首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The effect of veterinary antibiotics in anaerobic digesters is a concern where methane production efficiency is highly dependent on microbial community structure. In this study, both anaerobic degradation of a common veterinary antibiotic, oxytetracycline (OTC), and its effects on an anaerobic digester microbial community were investigated. Qualitative and quantitative molecular tools were used to monitor changes in microbial community structure during a 60-day batch incubation period of cow manure with the addition of different concentrations of the antibiotic. Molecular data were interpreted by a further redundancy analysis as a multivariate statistics approach. At the end of the experiment, approximately 48, 33, and 17 % of the initially added 50, 100, and 200 mg l?1 of OTC was still present in the serum bottles which reduced the biogas production via accumulation of some of the volatile fatty acids (VFAs). Biogas production was highly correlated with Methanobacteriales and Methanosarcinales gene copy numbers, and those parameters were negatively affected with oxytetracycline and VFA concentrations.  相似文献   

2.
Antibiotics commonly used in the treatment of pigs - amoxicillin trihydrate, oxytetracycline hydrochloride and thiamphenicol were added at different concentrations to aliquots of pig waste slurry plus anaerobic sludge in serum bottles. The biogas production and methane concentration in the headspace were monitored to determine the effect of the antibiotics on the anaerobic process. With thiamphenicol significant differences in methane production were found for concentrations of 80 and 160 mg l(-1) slurry. Compared to the control, only minor differences in methane production were noted in the bottles to which amoxicillin (60 and 120 mg l(-1)) had been added. Methane production was about the same for the bottles with different oxytetracycline concentrations (125 and 250 mg l(-1)) and for the control.  相似文献   

3.
Integration of algae production with livestock waste management has the potential to recover energy and nutrients from animal manure, while reducing discharges of organic matter, pathogens, and nutrients to the environment. In this study, microalgae Chlorella sp. were grown on centrate from anaerobically digested swine manure. The algae were harvested for mesophilic anaerobic digestion (AD) with swine manure for bioenergy production. Low biogas yields were observed in batch AD studies with algae alone, or when algae were co-digested with swine manure at ≥43 % algae (based on volatile solids [VS]). However, co-digestion of 6–16 % algae with swine manure produced similar biogas yields as digestion of swine manure alone. An average methane yield of 190 mL/g VSfed was achieved in long-term semi-continuous co-digestion studies with 10?±?3 % algae with swine manure. Data from the experimental studies were used in an energy analysis assuming the process was scaled up to a concentrated animal feeding operation (CAFO) with 7000 pigs with integrated algae-based treatment of centrate and co-digestion of manure and the harvested algae. The average net energy production for the system was estimated at 1027 kWh per day. A mass balance indicated that 58 % of nitrogen (N) and 98 % of phosphorus (P) in the system were removed in the biosolids. A major advantage of the proposed process is the reduction in nutrient discharges compared with AD of swine waste without algae production.  相似文献   

4.
Anaerobic co-digestion is effective and environmentally attractive technology for energy recovery from organic waste. Organic, agricultural and industrial wastes are good substrates for anaerobic co-digestion because they contain high levels of easily biodegradable materials. In this paper enhancement of biogas production from codigestion of whey and cow manure was investigated in a series of batch experiments. The influence of whey ratio on specific biogas production in a mixture with cow manure was analyzed at 35 and 55°C, for different initial pH values and for different concentrations of supplemental bicarbonate in experiments carried out over 12 days. Good biogas production (6.6 dm3/dm3), methane content (79.4%) in a biogas mixture and removal efficiencies for total solids (16%) were achieved at optimum process conditions (temperature of 55°C, 10% v/v of whey and 5 g/dm3 NaHCO3 in the initial mixture). In order to validate optimized conditions for co-digestion of whey and cow manure in the one-stage batch process, the experiments were performed within 45 days. The high biogas production (21.8 dm3/dm3), a good methane content (78.7%) in a biogas mixture as well as maximum removal efficiencies for total solids (32.3%), and chemical oxygen demand (56.3%), respectively indicate that whey could be efficiently degraded to biogas in a onestage batch process when co-digested with cow manure.  相似文献   

