首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Plasminogen activation catalysed by tissue-type plasminogen activator (t-PA) has been examined in the course of concomitant fibrin formation and degradation. Plasmin generation has been measured by the spectrophotometric method of Petersen et al. (Biochem. J. 225 (1985) 149-158), modified so as to allow for light scattering caused by polymerized fibrin. Glu1-, Lys77- and Val442-plasminogen are activated in the presence of fibrinogen, des A- and des AB-fibrin and the rate of plasmin formation is found to be greatly enhanced by both des A- and des AB-fibrin polymer. Plasmin formation from Glu1- and Lys77-plasminogen yields a sigmoidal curve, whereas a linear increase is obtained with Val442-plasminogen. The rate of plasmin formation from Glu1- and Lys77-plasminogen declines in parallel with decreasing turbidity of the fibrin polymer effector. In order to study the effect of polymerization, this has been inhibited by the synthetic polymerization site analogue Gly-Pro-Arg-Pro, by fibrinogen fragment D1 or by prior methylene blue-dependent photooxidation of the fibrinogen used. Inhibition of polymerization by Gly-Pro-Arg-Pro reduces plasmin generation to the low rate observed in the presence of fibrinogen. Antipolymerization with fragment D1 or photooxidation has the same effect on Glu1-plasminogen activation, but only partially reduces and delays the stimulatory effect on Lys77- and Val442-plasminogen activation. The results suggest that protofibril formation (and probably also gelation) of fibrin following fibrinopeptide release is essential to its stimulatory effect. The gradual increase and subsequent decline in the rate of plasmin formation from Glu1- or Lys77-plasminogen during fibrinolysis may be explained by sequential exposure, modification and destruction of different t-PA and plasminogen binding sites in fibrin polymer.  相似文献   

2.
E Suenson  S Thorsen 《Biochemistry》1988,27(7):2435-2443
Plasmin-catalyzed modification of the native plasma zymogen Glu1-plasminogen to its more reactive Lys78 form has been shown to be enhanced in the presence of fibrin. The aim of the present work has been to characterize the influence of fibrinopeptide release, fibrin polymerization, and plasmin cleavage of fibrin on the rate of Lys78-plasminogen formation. 125I-Labeled Glu1- to Lys78-plasminogen conversion was catalyzed by performed Lys78-plasmin, or by plasmin generated during plasminogen activation with tissue plasminogen activator or urokinase. The two forms of plasminogen were quantitated following separation by polyacrylamide gel electrophoresis in acetic acid/urea. Plasmin generated by plasminogen activator was monitored by a fixed-time amidolytic assay. The rate of Lys78-plasminogen formation was correlated, in separate experiments, to the simultaneous, plasmin-catalyzed cleavage of 125I-labeled fibrinogen or fibrin to fragments X, Y, and D. The radiolabeled components were quantitated after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The results show that the formation of both bathroxobin-catalyzed des-A-fibrin and thrombin-catalyzed des-AB-fibrin leads to marked stimulation of Lys78-plasminogen formation, whereas inhibition of fibrin polymerization, with Gly-Pro-Arg-Pro, abolishes the stimulatory effect. The rate of Lys78-plasminogen formation varies markedly in the course of fibrinolysis. The apparent second-order rate constant of the reaction undergoes a transient increase upon transformation of fibrin to des-A(B) fragment X polymer and decreases about 10-fold to the level observed during fibrinogenolysis upon further degradation to soluble fragments Y and D.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Interaction of plasminogen and fibrin in plasminogen activation   总被引:2,自引:0,他引:2  
Glu1-, Lys77-, miniplasminogens, kringle 1-3, kringle 1-5A, and kringle 1-5R were able to bind with fibrin, while microplasminogen and kringle 4 did not bind significantly. Kringle 1-5A, but not kringle 1-3, effectively inhibited the binding of Glu1-, Lys77-, and miniplasminogens with fibrin. Miniplasminogen also inhibited the binding of Glu1-plasminogen with fibrin. The binding of kringle 1-3 with fibrin was blocked by mini- or Glu1-plasminogen. It is therefore evident that there are two fibrin-binding domains in plasminogen and that the one in kringle 5 is of higher affinity than that in kringle 1-3. CNBr cleavage products of fibrinogen effectively enhanced the activation of Glu1-, Lys77-, or miniplasminogens, but not microplasminogen, by tissue-type plasminogen activator. Kringle 1-5, but not kringle 1-3, dose-dependently inhibited the enhancement by fibrinogen degradation products of Glu1-plasminogen activation by the activator. Lysine and epsilon-aminocaproic acid could inhibit the binding of plasminogens and plasminogen derivatives with fibrin and block the enhancement effect of fibrinogen degradation products on plasminogen activation. The data clearly illustrate that the binding of plasminogen with fibrin, mainly determined by kringle 5, is essential for effective activation by tissue-type plasminogen activator. However, the presence of kringle 1-4 in the plasminogen molecule is required for the full enhancing effect since the kcat/Km of miniplasminogen activation in the presence of fibrinogen degradation products was 8.2 microM-1 min-1 which is significantly less than 52.0 microM-1 min-1 of Glu1-plasminogen.  相似文献   

