首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antagonistic effects of yeasts, L1 and L8, isolated from carposphere of ‘Redhaven’ peaches were tested for the first time in the same experiment against three Monilinia species (Monilinia laxa, Monilinia fructicola and Monilinia fructigena) in in vitro and in vivo trials. The two antagonists were selected after preliminary assays for their ability to reduce brown rot in peaches and nectarines, and both were identified by molecular and morphological tools as Aureobasidium pullulans. In in vivo trials, neither the autoclaved cells, nor the sterile culture filtrates of either antagonist showed any significant reduction of rot incidence produced by inocula of the three Monilinia species, while the washed cells of L1 and L8 completely inhibited M. laxa and M. fructicola rots and reduced M. fructigena infections by 70% and 90%, respectively. In other trials, nectarines treated with antagonist cells and inoculated with the pathogens were stored at 0 °C for 21 days, plus 7 days at 20 °C. The low temperature reduced brown rot development, since all fruit were free from disease symptoms on removal from cold storage. However after 7 d at 20 °C, untreated fruit were rotted over 45% depending on the Monilinia species but the antagonists completely inhibited M. laxa and M. fructicola, while M. fructigena infections were reduced by 89.8% and 91.2% by L1 and L8, respectively. For both strains, 108 CFU ml?1 was the most active concentration, although L1 showed good activity at a concentration of 107 CFU ml?1. Isolate L8 at the concentration of 107 CFU ml?1 was ineffective against M. fructicola and M. fructigena, showing no difference between treated fruit and the control, excepting the case of nectarines inoculated with M. laxa, where L8 at the concentration of 107 CFU ml?1 reduced the brown rot infections with respect to the control. The increase in population density of A. pullulans strains L1 and L8 in the wounds of nectarines stored at 0° or 20 °C was low but sufficient to control brown rot. In conclusion, the present preliminary study identified two antagonistic strains of A. pullulans as active ingredients for the development of biofungicides for postharvest application against three Monilinia species that are responsible for high economic losses in stone fruit crops.  相似文献   

2.
Thirty two morphologically different bacterial were isolated from different soil samples and screened for their ability to produce lipolytic enzymes. Among all isolates, the isolate coded AZ1 was selected due to its high potency to produce lipase at elevated temperature up to 65 °C. Phylogenetic analysis based on 16SrDNA sequence revealed its close relationship to Geobacillus thermodenitrificans. The effect of ten culture variable on lipase production was evaluated by implementing Plackett–Burman statistical design. d-sucrose, peptone and soy bean flour were the most significant variables affecting lipase production. A pre-optimized medium based on this experiment yielded an enzyme activity of 260 U min?1 ml?1. For further optimization, a fourteen trials’ multi-factorial Box–Behnken experimental design was applied to find out the optimum level of each of the significant variables. The tested variables, namely: d-sucrose (X1); peptone (X2) and soy bean flour (X3) were examined, each at three different levels coded ?1, 0, +1. The optimal levels of the three components were founded to be (g/L): d-sucrose, 6.56; peptone, 6.35; and soy bean flour, 6.92, with a predicted activity of approximately 610 U min?1 ml?1. According to the results of the Plackett–Burman and Box–Behnken designs the following medium composition is expected to be optimum (g/L): d-sucrose 6.56, peptone 6.35, soy bean flour 6.92, CaCl2 0.02, Y.E. 2.5, K2HPO4 1.0, MgSO4.7H2O 0.2 and Fe2 (SO4)3 0.02; pH, 8; cultivation temperature 55 °C and incubation time 24 h, the enzyme activity measured in the medium was approximately 593 U min?1 ml?1.  相似文献   

3.
The algicidal and growth-inhibiting bacteria associated with seagrasses and macroalgae were characterized during the summer of 2012 and 2013 throughout Puget Sound, WA, USA. In 2012, Heterosigma akashiwo-killing bacteria were observed in concentrations of 2.8 × 106 CFU g−1 wet in the outer organic layer (biofilm) on the common eelgrass (Zostera marina) in north Padilla Bay. Bacteria that inhibited the growth of Alexandrium tamarense were detected within the biofilm formed on the eelgrass canopy at Dumas Bay and North Bay at densities of ∼108 CFU g−1 wet weight. Additionally, up to 4100 CFU mL−1 of algicidal and growth-inhibiting bacteria affecting both A. tamarense and H. akashiwo were detected in seawater adjacent to seven different eelgrass beds. In 2013, H. akashiwo-killing bacteria were found on Z. marina and Ulva lactuca with the highest densities of ∼108 CFU g−1 wet weight at Shallow Bay, Sucia Island. Bacteria that inhibited the growth of H. akashiwo and A. tamarense were also detected on Z. marina and Z. japonica at central Padilla Bay. Heterosigma akashiwo cysts were detected at a concentration of 3400 cysts g−1 wet weight in the sediment from Westcott Bay (northern San Juan Island), a location where eelgrass disappeared in 2002. These findings provide new insights on the ecology of algicidal and growth-inhibiting bacteria, and suggest that seagrass and macroalgae provide an environment that may influence the abundance of harmful algae in this region. This work highlights the importance of protection and restoration of native seagrasses and macroalgae in nearshore environments, in particular those regions where shellfish restoration initiatives are in place to satisfy a growing demand for seafood.  相似文献   