5.
Household anaerobic digesters have been installed across rural China for biogas production, but information on methanogen community structure in these small biogas units is sparsely available. By creating clone libraries for 16S rRNA and methyl coenzyme M reductase alpha subunit (mcrA) genes, we investigated the methanogenic consortia in a household biogas digester treating swine manure. Operational taxonomic units (OTUs) were defined by comparative sequence analysis, seven OTUs were identified in the 16S rRNA gene library, and ten OTUs were identified in the mcrA gene library. Both libraries were dominated by clones highly related to the type strain Methanocorpusculum labreanum Z, 64.0 % for 16S rRNA gene clones and 64.3 % for mcrA gene clones. Additionally, gas chromatography assays showed that formic acid was 84.54 % of the total volatile fatty acids and methane was 57.20 % of the biogas composition. Our results may help further isolation and characterization of methanogenic starter strains for industrial biogas production.  相似文献   

6.
Aims: The Archaea diversity was evaluated in an agricultural biogas plant supplied with cattle liquid manure and maize silage under mesophilic conditions. Methods and Results: Two different genes (16S rRNA; methyl‐coenzyme‐M‐reductase, MCR) targeted by three different PCR primer sets were selected and used for the construction of three clone libraries comprising between 104 and 118 clones. The clone libraries were analysed by restriction fragment polymorphism (RFLP). Between 11 and 31 operational taxonomic units (OTUs) were detected and assigned to orders Methanomicrobiales, Methanosarcinales and Methanobacteriales. Over 70% of all Archaea OTUs belong to the order Methanomicrobiales which mostly include hydrogenotrophic methanogens. Acetotrophic methanogens were detected in minor rates. Similar relative values were obtained by a quantitative real‐time PCR analysis. Conclusions: The results implied that in this biogas plant the most of the methane formation resulted from the conversion of H2 and CO2. Significance and Impact of the Study: This study reports, for the first time, a molecular analysis of the archaeal community in this type of agricultural biogas plants. Therein the hydrogenotrophic methanogenesis seems to be the major pathway of methane formation. These results are in contrast with the common thesis that in biogas fermentations the primary substrate for methanogenesis is acetate.  相似文献   

7.
Strategies for recovery of ammonia-inhibited thermophilic biogas process, were evaluated in batch and lab-scale reactors. Active methane producing biomass (digested cattle manure) was inhibited with NH(4)Cl and subsequently, 3-5 days later, diluted with 50% of water, or with 50% digested manure, or with 50% fresh manure or kept undiluted. Dilution with fresh cattle manure resulted in the highest methane production rate during the recovery period while dilution with digested cattle manure gave a more balanced recovery according to the fluctuations in volatile fatty acids. Furthermore, the process recovery of a 7600m(3) biogas plant suffering from ammonia inhibition was observed. The ammonia concentration was only gradually lowered via the daily feeding with cattle manure, as is the normal procedure at Danish full-scale biogas plants. Recovery took 31 days with a 40% methane loss and illustrates the need for development of efficient process recovery strategies.  相似文献   

8.
《Biological Wastes》1987,19(4):267-274
Pistia stratiotes, an aquatic weed, was investigated as a substrate for biogas production. Experiments were carried out as batch runs in laboratory-scale digesters with the addition of inoculum (digested cattle manure). Gas yields were in the range of 533–707 litres kg−1 VS (STP), respectively, 21–28 litres kg−1 fresh weight of P. stratiotes, with 30 days digestion time at temperatures of 29·5, 33·0 and 37·5°C. The average methane content was 58–68%. Due to its high biodegradability (approximately 83–99% of VS) Pistia stratiotes is very suitable as a substrate for biogas production.  相似文献   

9.
Abstract

A biofungicide “Nursery-Guard” containing Trichoderma pseudokoningii as a biocontrol agent hastened the decomposition of various sericultural wastes viz., silkworm litter + rearing waste, biogas slurry (a spent slurry from silkworm waste-based biogas plant) and weeds of mulberry gardens. The farm-yard manure (FYM - unfortified) was also enriched with Nursery-Guard for comparison. The decomposition process was very well completed within a period of 105 days. All the decomposed materials had a significantly higher percentage of NPK contents over the check sericultural wastes (non-enriched with Nursery-Guard). A high population of T. pseudokoningii was observed in the compost prepared from biogas slurry when compared to other decomposed materials. The compost enriched with Nursery-Guard had a greater impact on sprouting of mulberry stem-cuttings, survivability of saplings and plant growth. Among the different decomposed materials, the biogas slurry and FYM recorded significantly higher sprouting of cuttings and survivability of saplings. The percentage increase, over the check, in sprouting was 19.3 and 15.7 and survival was 29.4 and 23.5, respectively for both the decomposed materials. The failure of cuttings in nursery was generally observed due to the attack of soilborne diseases viz., stem canker, cutting rot and die-back. The lesser incidence of these diseases was observed in biogas slurry (34.0%), followed by FYM (37.0%), silkworm litter + rearing waste (42.0%) and weeds (46.0%).  相似文献   