4.
Trinitrobenzyl alkylation of poly(D-lysine) provides a novel powerful stimulator of tissue-type plasminogen activator. Its stimulatory effect on plasminogen activation is far greater than that of the original poly(D-lysine), and even surpasses that of fibrin. Its effect on plasmin-catalysed modification of both tissue-type plasminogen activator (t-PA) and native (Glu-1-) plasminogen are also investigated. Cleavage of one-chain t-PA to its two-chain form is monitored by measuring the increase in amidolytic activity which accompanies this transformation. Presupposing apparent first-order reaction kinetics, a theory is developed by which the rate constant, kcat/Km = 1.0 X 10(6) M-1 X s-1 of plasmin cleavage of one-chain t-PA can be calculated. Plasmin-catalysed transformation of 125I-labelled Glu-1- to Lys-77-plasminogen is quantified following separation by polyacrylamide gel electrophoresis at pH 3.2. A rate constant, kcat/Km = 4.4 X 10(3) M-1 X s-1 is obtained for the reaction between plasmin and Glu-1-plasminogen in the presence of 1 mM trans-4-(aminomethyl)cyclohexane-1-carboxylic acid. Both of the above plasmin-catalysed reactions are strongly enhanced by trinitrobenzoylated poly(D-lysine). The mechanism of action of this stimulator is elucidated by studying its binding to both activator and plasmin(ogen), and by direct comparison of the results with measurements of plasminogen activation kinetics in the presence of the stimulator. Binding studies are performed exploiting the observation that an insoluble yellow complex is formed between plasminogen and modified poly(D-lysine). Protein-polymer interactions are also studied with solubilised components in an aqueous two-phase partition system containing dextran and poly(ethylene glycol). The rate enhancement of plasminogen activation is found to be closely correlated to the association of plasminogen to the stimulator. It is proposed that the stimulator effects of this simple polymer on the enzymatic activities of both plasminogen activator and plasmin are brought about by association of the proteinase and its substrate to a common matrix. Similarities between the action of the artificial and the natural stimulator (fibrin) are stressed. These properties of trinitrobenzoylated poly(D-lysine) makes it useful as a model for the study of the regulatory mechanism of the fibrinolytic process at the molecular level.  相似文献   

5.
When thrombin-mediated fibrin formation and tissue plasminogen activator (t-PA)-mediated fibrinolysis proceed in dynamic interaction, desA-(desB beta 1-42)-fragment X polymers are shown to be the predominant fibrin derivatives present during the rapid second phase of Glu1- and Lys78-plasminogen activation. To further investigate the effect of this intermediate, a method was developed for the production and purification of fibrinogen-derived desA-(desB beta 1-42)-fragment X, deprived of both COOH-terminal A alpha-chains, but still capable of thrombin-mediated polymerization. DesA-(desB beta 1-42)-fragment X polymer was compared to intact fibrin with regard to its stimulatory effect on Glu1-, Lys78-, and Val443-plasminogen activation, and its binding of Glu1- and Lys78-plasminogen. Pure fragment X polymer gave rise to a biphasic activation pattern like that of fibrin, demonstrating similar kinetics of rapid phase activation. The dissociation constant for the binding of plasminogen to the effector decreases by a factor of 14, and the stoichiometry increases by a factor of 2 upon plasmin-catalyzed cleavage of both native Glu1- to Lys78-plasminogen, and fibrin to fragment X polymer. We conclude that desA-fibrin protofibril formation is sufficient to initiate fibrin enhancement of t-PA-catalyzed plasminogen activation, and that optimal stimulation depends on further plasmin-mediated modification of the fibrin effector to desA-fragment X-related moieties. Optimal stimulation is dependent on the presence of the kringle 1-4 domains of plasminogen and probably results from altered and increased binding of both plasminogen and t-PA to the modified effector.  相似文献   