4.
Isomaltulose is a structural isomer of sucrose commercially used in food industries. Glucosyltransferase produced by Erwinia sp. D12 catalyses an intramolecular transglucosylation of sucrose giving isomaltulose. An experimental Design and Response Surface Methodology were applied for the optimization of the nutrient concentration in the culture medium for enzyme production in shaken flasks at 200 rpm and 30 °C. A higher production of glucosyltransferase (7.47 Uml−1) was observed in the culture medium containing sugar cane molasses (160 gl−1), bacteriological peptone (20 gl−1) and yeast extract Prodex Lac SD® (15 gl−1) after 8 h, at 30 °C. The highest production of glucosyltransferase in the 6.6-l bioreactor (14.6 Uml−1) was obtained in the optimized culture medium after 10 h at 26 °C. When Erwinia sp. D12 cells were immobilized in sodium alginate, it was verified that sodium alginate solution A could be substituted by a cheaper one, sodium alginate solution B. Using a 40% cell suspension and 2% sodium alginate solution B for cell immobilization in a packed-bed reactor, 64.1% conversion of sucrose to isomaltulose was obtained. The packed-bed reactor with immobilized cells plus glutaraldehyde and polyethylenimine solutions remained in a pseudo-steady-state for 180 h.  相似文献   

5.
Fermentation kinetics of growth and β-carotene production by Rhodotorula glutinis DM28 in batch and continuous cultures using fermented radish brine, a waste generated from fermented vegetable industry, as a cultivation medium were investigated. The suitable brine concentration for β-carotene production by R. glutinis DM28 was 30 g l?1. Its growth and β-carotene production obtained by batch culture in shake flasks were 2.2 g l?1 and 87 μg l?1, respectively, while, in a bioreactor were 2.6 g l?1 and 186 μg l?1, respectively. Furthermore, its maximum growth rate and β-carotene productivity in continuous culture obtained at the dilution rate of 0.24 h?1 were 0.3 g l?1 h?1 and 19 μg l?1 h?1, respectively, which were significantly higher than those in the batch. Therefore, improved growth rate and β-carotene productivity of R. glutinis in fermented radish brine could be accomplished by continuous cultivation.  相似文献   

6.
Candida sake CPA-1 is an antagonistic yeast that has previously been shown to effectively control Botrytis bunch rot in grapes. The efficacy of biological control agents is dependent on their survival, which may also depend on climatic conditions. However, few studies have evaluated the effect of abiotic factors affecting the survival of biological control agents, such as temperature (T) or relative humidity (RH). In this study, efficacy of C. sake (5 × 107 CFU mL1), which was applied with the additive Fungicover (FC; 50 g L1), was tested against BBR in the laboratory and in field trials under the Atlantic climate conditions of the Bordeaux region (France). The study also evaluated the survival of C. sake under T and RH regimes simulated in climatic chambers. Two or five applications of C. sake plus FC during the growing season significantly reduced BBR severity at harvest by 48% and 82%, respectively, when compared to the control. Similar reductions were achieved after inoculation with selected virulent Botrytis cinerea strains (75% compared to control) in laboratory experiments. C. sake populations showed minimal decreases between field applications and were favored by simulated Atlantic climate conditions. The survival pattern of C. sake exposed to 40 and 45 °C combined with 30% and 100% of RH was described, demonstrating a sharp decrease during the first 24 h. Allowing 48 h for C. sake to incubate and become established on fruits prior to the exposure to 40 °C and 30% RH increased survival (P < 0.05). These results confirm the efficacy of treatment with C. sake plus FC under favorable climatic conditions for BBR development, while survival studies may help to improve the survival and efficacy of yeast BCAs, such as C. sake CPA-1.  相似文献   

7.
The biocontrol activity of Rhodotorula glutinis on gray mold decay and blue mold decay of apple caused by Botrytis cinerea and Penicillium expansum, respectively, was investigated, as well as its effects on postharvest quality of apple fruits. The results show there was a significant negative correlation between concentrations of the yeast cells and the disease incidence of the pathogens. The higher concentration of the R. glutinis, the better effect of the biocontrol capacity. At concentrations of R. glutinis 1 × 108 CFU ml?1, the amount of gray mold decay was completely inhibited after 5 days incubation at 20 °C, after challenge with B. cinerea spores suspension of 1 × 105 spores ml?1; While the blue mold decay was completely inhibited at concentrations of 5 × 108 CFU ml?1, at challenged with P. expansum spores suspension of 5 × 104 spores ml?1. These results demonstrated that the efficacy of R. glutinis in controlling of gray mold decay of apples was better than the efficacy of controlling blue mold. R. glutinis within inoculated wounds on apples increased in numbers at 20 °C from an initial level of 9.5 × 105 CFU per wound to 2.24 × 107 CFU at 20 °C after 1 day. The highest population of the yeast was recovered 4 days after inoculation, the yeast population in wounds increased by 56.9 times. After that, the population of the yeast began to decline very slowly. R. glutinis significantly reduced the incidence of natural infections on intact fruit from 75% in the control fruit to 28.3% after 5 days at 20 °C, and from 58.3 to 6.7% after 30 days at 4 °C followed by 4 days at 20 °C. R. glutinis treatment had no deleterious effect on quality parameters after 5 days at 20 °C or after 30 days at 4 °C followed by 4 days at 20 °C.  相似文献   