10.
猪粪和土霉素对不同肥力土壤微生物数量及活性的影响   总被引:3,自引:0,他引:3  
章明奎  刘兆云 《应用生态学报》2009,20(11):2790-2798
在不施肥和施用猪粪两种情况下,采用培养试验研究了不同浓度土霉素污染(0、0.1、1、10、100和1000 mg·kg-1)对土壤细菌丰度、酶活性和NO3-N浓度等的影响.试验培养温度为25 ℃,培养时间为30 d,取样分析时间分别为1、4和30 d.结果表明:在不施肥条件下,土霉素污染对土壤细菌数量及微生物活性的影响较小,土壤S1、S2和S3细菌数量、呼吸强度、酶活性和NO3-N浓度下降10%时土霉素的剂量(EC10)分别为36~1000 mg·kg-1、20~1000 mg·kg-1和4~1000 mg·kg-1;而在施用猪粪的情况下,对应的数值分别为2~656 mg·kg-1、2~81 mg·kg-1和1~42 mg·kg-1.添加土霉素对土壤细菌及酶活性的影响随土壤肥力的提高而增大,且其对土壤细菌数量和呼吸强度的影响大于对酶活性和NO3-N浓度的影响.土霉素污染对土壤微生物数量和活性的影响随时间变化而变化,一般在培养4 d时的影响最为明显.土霉素对土壤微生物的影响总体上表现为抑制作用.  相似文献   

11.
The effect of mixing on biogas production of a 1.5‐m3 pilot continuous stirred tank reactor (CSTR) processing screened dairy manure was evaluated. Mixing was carried out by recirculation of reactor content with a mono pump. The experiment was conducted at a controlled temperature of 37±1°C and hydraulic retention times (HRTs) of 20 and 10 days. The effect of continuous and intermittent operation of the recirculation pump on biogas production was studied. At 10 days of HRT, the results showed a minimal influence of recirculation rate on biogas production and that continuous recirculation did not improve reactor performance. At 20 days of HRT, the recirculation rate did not affect reactor performance. Combination of low solid content in feed animal slurry and long HRTs results in minimal mixing requirements for anaerobic digestion.  相似文献   

12.
Very recently, it was shown that the addition of acetate or ethanol led to enhanced biogas formation rates during an observation period of 24 h. To determine if increased methane production rates due to ethanol addition can be maintained over longer time periods, continuous reactors filled with biogas sludge were developed which were fed with the same substrates as the full-scale reactor from which the sludge was derived. These reactors are well reflected conditions of a full-scale biogas plant during a period of 14 days. When the fermenters were pulsed with 50–100 mM ethanol, biomethanation increased by 50–150 %, depending on the composition of the biogas sludge. It was also possible to increase methane formation significantly when 10–20 mM pure ethanol or ethanolic solutions (e.g. beer) were added daily. In summary, the experiments revealed that “normal” methane production continued to take place, but ethanol led to production of additional methane.  相似文献   

13.

Objectives

To assess the combination of electrocoagulation and anaerobic co-digestion of olive mill wastewaters (OMWW) with other substrates, such as chicken manure, in a continuous stirred tank reactor for biogas production.

Results

Anaerobic digestion of OMWW treated by electrocoagulation allowed higher production of biogas, up to 0.74 l biogas g?1 COD introduced compared to untreated or diluted olive mill wastewaters (OMWW) (0.37 and 0.6 l biogas g?1 COD) respectively. Pretreated OMWW co-digested with chicken manure at different volumic ratios OMWW/manure in a continuous stirred tank reactor under mesophilic conditions revealed that OMWW/manure (7:3 v/v) was optimal for biogas production and process stability.