6.
R Machovich  R D Litwiller  W G Owen 《Biochemistry》1992,31(46):11558-11561
In physiological salt solutions, porcine plasminogen is refractory to activation by urokinase or trypsin and to proteolysis at Lys77 by plasmin or trypsin. Plasminogen becomes a substrate for urokinase (at Arg560), plasmin (at Lys77), and trypsin (at both bonds) if chloride ion is removed or if 6-aminohexanoate (2.5 mmol/L) is added. Irrespective of salts, activation of des(1-77)plasminogen is as efficient as activation of des(kringle1-4)plasminogen and is inhibited 50% by 2.5 mmol/L 6-aminohexanoate. In solutions lacking chloride or containing 6-aminohexanoate, plasminogen, des(1-77)plasminogen, and des(kringle1-4)plasminogen show no tendency to saturate urokinase in physiologically relevant concentrations (10 mumol/L). The findings are interpreted as indicating that plasminogen requires modification, either by proteolysis or by ligands, for activation.  相似文献   

7.
A functionally active human microplasminogen without kringle structures was produced by incubation of plasminogen with urokinase-free plasmin at an alkaline pH. The microplasminogen was purified by affinity chromatography on lysine- and soybean trypsin inhibitor-Sepharose and by chromofocusing. Human plasminogen is specifically cleaved at Arg529-Lys530 by plasmin to form microplasminogen, which consists of a single polypeptide of 261 residues from the COOH-terminal portion of native plasminogen. It has an Mr of 28,617, calculated from the sequence, which is consistent with the molecular weight determined by sodium dodecyl sulfate gel electrophoresis. Microplasminogen is a slightly basic protein and is eluted from a chromofocusing column at pH 8.3. It can be activated by urokinase and streptokinase to a catalytically active microplasmin. The specific amidolytic activity of microplasmin is about three times higher than Lys77-plasmin on a weight basis and is about the same on a molar basis. The activation of microplasminogen by streptokinase is slower than that of either Glu-plasminogen or Lys77-plasminogen. On the other hand, the activation of microplasminogen by urokinase is faster than that of either of the latter. The Arg560-Val561 bond is cleaved during activation of both microplasminogen and native plasminogen.  相似文献   

8.
Hancock MA  Spencer CA  Koschinsky ML 《Biochemistry》2004,43(38):12237-12248
Lipoprotein(a) [Lp(a)] is suggested to link atherosclerosis and thrombosis owing to the similarity between the apolipoprotein(a) [apo(a)] moiety of Lp(a) and plasminogen. Lp(a) may interfere with tPA-mediated plasminogen activation in fibrinolysis, thereby generating a hypercoaguable state in vivo. The present study employed surface plasmon resonance (SPR) to examine the binding interaction between plasminogen and a physiologically relevant, 17-kringle recombinant apo(a) species [17K r-apo(a)] in real time. Native, intact Glu(1)-plasminogen bound to apo(a) with substantially higher affinity (K(D) approximately 0.3 microM) compared to a series of plasminogen fragments (K1-5, K1-3, K4, K5P, and tail domain) that interacted weakly with apo(a) (K(D) > 50 microM). Treatment of Glu(1)-plasminogen with citraconic anhydride (a lysine modification reagent) completely abolished binding to wild-type 17K r-apo(a), whereas citraconylated 17K r-apo(a) decreased binding to wild-type Glu(1)-plasminogen by approximately 50%; inhibition of binding was also observed using the lysine analogue epsilon-aminocaproic acid. Whereas native Glu(1)-plasminogen exhibited monophasic binding to 17K r-apo(a), truncated Lys(78)-plasminogen exhibited biphasic binding. Altering Glu(1)-plasminogen from its native, closed conformation (in chloride buffer) to an open conformation (in acetate buffer) also yielded biphasic isotherms. These SPR data are consistent with a two-state kinetic model in which a conformational change in the plasminogen-apo(a) complex may occur following the initial binding event. Differential binding kinetics between Glu(1)-/Lys(78)-plasminogen and apo(a) may explain why Lp(a) is a stronger inhibitor of tPA-mediated Glu(1)-plasminogen activation compared to Lys(78)-plasminogen activation.  相似文献   

