首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Ethylene evolution from cucumber plants as related to sex expression   总被引:13,自引:3,他引:10       下载免费PDF全文
Ethylene evolved from monoecious and gynoecious cucumber (Cucumis sativus) plants grown under short and long day conditions was determined. More ethylene was evolved from floral buds and apices bearing buds than from whole seedlings of comparable weight. More ethylene also was evolved from apices of the gynoecious than from those of the monoecious type. Furthermore, quantities evolved from female buds were greater than from male ones and plants grown under short day conditions which promote femaleness evolved more ethylene than those grown under long day conditions. The data suggest that ethylene participates in the endogenous regulation of sex expression by promoting femaleness.  相似文献   

2.
The effect of the herbicide chlorsulfuron (2-chloro-N-[(4-methoxy - 6 - methyl -1, 3,5 - triazin - 2 - yl)aminocarbonyl]benzenesulfonamide) on ethylene production in light-grown sunflower (Helianthus annuus L.) seedlings was examined. Application of chlorsulfuron to the apex stimulated ethylene production in all tissues examined: cotyledons, hypocotyls, and roots. The greatest stimulation occurred in the upper portion of the hypocotyl adjacent to, and including, the cotyledonary node. Ethylene evolution from hypocotyls excised from treated seedlings was stimulated over control levels 1 day after herbicide application and reached a maximum (approx. 75 x control or 17 nl/g f wt/h) 2 to 3 days after treatment. Labeling and inhibitor studies indicated that the ethylene produced was derived primarily from methionine. Chlorsulfuron treatment stimulated the rate of accumulation of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), as well as the ability of the tissue to convert exogenous ACC to ethylene. Chlorsulfuron had little effect on ethylene production when administered to the hypocotylsin vitro. Removal of the cotyledons from treated seedlings reduced the rate of ethylene evolution from the hypocotyls. These results suggest that stimulation of ethylene production in sunflower hypocotyls by chlorsulfuron is not a wound response but rather is dependent on factors derived from the cotyledons.  相似文献   

3.
Sex determination in cucumber (Cucumis sativus L.) plants is genetically controlled by the F and M loci. These loci interact to produce three different sexual phenotypes: gynoecious (M-F-), monoecious (M-ff), and andromonoecious (mmff). Gynoecious cucumber plants produce more ethylene than do monoecious plants. We found that the levels of ethylene production and the accumulation of CS-ACS2 mRNA in andromonoecious cucumber plants did not differ from those in monoecious plants and were lower than the levels measured in gynoecious plants. Ethylene inhibited stamen development in gynoecious cucumbers but not in andromonoecious ones. Furthermore, ethylene caused substantial increases in the accumulation of CS-ETR2, CS-ERS, and CS-ACS2 mRNA in monoecious and gynoecious cucumber plants, but not in andromonoecious one. In addition, the inhibitory effect of ethylene on hypocotyl elongation in andromonoecious cucumber plants was less than that in monoecious and gynoecious plants. These results suggest that ethylene responses in andromonoecious cucumber plants are reduced from those in monoecious and gynoecious plants. This is the first evidence that ethylene signals may influence the product of the M locus and thus inhibit stamen development in cucumber. The andromonoecious line provides novel material for studying the function of the M locus during sex determination in flowering cucumbers.  相似文献   

4.
The endogenous levels of auxin, gibberellin, and inhibitors were followed in monoecious and gynoecious cucumber (Cucumis sativus L.) plants, and in plants treated with the ethylene-releasing compound Ethephon (2-chloroethyl phosphonic acid). Higher auxin inhibitor and lower gibberellin levels were associated with female tendency. The endogenous level of gibberellin and auxin decreased in Ethephon-treated plants. Application of Ethephon induced a rise in abscisic acid. Root application of abscisic acid promoted female tendency of gynoecious cucumbers grown under conditions which increase maleness. High CO2 levels, which are known to antagonize ethylene, increased maleness of gynoecious cucumbers. The possibility of interrelationship between gibberellin, auxin, ethylene, and abscisic acid on sex expression are discussed.  相似文献   