Conclusion

Anaerobic digestion could achieve promising results in depollution and valorization of OMWW under a continuous stirred tank reactor.
  相似文献   

14.
Anaerobic digestion of animal waste: waste strength versus impact of mixing   总被引:6,自引:0,他引:6  
We studied the effect of mode of mixing (biogas recirculation, impeller mixing, and slurry recirculation) and waste strength on the performance of laboratory scale digesters. The digesters were fed with 5% and 10% manure slurry, at a constant energy supply per unit volume (8 W/m3). The experiments were conducted in eight laboratory scale digesters, each having a working volume of 3.73 L, at a controlled temperature of 35+/-2 degrees C. Hydraulic retention time (HRT) was kept constant at 16.2 days, resulting in a total solids (TS) loading rate of 3.08 g/Ld and 6.2 g/Ld for 5% and 10% manure slurry feeds, respectively. Results showed that the unmixed and mixed digesters performed quite similarly when fed with 5% manure slurry and produced biogas at a rate of 0.84-0.94 L/Ld with a methane yield of 0.26-0.31 L CH4/g volatile solids (VS) loaded. This was possibly because of the low solids concentration in the case of 5% manure slurry, where mixing created by the naturally produced gas might be sufficient to provide adequate mixing. However, the effect of mixing and the mode of mixing became prominent in the case of the digesters fed with thicker manure slurry (10%). Digesters fed with 10% manure slurry and mixed by slurry recirculation, impeller, and biogas recirculation produced approximately 29%, 22% and 15% more biogas than unmixed digester, respectively. Deposition of solids inside the digesters was not observed in the case of 5% manure slurry, but it became significant in the case of 10% manure slurry. Therefore, mixing issue becomes more critical with thicker manure slurry.  相似文献   

15.
In a continuous biogas plant, receiving manure from 200 dairy cows and 400 calves and young stock, survival of salmonellas and Ascaris suum eggs was studied. The bacteria and parasite eggs were kept in filter sacs in the manure that had a temperature of 55°C. No viable salmonellas or Ascaris suum eggs could be found after 24h in the digester. Survival of salmonellas and Ascaris suum eggs was also studied in the manure pit where the manure was stored after digestion. The temperature in the manure pit varied between 22–27°C. Salmonellas survived 35 but not 42 days. On day 56, when the experiments had to be stopped, 60% of the Ascaris eggs were viable.  相似文献   

16.
Desugared molasses (DM), a syrup residue from beet-molasses, was investigated for biogas production in both batch and in continuously-stirred tank reactor (CSTR) experiments. DM contained 2-3 times higher concentration of ions than normal molasses, which could inhibit the biogas process. The effect of sodium and potassium concentration on biogas production from manure was also investigated. Fifty percent inhibition occurred at sodium and potassium concentration of 11 and 28 g/L, respectively. The reactor experiments were carried out to investigate the biogas production from DM under different dilutions with water and co-digestion with manure. Stable operation at maximum methane yield of 300 mL-CH4/gVS-added was obtained at a mixture of 5% DM in cow manure. The biogas process was inhibited at DM concentrations higher than 15%. Manure was a good base substrate for co-digestion, and a stable anaerobic digestion could be achieved by co-digesting DM with manure at the concentration below 15% DM.  相似文献   

17.
Batch experiments were carried out on anaerobic digestion of swine manure under 10 % of total solids and 60 g/L of zeolite addition at 35 °C. Four distinctive volatile fatty acid (VFAs) evolution stages were observed during the anaerobic process, i.e., VFA accumulation, acetic acid (HAc) and butyric acid (HBu) utilization, propionic acid (HPr) and valeric acid (HVa) degradation, and VFA depletion. Large decreases in HAc/HBu and HPr/HVa occurred respectively at the first and second biogas peaks. Biogas yield increased by 20 % after zeolite addition, about 356 mL/g VSadded with accelerated soluble chemical oxygen demand degradation and VFA (especially HPr and HBu) consumption in addition to a shortened lag phase between the two biogas peaks. Compared with Ca2+ and Mg2+ (100–300 mg/L) released from zeolite, simultaneous K+ and NH4 + (580–600 mg/L) adsorptions onto zeolite particles contributed more to the enhanced biogasification, resulting in alleviated inhibition effects of ammonium on acidogenesis and methanogenesis, respectively. All the identified anaerobes could be grouped into Bacteroidetes and Firmicutes, and zeolite addition had no significant influence on the microbial biodiversity in this study.  相似文献   

18.