9.
Partial digestion of fibrin by plasmin exposes C-terminal lysine residues, which comprise new binding sites for both plasminogen and tissue-type plasminogen activator (tPA). This binding increases the catalytic efficiency of plasminogen activation by 3000-fold compared with tPA alone. The activated thrombin-activatable fibrinolysis inhibitor (TAFIa) attenuates fibrinolysis by removing these residues, which causes a 97% reduction in tPA catalytic efficiency. The aim of this study was to determine the kinetics of TAFIa-catalyzed lysine cleavage from fibrin degradation products and the kinetics of loss of plasminogen-binding sites. We show that the k(cat) and K(m) of Glu(1)-plasminogen (Glu-Pg)-binding site removal are 2.34 s(-1) and 142.6 nm, respectively, implying a catalytic efficiency of 16.21 μm(-1) s(-1). The corresponding values of Lys(77)/Lys(78)-plasminogen (Lys-Pg)-binding site removal are 0.89 s(-1) and 96 nm implying a catalytic efficiency of 9.23 μm(-1) s(-1). These catalytic efficiencies of plasminogen-binding site removal by TAFIa are the highest of any TAFIa-catalyzed reaction with a biological substrate reported to date and suggest that plasmin-modified fibrin is a primary physiological substrate for TAFIa. We also show that the catalytic efficiency of cleavage of all C-terminal lysine residues, whether they are involved in plasminogen binding or not, is 1.10 μm(-1) s(-1). Interestingly, this value increases to 3.85 μm(-1) s(-1) in the presence of Glu-Pg. These changes are due to a decrease in K(m). This suggests that an interaction between TAFIa and plasminogen comprises a component of the reaction mechanism, the plausibility of which was established by showing that TAFIa binds both Glu-Pg and Lys-Pg.  相似文献   

10.
11.
An elastase-dependent pathway of plasminogen activation   总被引:1,自引:0,他引:1  
R Machovich  W G Owen 《Biochemistry》1989,28(10):4517-4522
In reaction mixtures containing Glu-plasminogen, alpha 2-antiplasmin, and tissue plasminogen activator or urokinase, either pancreatic or leukocyte elastase enhances the rate of plasminogen activation by 2 or more orders of magnitude. This effect is the consequence of several reactions. (a) In concentrations on the order of 100 nM, elastase degrades plasminogen within 10 min to yield des-kringle1-4-plasminogen (mini-plasminogen), which is 10-fold more efficient than Glu-plasminogen as a substrate for plasminogen activators. Des-kringle1-4-plasminogen is insensitive to cofactor activities of fibrin(ogen) fragments or an endothelial cell cofactor. (b) Des-kringle1-4-plasmin is one-tenth as sensitive as plasmin to inhibition by alpha 2-antiplasmin: k" = 10(6) M-1 s-1 versus 10(7) M-1 s-1. (c) alpha 2-Antiplasmin is disabled efficiently by elastase, with a k" of 20,000 M-1 s-1. The elastase-dependent reactions are not influenced by 6-aminohexanoate. In diluted (10-fold) blood plasma, the capacity of endogenous inhibitors to block plasmin expression is suppressed by 30 microM elastase. It is proposed that elastases provide an alternative pathway for Glu-plasminogen activation and a mechanism for controlling initiation of fibrinolysis by urokinase-type plasminogen activators.  相似文献   

