

8.
Agrobacterium tumefaciens-mediated transformation system was established for Hybanthus enneaspermus using leaf explants with the strain LBA4404 harbouring pCAMBIA 2301 carrying the nptII and gusA genes. Sensitivity of leaf explants to kanamycin was standardized (100 mg/l) for screening the transgenic plants. Transformation parameters (OD, virulence inducer, infection time, co-cultivation period, bactericidal antibiotics, etc.) influencing the gene transfer and integration were assessed in the present investigation. Fourteen-day pre-cultured explants were subjected with Agrobacterium strain LBA4404. Optimized parameters such as culture density of 0.5 OD600, infection time of 6 min, AS concentration of 150 µM with 3 days co-cultivation revealed maximum transformation efficiency based on GUS expression assay. The presence of gusA in transgenics was confirmed by polymerase chain reaction and Southern blotting analysis. The present transformation experiment yielded 20 shoots/explant with higher transformation efficiency (28 %). The protocol could be used to introduce genes for trait improvement as well as for altering metabolic pathway for secondary metabolites production.  相似文献   

9.
Multiplication of Moringa oleifera shoots on MS medium supplemented with 2.5 µM BAP for 3 weeks resulted in shoot vitrification which led to chlorosis, retardation of shoot formation, reduction in shoot length, necrosis of shoot tips and formation of friable calli on the base of cultured explants. Vitrification symptoms decreased when MS medium containing 2.5 µM BAP in combination with 10 µM AgNO3, 50 µM salicylic acid (SA) or 200 µM CoCl2 was used. Studying isoenzyme patterns of SOD, POX, CAT, GOT and EST indicated that moringa shoots multiplied without obvious variation in isoenzyme patterns up to 7 subcultures. Moringa shoots subjected to 14 subcultures and anti-ethylene compounds showed variation in isoenzyme patterns and were associated with the disappearance of vitrification which facilitated root formation and acclimatization. Under long term cultures, RAPD, ISSR and SSR indicated that AgNO3 was the optimal anti-ethylene substance for avoidance of vitrification in moringa but it resulted in high somaclonal variation. Application of SA decreased vitrification as well as somaclonal variation compared to CoCl2 under long term culture. Consequently, SA was recommended for moringa clonal multiplication.  相似文献   

10.
This paper reports the successful micropropagation of mature Quercus ilex trees known as reluctant to in vitro propagation. Crown branch segments collected from 30 to 100 year-old trees were forced in order to promote the production of sprouting shoots that were used as a source of explants for initiating the cultures. Sterilization was critical and required low-level disinfestation protocols. Six out of the eight mature genotypes attempted were successfully inoculated and then maintained in culture with varying responses. Shoot proliferation of holm oak was influenced by BA concentration, with improved multiplication and shoot appearance when the BA concentration was sequentially reduced over the culture period. Micropropagation by axillary budding was achieved by culturing shoots on a sequence of cytokinin-enriched Lloyd and McCown (WPM) media alternating 2 week-long subcultures on 0.44 µM benzyadenine (BA) first, followed by 0.22 µM BA, then 0.044 µM BA plus 0.46 µM zeatin. Sucrose concentration and agar brand affected shoot proliferation, and the best results were obtained on WPM medium supplemented with 8 g L?1 Sigma agar (A-1296; Sigma-Aldrich) and 30 g L?1 sucrose. Addition of 20 µM silver thiosulphate had a significant positive effect on the appearance and development of shoots with a higher number of shoots being healthy and showing reduced shoot tip necrosis and early senescence of leaves. The 18.8% of the microshoots obtained for one clone could be rooted within 15 days on a half-strength Murashige and Skoog medium containing 14.8 µM or 24.6 µM indole-3-butyric acid and 0.54 µM α-naphthalene acetic acid.  相似文献   

11.
D. Xie  Y. Hong 《Plant cell reports》2002,20(10):917-922
A protocol was developed for Agrobacterium-mediated genetic transformation of Acacia mangium using rejuvenated shoots as the explant. Axillary buds and shoot apices of adult trees were rejuvenated by culturing them on Murashige and Skoog (MS) medium, and stem segments of rejuvenated shoots were co-cultured with Agrobacterium tumefaciens strain LBA4404 harbouring binary vector pBI121. The selection for transgenic shoots was performed through five consecutive steps on MS medium supplemented with 1.0 mg/l thidiazuron, 0.25 mg/l indole-3-acetic acid and different concentrations of geneticin (G418; 12–30 mg/l) and timentin (T; 50–300 mg/l) in the following order: 12 mg/l G418 and 300 mg/l T for 30 days, 20 mg/l G418 and 200 mg/l T for 60 days, 30 mg/l G418 and 100 mg/l T for 30 days, 12 mg/l G418 and 50 mg/l T for 30 days, and finally 15 mg/l G418 and 5 mg/l gibberellic acid (GA3) for 60 days. Thirty-four percent of the stem segments produced resistant multiple adventitious shoot buds, of which 30% expressed the β-glucuronidase gene. The shoot buds were subjected to repeated selection on MS medium supplemented with 2.0 mg/l 6-benzylaminopurine, 2.5 mg/l GA3 and 20 mg/l G418. Transgenic plants were obtained after rooting on half-strength MS medium supplemented with 2.0 mg/l α-naphthaleneacetic acid, 0.1 mg/l kinetin and 20 mg/l G418. Genomic Southern blot hybridization confirmed the incorporation of the NPTII gene into the host genome.  相似文献   