5.
AbA, ethephon and gibberellin were applied to cucumber plantsof monoecious, gynoecious, andromoneocious and hermaphroditeinbred lines, as well as to F1 (gynoecious?monoecious) plants.Exogenous AbA enhanced the male tendency in monoecious cucumberplants and the female tendency in gynoecious plants, irrespectiveof light regime. Exogenous ethephon treatments increased thefemale tendency in monoecious plants, and decreased it in gynoeciousones. These effects were influenced by day length. ExogenousAbA counteracted the effect of gibberellin (A4+7) treatmentin gynoecious plants, but had no such effect in monoecious ones. In addition to its differential effect on sexual differentiation,AbA stimulated flower development in gynoecious plants and inhibitedit in monoecious plants. These responses to AbA are discussedin the light of previously reported effects of plant growthregulators on various sex types of cucumber. The present resultsare being integrated into an updated working hypothesis on sexcontrol in cucumbers. (Received August 30, 1976; )  相似文献   

6.
Diffusates from seedlings and root exudates from 6-week-old plants of a monoecious line of cucumber, Cucumis sativus L., contained considerably higher levels of gibberellin-(GA-) like substances than did those from plants of an isogenic gynoecious line. Most of the GA-like activity was found in a chromatogram region typical of GA1 and GA3; some activity, particularly in root exudates, appeared also at an RF similar to that of GA4 and GA7.

When seedlings were treated with 3H-labeled GA1, more radioactivity was found in the diffusates from monoecious seedlings than from gynoecious ones. The same was true of biological activity in root diffusates from older plants which had been treated with gibberellin A4+7.

In conjunction with evidence present in literature, these results support the idea that endogenous GAs play a part in the regulation of sex expression in cucumber, relatively high levels favoring the formation of staminate flowers.

  相似文献   

7.
8.
Ethylene production, level of 1-aminocyclopropane-1-carboxylic acid (ACC) and activity of the ethylene forming enzyme (EFE) were higher in apices of gynoecious cucumber (Cucumis sativus cv. Alma) as compared to monoecious cucumber (C. sativus cv. Elem). Application of indole-3-acetic acid (IAA) enhanced ethylene and ACC production in both cultivars. The stimulatory effect of IAA was more pronounced in gynoecious apices. Induction of ethylene production and accumulation of ACC resulting from treatment with IAA were effectively blocked by aminoethoxyvinylglycine (AVG). Content of endogenous IAA, measured by an enzyme immunoassay, was lower in gynoecious cucumber as compared to monoecious one. Treatment of gynoecious plants with the antiauxins -(p-chlorophenoxy)isobutyric acid (PCIB) and -naphthaleneacetic acid (-NAA) did not inhibit female sex expression.It appears that although exogenous IAA enhances ACC and ethylene production, endogenous IAA might not have a major role in the control of sex expression in cucumber of the Beit-Alfa type.Prof. Rudich passed away in May 1986.  相似文献   

9.
We have previously shown that both endogenous auxin and ethylenepromote adventitious root formation in the hypocotyls of derootedsunflower (Helianthus annuus) seedlings. Experiments here showedthat promotive effects on rooting of the ethylene precursor,1-aminocyclopropane-l-carboxylic acid (ACC) and the ethylene-releasingcompound, ethephon (2-chloro-ethylphosphonic acid), dependedon the existence of cotyledons and apical bud (major sourcesof auxin) or the presence of exogenously applied indole-3-aceticacid (IAA). Ethephon, ACC, aminoethoxyvinylglycine (an inhibitorof ethylene biosynthesis), and silver thiosulphate (STS, aninhibitor of ethylene action), applied for a length of timethat significantly influenced adventitious rooting, showed noinhibitory effect on the basipetal transport of [3H]IAA. Theseregulators also had no effect on the metabolism of [3H]IAA andendogenous IAA levels measured by gas chromatography-mass spectrometry.ACC enhanced the rooting response of hypocotyls to exogenousIAA and decreased the inhibition of rooting by IAA transportinhibitor, N-1-naphthylphthalamic acid (NPA). STS reduced therooting response of hypocotyls to exogenous IAA and increasedthe inhibition of rooting by NPA. Exogenous auxins promotedethylene production in the rooting zone of the hypocotyls. Decapitationof the cuttings or application of NPA to the hypocotyl belowthe cotyledons did not alter ethylene production in the rootingzone, but greatly reduced the number of root primordia. We concludethat auxin is a primary controller of adventitious root formationin sunflower hypocotyls, while the effect of ethylene is mediatedby auxin. Key words: Auxin, ethylene, adventitious rooting, sunflower  相似文献   