12.
The activation of native human plasminogen (Glu1-Pg) by tissue plasminogen activator, urinary plasminogen activator (u-PA), and streptokinase is inhibited by the divalent cations Ca2+, Mg2+, and Mn2+. This inhibition is accompanied by a conformational change in the molecule as evidenced by a decrease in Stokes' radius and intrinsic fluorescence. Kinetic analysis indicates that Mn2+ acts as an uncompetitive inhibitor of u-PA-catalyzed Glu1-Pg activation. In contrast to the inhibitory effects of divalent cations on Glu1-Pg, Ca2+ and Mg2+ stimulate the activation of proteolytically modified Lys77-Pg. These observations provide further evidence that Glu1-Pg and Lys77-Pg exhibit differential responses to ligands in the microenvironment.  相似文献   

13.
A monoclonal antibody, 10-F-1, previously shown [V. A. Ploplis, H. S. Cummings, and F. J. Castellino (1982) Biochemistry 21, 5891-5897] to interact with a particular epsilon-aminocaproic acid (EACA)3 binding site on the kringle 4 (K4) region of human Glu1-plasminogen (Glu1-Pg), has been employed to assess the contribution of this particular EACA site toward the enhancement, by EACA and its analogs, of the urokinase (UK)-catalyzed activation of Glu1-Pg. As is the case with EACA-like compounds, the presence of antibody 10-F-1 accelerates the activation of Glu1-Pg by UK, but does not enhance the similar activation of Lys77-plasminogen. In the presence of concentrations of antibody 10-F-1 which saturate its binding site on Glu1-Pg, the Km of Glu1-Pg activation by UK is raised from 1.4 +/- 0.2 microM, a value obtained in the absence of antibody, to 17.0 +/- 2.0 microM. On the other hand, the kcat for this activation, 0.038 +/- 0.005 s-1, is elevated to 2.45 +/- 0.2 s-1 at saturating concentrations of antibody 10-F-1. The kcat/Km for activation under these conditions is 0.027 s-1 microM-1 in the absence of antibody, and 0.144 s-1 microM-1 in the presence of saturating levels of antibody 10-F-1. This demonstrates that the interaction of this antibody with its epitope results in a fivefold stimulation of the activation rate of Glu1-Pg by UK. The availability of antibody 10-F-1 allows for a specific means of probing the function of one of the four to five thermodynamically equivalent weak EACA sites on human plasminogen. From this particular study, it is concluded that the weak binding site for EACA on the K4 domain of Glu1-Pg is either in-part or in-whole responsible for the enhancing effect of EACA on human Glu1-Pg activation by UK.  相似文献   

14.
Zymographic analysis of the supernates from confluent cultures of a rat prostate adenocarcinoma cell line, PA-III, revealed the existence of two molecular forms of specific plasminogen activators, one of molecular weight of approximately 80 000 and another of approximate molecular weight of 45 000, in sodium dodecyl sulfate. The low molecular weight form has been purified 364-fold in 66% yield from the culture medium by a combination of gel filtration on Sephacryl S-200 and affinity chromatography on Sepharose 4B-benzamidine. The purified material possessed a specific activity of 192 000 urokinase CTA units mg-1. This enzyme displayed activity toward human Glu1-plasminogen, characterized by a Km of 1.7 +/- 0.2 microM and a Vmax of 0.53 +/- 0.1 pmol of plasmin min-1 unit-1. A synthetic chromogenic substrate, H-D-Ile-Pro-Arg-p-nitroanilide (S-2288), was found for the activator. The enzyme possessed a Km of 0.33 mM and a kcat of 55 s-1 for S-2288. The activator was found to be a serine protease, inhibited by diisopropyl fluorophosphate (iPr2PF). At a concentration of 1 mM iPr2PF, and 30 nM enzyme, the half-time of this inhibition was 3.8 min. The 45 000 molecular weight enzyme was found to be inhibited by rabbit antibodies to human urokinase, thus characterizing the activator as a member of the urokinase class. The 80 000 molecular weight enzyme was not neutralized by anti-human urokinase but was neutralized by rabbit anti-human melanoma activator, likely allowing it to be classified as the tissue activator type.  相似文献   