Purpose

The UK carbonated drinks sector was worth £8 billion in 2010 and is growing at an annual rate of 4.9 %. In an attempt to provide a better understanding of the environmental impacts of this sector, this paper presents, for the first time, the full life cycle impacts of carbonated soft drinks manufactured and consumed in the UK. Two functional units are considered: 1 l of packaged drink and total annual production of carbonated drinks in the UK. The latter has been used to estimate the impacts at the sectoral level. The system boundary is from ‘cradle to grave’. Different packaging used for carbonated drinks is considered: glass bottles (0.75 l), aluminium cans (0.33 l) and polyethylene terephthalate (PET) bottles (0.5 and 2 l).

Materials and methods

The study has been carried out following the ISO 14040/44 life cycle assessment (LCA) methodology. Data have been sourced from a drink manufacturer as well as the CCaLC, Ecoinvent and Gabi databases. The LCA software tools CCaLC v2.0 and GaBi 4.3 have been used for LCA modelling. The environmental impacts have been estimated according to the CML 2001 method.

Results and discussion

Packaging is the main hotspot for most environmental impacts, contributing between 59 and 77 %. The ingredients account between 7 and 14 % mainly due to sugar; the manufacturing stage contributes 5–10 %, largely due to the energy for filling and packaging. Refrigeration of the drink at retailer increases global warming potential by up to 33 %. Transport contributes up to 7 % to the total impacts.

Conclusions

The drink packaged in 2 l PET bottles is the most sustainable option for most impacts, including the carbon footprint, while the drink in glass bottles is the worst option. However, reusing glass bottles three times would make the carbon footprint of the drink in glass bottles comparable to that in aluminium cans and 0.5 l PET bottles. If recycling of PET bottles is increased to 60 %, the glass bottle would need to be reused 20 times to make their carbon footprints comparable. The estimates at the sectoral level indicate that the carbonated drinks in the UK are responsible for over 1.5 million tonnes of CO2 eq. emissions per year. This represented 13 % of the GHG emissions from the whole food and drink sector or 0.26 % of the UK total emissions in 2010.  相似文献   

19.
The present research was conducted to simultaneously optimize biogas upgrading and carbon and nutrient removal from centrates in a 180-L high-rate algal pond interconnected to an external CO2 absorption unit. Different biogas and centrate supply strategies were assessed to increase biomass lipid content. Results showed 99 % CO2 removal efficiencies from simulated biogas at liquid recirculation rates in the absorption column of 9.9 m3 m?2 h?1, concomitant with nitrogen and phosphorus removal efficiencies of 100 and 82 %, respectively, using a 1:70 diluted centrate at a hydraulic retention time of 7 days. The lipid content of the harvested algal–bacterial biomass remained low (2.9–11.2 %) regardless of the operational conditions, with no particular trend over time. The good settling characteristics of the algal–bacterial flocs resulted in harvesting efficiencies over 95 %, which represents a cost-effective alternative for algal biomass reutilization compared to conventional physical–chemical techniques. Finally, high microalgae biodiversity was found regardless of the operational conditions.  相似文献   

20.
In order to obtain basic design criteria for anaerobic digesters of swine manure, the effects of different digesting temperatures, temperature shocks and feed loads, on the biogas yields and methane content were evaluated. The digester temperatures were set at 25, 30 and 35 degrees C, with four feed loads of 5%, 10%, 20% and 40% (feed volume/digester volume). At a temperature of 30 degrees C, the methane yield was reduced by only 3% compared to 35 degrees C, while a 17.4% reduction was observed when the digestion was performed at 25 degrees C. Ultimate methane yields of 327, 389 and 403 mL CH(4)/g VS(added) were obtained at 25, 30 and 35 degrees C, respectively; with moderate feed loads from 5% to 20% (V/V). From the elemental analysis of swine manure, the theoretical biogas and methane yields at standard temperature and pressure were 1.12L biogas/g VS(destroyed) and 0.724 L CH(4)/g VS(destroyed), respectively. Also, the methane content increased with increasing digestion temperatures, but only to a small degree. Temperature shocks from 35 to 30 degrees C and again from 30 to 32 degrees C led to a decrease in the biogas production rate, but it rapidly resumed the value of the control reactor. In addition, no lasting damage was observed for the digestion performance, once it had recovered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号