10.
11.
Co2+ promoted elongation of hypocotyl segments of light-grown cucumber (Cucumis sativus) seedlings. Time course and dose response data are presented and interactions with IAA, gibberellin, cyclohexanol, and cotyledons described. Segments without cotyledons responded to Co2+ only if grown in gas-tight vessels with IAA added. When bases of cotyledons were ringed with an inhibitor of auxin transport, Co2+ caused no growth promotion in the hypocotyl. Co2+ prevented lateral swelling of hypocotyls treated with supraoptimal IAA. Removal of ethylene from the atmosphere reduced the Co2+ response, but Co2+ did not counteract the inhibitory effect of increased ethylene levels. These results are consistent with the hypothesis that Co2+ promotes hypocotyl elongation by inhibiting ethylene production. The hypothesis was confirmed by a direct demonstration that Co2+, at growth-promoting concentrations, powerfully inhibited ethylene production in the cucumber hypocotyl.  相似文献   

12.
Momordica charantia is a monoecious plant of the Cucurbitaceae family that has both male and female unisexual flowers. Its unique gynoecious line, OHB61-5, is essential as a maternal parent in the production of F1 cultivars. To identify the DNA markers for this gynoecy, a RAD-seq (restriction-associated DNA tag sequencing) analysis was employed to reveal genome-wide DNA polymorphisms and to genotype the F2 progeny from a cross between OHB61-5 and a monoecious line. Based on a RAD-seq analysis of F2 individuals, a linkage map was constructed using 552 co-dominant markers. In addition, after analyzing the pooled genomic DNA from monoecious or gynoecious F2 plants, several SNP loci that are genetically linked to gynoecy were identified. GTFL-1, the closest SNP locus to the putative gynoecious locus, was converted to a conventional DNA marker using invader assay technology, which is applicable to the marker-assisted selection of gynoecy in M. charantia breeding.  相似文献   

13.
Apical applications of 0.2 μg N6-benzyladenine (BA), a synthetic cytokinin, or 5 μg of gibberellic acid (GA3) significantly enhanced hypocotyl elongation in intact dwarf watermelon seedlings over a 48-h period. Accompanying the increase in hypocotyl length was marked expansion of cotyledons in BA-treated seedlings and inhibition of root growth by both compounds. A study on dry matter partitioning indicated that both growth regulators caused a preferential accumulation of dry matter in hypocotyls at the expense of the roots; however, GA3 elicited a more rapid and greater change than did BA. In comparison to untreated seedlings, BA decreased total translocation of metabolites out of the cotyledons. Water potentials of cotyledons and hypocotyls were determined by allowing organs to equilibrate for 2 h in serial concentrations of polyethylene glycol 4000. Osmotic potentials were determined by thermocouple psychrometry. During periods of rapid growth in cotyledons and hypocotyls of BA-treated seedlings and in hypocotyls of GA-treated seedlings, the osmotic potential increased and the turgor pressure decreased in relation to untreated seedlings, indicating that cell wall extensibility was being increased. Osmotic potentials were lower in hypocotyls of GA-treated than in those of BA-treated seedlings, even though growth rates were higher in GA-treated seedlings, indicating that the latter treatment was generating more osmotically active solutes in hypocotyls.  相似文献   