15.
The human [Glu1]-plasminogen carbohydrate isozymes, plasminogen type I (Pg 1) and plasminogen type II (Pg 2), were separated by chromatography and studied in cell binding experiments at 4 degrees C with primary cultures of rat hepatocytes and rat C6 glioma cells. In both cell systems, Pg 1 and Pg 2 bound to an equivalent number of receptors, apparently representing the same population of surface molecules. The affinity for Pg 2 was slightly higher. With hepatocytes, the KD for Pg 1 was 3.2 +/- 0.2 microM, and the KD for Pg 2 was 1.9 +/- 0.1 microM, as determined from Scatchard transformations of the binding isotherms. The Bmax was approximately the same for both isozymes. With C6 cells, the KD for Pg 1 was 2.2 +/- 0.1 microM vs. 1.5 +/- 0.2 microM for Pg 2. Again, the Bmax was similar with both isozymes. 125I-Pg 1 and 125I-Pg 2 were displaced from specific binding sites by either nonradiolabeled isozyme. The KI for Pg 2 was slightly lower than the KI for Pg 1 with hepatocytes (0.9 vs. 1.3 microM) and with C6 cells (0.6 vs. 1.1 microM). No displacement was detected with miniplasminogen at concentrations up to 5.0 microM. Activation of Pg 1 and Pg 2 by recombinant two-chain tissue-plasminogen activator (rt-PA) was enhanced by hepatocyte cultures. The enhancing effect was greater with Pg 2. Hepatocyte cultures did not affect the activation of miniplasminogen by rt-PA or the activation of plasminogen by streptokinase. Unlike the hepatocytes, C6 cells did not enhance the activation of plasminogen by rt-PA or streptokinase; however, plasmin generated in the presence of C6 cells reacted less readily with alpha 2-antiplasmin.  相似文献   

16.
We recently discovered several nonlysine-analog conformational modulators for plasminogen. These include SMTP-6, thioplabin B and complestatin that are low molecular mass compounds of microbial origin. Unlike lysine-analog modulators, which increase plasminogen activation but inhibit its binding to fibrin, the nonlysine-analog modulators enhance both activation and fibrin binding of plasminogen. Here we show that some nonlysine-analog modulators promote autoproteolytic generation of plasmin(ogen) derivatives with its catalytic domain undergoing extensive fragmentation (PMDs), which have angiostatin-like anti-endothelial activity. The enhancement of urokinase-catalyzed plasminogen activation by SMTP-6 was followed by rapid inactivation of plasmin due to its degradation mainly in the catalytic domain, yielding PMD with a molecular mass ranging from 68 to 77 kDa. PMD generation was observed when plasmin alone was treated with SMTP-6 and was inhibited by the plasmin inhibitor aprotinin, indicating an autoproteolytic mechanism in PMD generation. Thioplabin B and complestatin, two other nonlysine-analog modulators, were also active in producing similar PMDs, whereas the lysine analog 6-aminohexanoic acid was inactive while it enhanced plasminogen activation. Peptide sequencing and mass spectrometric analyses suggested that plasmin fragmentation was due to cleavage at Lys615-Val616, Lys651-Leu652, Lys661-Val662, Lys698-Glu699, Lys708-Val709 and several other sites mostly in the catalytic domain. PMD was inhibitory to proliferation, migration and tube formation of endothelial cells at concentrations of 0.3-10 microg.mL(-1). These results suggest a possible application of nonlysine-analog modulators in the treatment of cancer through the enhancement of endogenous plasmin(ogen) fragment formation.  相似文献   