12.
Efficient shoot regeneration and Agrobacterium-mediated genetic transformation systems were developed for Petunia hybrida cv. Mitchell. Leaf explants of petunia were cultured on Murashige and Skoog (MS) medium with different concentrations of thidiazuron (TDZ) without auxin. The highest frequency of shoot regeneration (52.1%) and mean number of shoots per explant (4.1) were obtained on medium containing 2 mg l?1 TDZ. Leaf explants inoculated with Agrobacterium tumefaciens strain EHA101/pIG121Hm harboring ß-glucuronidase (uidA) and hygromycin resistance genes developed putative transformant shoots. The highest frequency of shoot regeneration (22.5%) and mean number of transformant shoots per explant (2.4) were obtained on a selection medium consisting of the above described regeneration medium and containing 25 mg l?1 hygromycin as the selection agent. Approximately 95% of putative transformant shoots expressed the uidA gene following histochemical ß-glucuronidase (GUS) assay. These were confirmed to be transgenic by PCR analysis and Southern blot hybridization.  相似文献   

13.
The effects of plant growth regulators (PGRs) and organic elicitors (OEs) on in vitro propagation of Eucomis autumnalis was established. Three-year-old ex vitro grown plants from organogenesis of E. autumnalis and somatic embryogenesis (previously reported protocol) of Drimia robusta were investigated for antibacterial activity. In vitro propagation from leaf explants of E. autumnalis was established using different PGRs and OE treatments for mass propagation, biomass production and bioactivity analysis to supplement the use of wild plant material. Prolific shoots (16.0?±?0.94 shoots per explant) were obtained with MS (Murashige and Skoog in Physiol Plant 15:473–497, 1962) medium containing 100 mg l?1 haemoglobin (HB), 10 µM benzyladenine (BA) and 2 µM naphthaleneacetic acid (NAA). The shoots were rooted effectively with a combination of 2.5 µM indole-3-acetic acid and 5.0 µM indole-3-butyric acid. The plantlets were successfully acclimatized in a vermiculite-soil mixture (1:1 v/v) in the greenhouse. Three-year-old ex vitro-grown E. autumnalis and D. robusta plants derived via organogenesis and somatic embryogenesis respectively exhibited antibacterial activity and varied with PGR and OE treatments, plant parts and bacteria. The leaves of E. autumnalis ex vitro-derived from a combination of HB, BA and NAA followed by the individual treatments of BA and HB gave the best antibacterial activities (<?1 mg ml?1: minimum inhibitory concentration from 0.098 to 0.78 mg ml?1) against all tested pathogenic bacteria (Bacillus subtilis, Enterococcus faecalis, Micrococcus luteus, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa). The bulbs of D. robusta ex vitro-derived from solid culture with 10 µM picloram, 1 µM thidiazuron and 20 µM glutamine exhibited good antibacterial activity against E. faecalis, M. luteus and S. aureus when compared with other treatments and mother plants. The ex vitro-grown E. autumnalis and D. robusta biomass produced with PGRs along with OE treatments confirmed a good potent bioresource and can be used as antibacterial agents. The in vitro plant regeneration of E. autumnalis and D. robusta protocols and ex vitro plants could be used for conservation strategies, bioactivity and traditional medicinal use.  相似文献   