14.
Both methyl jasmonate (MJ) and ethylene have been implicated in promoting senescence, but the specific roles of each and the mechanisms by which they act are not well known. We tested the possibility that MJ and ethylene interact to promote senescence. In sunflower seedlings, the ability of MJ to affect ethylene metabolism was investigated in hypocotyls, cotyledons, and leaves. 1-aminocylcopropane-1-carboxylic acid (ACC)-dependent ethylene production was promoted to different extents depending on the organ and the age of the tissue. Newly emerged hypocotyls were sensitive to MJ, but became desensitized as the cotyledons emerged. The cotyledons increased and peaked in MJ sensitivity from emergence to the production of the primary leaves. Leaves were found to be somewhat insensitive to MJ treatment compared to cotyledons at all ages tested. In cotyledons, MJ also promoted ACC and ethylene production. However the changes in ACC, and ACC-dependent ethylene production were not directly correlated with those in ethylene production with respect to MJ concentration or tissue age. Moreover, changes in ACC-dependent ethylene production did not correlate with in vitro ACC oxidase activity. We hypothesized that MJ affects ethylene production by increasing the spatial access of ACC to ACC oxidase perhaps through increased membrane permeability. Ethylene was not involved in the MJ-induced loss of chlorophyll. But the breakdown of cell integrity and cell membranes (estimated by monitoring conductivity of the solution that bathed the cotyledons) was greatly and synergistically promoted by the combination of MJ and ethylene. Promotion of membrane breakdown by MJ and ethylene could be inhibited by treatments with ethylene inhibitors (STS or CoCl2), and neither MJ nor ACC treatment alone could induce as much membrane breakdown as both together. We suggest that MJ and ethylene interact to accelerate some aspects of senescence in specific organs for nutrient remobilization for the benefit of the whole plant.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - MJ methyl jasmonate - STS silver thiosulphate  相似文献   

15.
16.
Samimy C 《Plant physiology》1978,62(6):1005-1006
Development of dark-grown “Clark” soybean (Glycine max [L.] Merr.) seedlings is abnormal at 25 C but normal at 20 and 30 C. At 25 C, hypocotyls swell and fail to elongate normally; lateral root formation and seedling ethylene evolution are enhanced.

Co2+ promoted hypocotyl elongation of etiolated “Clark” soybean seedlings by 28% when grown at 25 C. The same growth-promoting concentration reduced hypocotyl thickness and primary root elongation by 28 and 43%, respectively. Co2+ inhibited ethylene production both of intact seedlings and of apical 1-centimeter hypocotyl segments with attached epicotyls and cotyledons by 65 and 60%, respectively. These results suggest that Co2+ exerts its effects on the hypocotyl growth by inhibiting ethylene production, and also confirm our previous conclusion that abnormal ethylene production at 25 C is responsible for the inhibition of hypocotyl elongation and for its swelling.

  相似文献   

17.
Apical applications of 0.2 g N6-benzyladenine (BA), a synthetic cytokinin, or 5 g of gibberellic acid (GA3) significantly enhanced hypocotyl elongation in intact dwarf watermelon seedlings over a 48-h period. Accompanying the increase in hypocotyl length was marked expansion of cotyledons in BA-treated seedlings and inhibition of root growth by both compounds. A study on dry matter partitioning indicated that both growth regulators caused a preferential accumulation of dry matter in hypocotyls at the expense of the roots; however, GA3 elicited a more rapid and greater change than did BA. In comparison to untreated seedlings, BA decreased total translocation of metabolites out of the cotyledons. Water potentials of cotyledons and hypocotyls were determined by allowing organs to equilibrate for 2 h in serial concentrations of polyethylene glycol 4000. Osmotic potentials were determined by thermocouple psychrometry. During periods of rapid growth in cotyledons and hypocotyls of BA-treated seedlings and in hypocotyls of GA-treated seedlings, the osmotic potential increased and the turgor pressure decreased in relation to untreated seedlings, indicating that cell wall extensibility was being increased. Osmotic potentials were lower in hypocotyls of GA-treated than in those of BA-treated seedlings, even though growth rates were higher in GA-treated seedlings, indicating that the latter treatment was generating more osmotically active solutes in hypocotyls.Scientific Contribution No. 1219 from the New Hampshire Agricultural Experiment Station.  相似文献   

18.