17.
Prourokinase-induced plasminogen activation is complex and involves three distinct reactions: (1) plasminogen activation by the intrinsic activity of prourokinase; (2) prourokinase activation by plasmin; (3) plasminogen activation by urokinase. To further understand some of the mechanisms involved, the effects of epsilon-aminocaproic acid (EACA), a lysine analogue, on these reactions were studied. At a low range of concentrations (10-50 microM), EACA significantly inhibited prourokinase-induced (Glu-/Lys-) plasminogen activation, prourokinase activation by Lys-plasmin, and (Glu-/Lys-) plasminogen activation by urokinase. However, no inhibition of plasminogen activation by Ala158-prourokinase (a plasmin-resistant mutant) occurred. Therefore, the overall inhibition of EACA on prourokinase-induced plasminogen activation was mainly due to inhibition of reactions 2 and 3, by blocking the high-affinity lysine binding interaction between plasmin and prourokinase, as well as between plasminogen and urokinase. These findings were consistent with kinetic studies which suggested that binding of kringle 1-4 of plasmin to the N-terminal region of prourokinase significantly promotes prourokinase activation, and that binding of kringle 1-4 of plasminogen to the C-terminal lysine158 of urokinase significantly promotes plasminogen activation. In conclusion, EACA was found to inhibit, rather than promote, prourokinase-induced plasminogen activation due to its blocking of the high-affinity lysine binding sites on plasmin(ogen).  相似文献   

18.
The effects of purified soluble fibrin and of fibrinogen fragments (fibrin mimic) on the activation of Lys-plasminogen (i.e. plasminogen residues 77-790) to plasmin by streptokinase.plasminogen activator complex and by tissue-type plasminogen activator were studied. Dissociation constants of both activators were estimated to lie in the range 90-160 nM (fibrin) and 16-60 nM (CNBr-cleavage fragments of fibrinogen). The kinetic mechanism for both types of activator comprised non-essential enzyme activation via a Rapid Equilibrium Ordered Bireactant sequence. In order to relate the fibrin affinity of plasminogen activators to their fibrinolytic potency, the rate of lysis of supported human plasma clots formed in the presence of unmodified or active-centre-acylated precursors of plasminogen activators was studied as a function of the concentration of enzyme derivative. The concentrations of unmodified enzyme giving 50% lysis/h in this assay were 0.9, 2.0 and 11.0 nM for tissue-type plasminogen activator, streptokinase.plasmin(ogen) and urokinase respectively. However, the potencies of active-centre-acylated derivatives of these enzymes suggested that acylated-tissue plasminogen activator and streptokinase.plasminogen complexes of comparable hydrolytic stability were of comparable potency. Both types of acyl-enzyme were significantly more potent than acyl-urokinases.  相似文献   

19.
The rate of activation by urokinase of porcine plasminogen is accelerated by 6-aminohexanoate, although the maximally enhanced rate is 10-fold less than that of human plasminogen without the amino acid. 6-Aminohexanoate facilitates only activation of native porcine plasminogen (asp-plasminogen), but has no effect on activation of des-kringle1-4-plasminogen. Sodium chloride, on the other hand, inhibits activation by urokinase of both porcine asp-plasminogen and des-kringle1-4-plasminogen. It is concluded that 6-aminohexanoate exerts its effect via kringle1-4 domains of plasminogen, whereas Cl- acts, at least in part, through effects on the kringle5 or proteinase domains.  相似文献   

20.
Two components of the fibrinolytic system, plasminogen and the vascular plasminogen activator, have been isolated to apparent homogeneity from the post-venous occlusion plasma of three diabetic patients (hemoglobin A1C greater than 7%) and of one nondiabetic control person. Plasminogen activation was studied for each person separately in the absence and presence of CNBr fragments of fibrinogen. Activation of diabetic plasminogen by urokinase was not significantly altered as compared to the activation of control plasminogen. The same was found when diabetic plasminogen was activated by control vascular plasminogen activator in the presence of fibrinogen fragments but only at plasminogen concentrations below 10-30 nM; at higher substrate concentrations, however, plasminogen activation was impaired in a pattern resembling substrate inhibition. Activation of control plasminogen by diabetic vascular plasminogen activator was completely impaired in the absence of fibrinogen fragments. Addition of fibrinogen fragments stimulated plasmin formation by diabetic vascular plasminogen activator resulting in kinetic constants which were similar to the activation of control plasminogen by control vascular plasminogen activator in the absence of fibrinogen fragments (Km = 7.5 microM, kcat = 0.05 S-1). Addition of fibrinogen fragments in controls decreased Km values to less than 0.1 microM. Despite addition of fibrinogen fragments the rate of plasmin formation from diabetic plasminogen by diabetic vascular plasminogen activator isolated from the same diabetic donor was so small that kinetic constants could not be calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号