14.
The effects of various combinations of plant growth regulators on regeneration potential from seedling-derived leaf tissues of Brassica oleracea L. var. botrytis were evaluated. Callus was induced from 2-wk-old leaf explants. The explants were incubated on Gamborg’s (MSB5) medium. The maximum frequency of callus induction (85.56%) was recorded on MSB5 medium supplemented with 9.1 μM thidiazuron (TDZ) and 0.5 μM α-naphthaleneacetic acid (NAA). Optimum shoot induction (54.44%) was obtained on MSB5 medium supplemented with 4.5 μM TDZ and 0.5 μM NAA. The maximum number of shoots per explant (5.33) was recorded on MSB5 medium with 4.5 μM TDZ and 0.5 μM NAA, whereas the maximum shoot length (4.86 cm) was recorded for shoots cultured on MSB5 medium supplemented with 4.5 μM TDZ and 5.7 μM gibberellic acid (GA3). However, optimum root induction (71.11%) occurred on half-strength Murashige and Skoog basal medium supplemented with 4.9 μM indole-3 butyric acid (IBA). Studies on the antioxidant activity of superoxide dismutase, ascorbate peroxidase, and peroxidase in seedlings, callus, regenerated shoots, and regenerated plantlets cultured on 4.5 μM TDZ and 0.5 μM NAA medium revealed the roles of these key antioxidative enzymes in callus induction and regeneration. The genetic stability of the regenerated plantlets was assessed using inter simple sequence repeat primers. The monomorphic amplification products confirmed true-to-type in vitro regenerated plants. This in vitro regeneration method can be useful in the large-scale production of genetically uniform plants, for genetic transformation, and conservation of elite germplasm of plant species.  相似文献   

15.
This report deals with micropropagation of the critically endangered and endemic Turkish shrub, Thermopsis turcica using callus, root and cotyledonary explants. Callus cultures were initiated from root and cotyledon explants on MS medium supplemented with 0.5–20 μM NAA or 2,4-D. The root explants were found to be better in terms of quick responding and callusing percentages as compared to the cotyledons. Organogenic callus production with adventitious roots and shoots were obtained on MS medium with only NAA. The calli obtained with NAA, root and cotyledonary explants were cultured with BA and kinetin (2–8 μM) alone or in combination with a low level (0.5 μM) of 2,4-D or NAA. The best regeneration of shoots from root explants was observed on hormone-free MS medium. NAA with BA or kinetin in the medium improved shoot induction from the calli obtained with NAA. Maximum percentage of shoots (93.3%), maximum number of shoots (6.2) and maximun length of shoots (8.22 cm) were achieved from cotyledonary explants at 4 μM BA and 0.5 μM NAA. The presence of 0.5 μM or higher levels of 2,4-D in shoot induction medium inhibited the regeneration in T. turcica explants. 83% of in vitro rooting was attained on pulsed-IBA treated shoots. The regenerated plants with well developed shoots and roots were successfully acclimatized. Application of this study’s results has the potential to conserve T. turcica from extinction.  相似文献   

16.
Aechmea ramosa Mart. ex Schult. f. is an endemic bromeliad of the Brazilian Atlantic Forest. The current habitat degradation of this hotspot biome threatens this species, which besides having an important ecological role, is also of invaluable ornamental interest. Plant tissue culture has been used in mass propagation and conservation of various bromeliads. We have established a micropropagation protocol for A. ramosa var. ramosa using leaf explants grown in MS medium supplemented with 2 μM of 1-naphthaleneacetic acid (NAA) and 2 μM of 6-benzylaminopurine (BAP) that showed higher values of shoot induction. NAA and BAP are associated with the production of proteins involved in stress response modulation, metabolic activity, and cell division, the latter being involved in inducing the differentiation of competent cells. After 120 d of culture, each explant presented 28.9 shoots with an average size of 27.8 mm, with no variation in either Stomatal Index or density of the regenerated shoots. Plantlets measuring above 15-mm height were successfully acclimatized, presenting 100% survival rate. Thus, this protocol can be used for mass propagation of A. ramosa, and to supply demand for the market of ornamental plants. Furthermore, it represents an important tool for the conservation of this species and maintenance of an in vitro germplasm.  相似文献   

17.
A high-frequency clonal propagation protocol was developed for Curcuma angustifolia Roxb., a high valued traditional medicinal plant. Axillary bud explants of C. angustifolia were explanted on Murashige and Skoog (MS) medium fortified with 4.4–22.2 µM 6-benzyladenine (BA), 2.9–5.7 µM indole-3-acetic acid (IAA), 2.3–23.2 µM kinetin (Kin), 2.7–5.4 µM naphthalene acetic acid (NAA) and 67.8-271.5 µM adenine sulphate (Ads) in different combinations. The maximum number of shoots per explants (14.1?±?0.55) and roots per shoot (7.6?±?0.47) was achieved on media containing 13.3 µM BA, 5.7 µM IAA and 135.7 µM Ads. Stability in phytomedicinal yield potential of micropropagated plants was assessed through GC–MS and HPTLC. Gas chromatogram of essential oil of conventional and micropropagated plants of C. angustifolia had similar essential oil profile. HPTLC analysis of rhizome extracts of in vitro and field grown plants revealed no significant differences in the fingerprint pattern and in curcumin content. Genetic integrity of in vitro and field grown derived plants were evaluated with inter-simple sequence repeat (ISSR) primers and flow cytometry using Glycine max as an internal standard. A total of 1260 well resolved bands were generated by 12 ISSR primers showing monomorphic banding patterns across all plants analyzed. The mean 2C DNA content of conventionally and micropropagated plant was estimated to be 2.26 pg and 2.31 pg, respectively. As no somaclonal variations were detected in tissue culture plantlets, the present micropropagation protocol could be applied for in vitro conservation and large-scale production of C. angustifolia.  相似文献   