Key message

Cell wall polysaccharidic composition changed between cotyledons, hypocotyls and roots. Neither the laurina mutation nor the presence of light had an impact on this composition.

Abstract

Coffea arabica ‘Laurina’, a natural mutant of Coffea arabica ‘Bourbon’ (B), is also known as ‘Bourbon Pointu’ (BP). In seedlings under daylight, the laurina mutation leads to semi-dwarf hypocotyls, but this effect disappears in darkness conditions. The first step of our work was to analyze the impact of the mutation on the monosaccharide cell wall composition in cotyledons, hypocotyls and roots in relation to growth conditions (daylight vs darkness). Secondly, the same type of comparison was carried out for caffeine and chlorogenic acid (CQA) contents. Cell wall polysaccharides (CWP) present in cotyledons, hypocotyls and roots were identified. Neither the laurina mutation nor the growth conditions had an impact on the CWP composition. By contrast, there were marked differences between cotyledons, hypocotyls and roots regarding their CWP composition, CQA and caffeine contents. Lastly, the mutation and the light did not modify the CQA content in the three organs, whereas the mutation, but the light, lowered the caffeine (CAF) content.
  相似文献   

19.
本试验选用了两个以金花茶作父本的人工杂交组合F_1代实生苗,经根尖体细胞染色体观察鉴定四倍体杂种。一、云南野山茶(Camellia pitardii var.yunnanica六倍体)×金花茶(C.Chrysantha二倍体)。结果为:所获56株子叶和下胚轴为红色的F_1代杂种苗中,有55株(98.2%)是真正的四倍体杂种(X~2=0.0128,D.f.=1,0.95>p>0.90);所获50株子叶和下胚轴为黄白色的杂种苗中,有13株(26%)为真正四倍体杂种(X~2=27.38,D.f.=13,0.02>p>0.01)。二、云南山茶花(C.reticulata六倍体)×金花茶。结果为:在78株子叶和下胚轴为红色的杂交苗中,有77株(98.7%)为真正四倍体杂种(X~2=0.0128,D.f.=1,0.95>p>0.90);而在78株子叶及下胚轴为黄白色的杂种苗中,只有21株(26.9%)是真正四倍体杂种(X~2=41.65,D.f.=24,0.02>p>0.01) 在多数杂种实生苗中的这种红色素,是因种子直感现象而发生的父本金花茶的一种遗传性状。金花茶的另一特征——多子叶现象(3枚以上),则在一些F_1代杂种苗或杂种种子中表现得不明显。因此,利用F_1代杂种苗子叶和下胚轴所具有的红色特征,在杂种种子萌发期用来鉴别以金花茶为亲本的F_1代杂种的真伪,是一种简便、快速的、有发展前途的方法。  相似文献   

20.
Hypocotyl elongation under white fluorescent light was aboutdoubled in dwarf watermelon (Citrullus lanatus0 (Thunb.) Matsu.and Nakai) seedlings treated with 0.1 to 0.3 µg apicaland 3 x 10–6 to 10.3 M root applications of 6-benzyladenine(BA). BA-enhancement of growth occurred primarily during thefirst 48 h after treatment. Increased hypocotyl length in BA-treatedseedlings was attributed more to longer cells than to an increasein cell number. Early hypocotyl growth of normal seedlings wasalso significantly enhanced by BA although final hypocotyl lengthwas not substantially affected. Benzyladenine caused expansion of cotyledons and, at higherdoses, lateral expansion of hypocotyls. BA-induced increasesin fresh weight of cotyledons and hypocotyls were accompaniedby an increase in dry weight of hypocotyls at the expense ofroots which had less dry matter than untreated seedlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号