18.
A simple method has been developed for clonal propagation of mature trees of Tecomella undulata (Sm.) Seem, a medicinally important deciduous timber tree of hot arid regions, via multiple shoot proliferation from axillary buds after examining the role of season influences and physico–chemical conditions on micropropagation. Spring season (March–April) was the best period for contamination free establishment of explants and maximum sprouting of healthy axillary buds. Shoots proliferated directly from the explant nodes cultured on Murashige and Skoog’s medium containing cytokinins, BAP supporting better growth compared to kinetin during shoot induction as well as multiplication phase. Cytokinin concentration influenced the bud induction frequency and optimal response of 2.6 buds per explant was achieved in 86.66% explants on media supplemented with 10 µM BAP. Stunted shoot buds with excessive callus were observed when cytokinin concentration was increased beyond optimal levels. Ascorbic acid (50 mg/l), arginine and citric acid (25 mg/l each) were added to proliferation and multiplication media for reducing callus proliferation and better shoot growth. Among the media (B5, MS, NN, WPM and SH) tested, SH was best for shoot multiplication. Shoot cultures were multiplied by regular subculture of axillary shoots on SH medium containing 5.0 µM each of BAP and kinetin. Shoots produced roots when cultured on ½× SH medium + 10 μM IBA. Regenerated plantlets were successfully transferred to field after hardening and acclimatization. Genetic homogeneity of tissue culture raised plants was confirmed by generation of monomorphic DNA fragments with Start codon targeted and intersimple sequence repeat (ISSR) markers.  相似文献   

19.
A rapid, prolific and reproducible protocol for in vitro shoot regeneration from mature cotyledons of Platanus acerifolia has been developed. The influences of different plant growth regulator (PGR) combinations and donor seedling ages on shoot regeneration were investigated. The results showed that the application of BA in conjunction with NAA was the most effective PGR combination for the induction of shoot regeneration. When cotyledon explants of 5-day-old seedlings were incubated on MS basal medium supplemented with 4.0 mg L?1 BA and 0.2 mg L?1 NAA, 67.6?±?4.9% of the cotyledon segments produced adventitious shoots. These regenerated shoots were initially formed as stunted rosette cluster forms and were encouraged to elongate to produce distinct shoots by transfer onto MS medium containing 0.5 mg L?1 BA and 0.05 mg L?1 NAA; the resulting mean number of adventitious shoots per explant was 5.81?±?0.36. The elongated shoots were readily induced to root (i.e. 89.3% of shoots) by incubation on ½-strength MS medium supplemented with 0.1 mg L?1 IBA. This is the first report of an efficient in vitro shoot regeneration protocol for P. acerifolia through direct organogenesis using cotyledon explants. Hence, this provides a more efficient basis for the Agrobacterium-mediated genetic transformation of Platanus than previously available.  相似文献   

20.
Direct shoot bud induction and plant regeneration was achieved in Capsicum frutescens var. KTOC. Aseptically grown seedling explants devoid of roots, apical meristem and cotyledons were inoculated in an inverted position in medium comprising of Murashige and Skoog (Physiol Plant 15:472–497, 1962) basal medium supplemented with 2-(N-morpholine) ethanesulphonic acid buffer along with 2.28 μM indole-3-acetic acid, 10 μM silver nitrate and either of 13.31–89.77 μM benzyl adenine (BA), 9.29–23.23 μM kinetin, 0.91–9.12 μM zeatin, 2.46–9.84 μM 2-isopentenyl adenine. Profuse shoot bud induction was observed only in explants grown on a media supplemented with BA (26.63 μM) as a cytokinin source and 19.4 ± 4.2 shoot buds per explant was obtained in inverted mode under continuous light. Incorporation of polyamine inhibitors in the culture medium completely inhibited shoothoot bud induction. Incorporation of exogenous polyamines improved the induction of shoot buds under 24 h photoperiod. These buds were elongated in MS medium containing 2.8 μM gibberellic acid. Transfer of these shoots to hormone-free MS medium resulted in rooting and rooted plants were transferred to fields. This protocol can be efficiently used for mass propagation and presumably also for regeneration of genetically transformed C. frutescens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号