8.
A highly chitinolytic strain Penicillium ochrochloron MTCC 517 was procured from MTCC, Chandigarh, India. Culture medium supplemented with 1% chitin was found to be suitable for maximum production of chitinase. Purification of extracellular chitinase was done from the culture medium by organic solvent precipitation and DEAE-cellulose column chromatography. The chitinase was purified 6.92-fold with 29.9% yield. Molecular mass of purified chitinase was found to be 64 kDa by SDS-PAGE. The chitinase showed optimum temperature 40 °C and pH 7.0. The enzyme activity was completely inhibited by Hg2+, Zn2+, K+ and NH4+. The enzyme kinetic study of purified chitinase revealed the following characteristics, such as apparent Km 1.3 mg ml?1, Vmax 5.523 × 10?5 moles l?1 min?1 and Kcat 2.37 s?1 and catalytic efficiency 1.82 s?1 M?1. The enzyme hydrolyzed colloidal chitin, glycol chitin, chitosan, glycol chitosan, N,N′-diacetylchitobiose, p-nitrophenyl N-acetyl-β-d-glucosaminide and 4-methylumbelliferyl N-acetyl-β-d-glucosaminide. The chitinase of P. ochrochloron MTCC 517 is an exoenzyme, which gives N-acetylglucosamine as the main hydrolyzate after hydrolysis of colloidal chitin. Protoplasts with high regeneration capacity were obtained from Aspergillus niger using chitinase from P. ochrochloron MTCC 517. Since it also showed antifungal activity, P. ochrochloron MTCC 517 seems to be a promising biocontrol agent.  相似文献   

9.
This study reports the impact of different ozone treatments on a Pseudomonas syringae strain known for its ice nucleation activity (INA). Ozone is a very powerful germicidal agent used for water treatment. The effect of ozone on viability and on cultivability of P. syringae was determined by flow cytometry analysis and by plate counting respectively. The impact of ozone on the outer membrane using the INA as marker was investigated by the drop freezing technique.The destruction curve followed a shoulder pattern with a slight reduction in population with CT values between 0 and 8 min. For an initial population of 9.3 log CFU mL?1, the cultivability was lost starting at 14 min and a loss of viability was observed after 16 min of ozone treatment at 0.45 mg L?1. Microscopic observations at this point revealed whole but aggregated bacilli. INA decreased after 8 min of ozone treatment but did not disappear. This decrease could be due to the progressive disruption of ice nucleating sites in the outer membrane. It was however partially restored after long storage at 4 °C of dead cells treated for 16 min.  相似文献   

10.
The bioaccumulation of chromium(VI), nickel(II), copper(II), and reactive dye by the yeast Rhodotorula mucilaginosa has been investigated in media containing molasses as a carbon and energy source. Optimal pH values for the yeast cells to remove the pollutants were pH 4 for copper(II) and dye, pH 6 for chromium(VI) and dye, and pH 5 for nickel(II) and dye in media containing 50 mg l?1 heavy metal and 50 mg l?1 Remazol Blue. The maximum dye bioaccumulation was observed within 4–6 days and uptake yields varied from 93% to 97%. The highest copper(II) removal yields measured were 30.6% for 45.4 mg l?1 and 32.4% for 95.9 mg l?1 initial copper(II) concentrations. The nickel(II) removal yield was 45.5% for 22.3 mg l?1, 38.0% for 34.7 mg l?1, and 30.3% for 62.2 mg l?1. Higher chromium(VI) removal yields were obtained, such as 94.5% for 49.2 mg l?1 and 87.7% for 129.2 mg l?1 initial chromium(VI) concentration. The maximum dye and heavy metal bioaccumulation yield was investigated in media with a constant dye (approximately 50 mg l?1) and increasing heavy metal concentration. In the medium with 48.9–98.8 mg l?1 copper(II) and constant dye concentration, the maximum copper(II) bioaccumulation was 27.7% and 27.9% whereas the maximum dye bioaccumulation was 96.1% and 95.3%. The maximum chromium(VI) bioaccumulation in the medium with dye was 95.2% and 80.3% at 48.2 and 102.2 mg l?1 chromium(VI) concentrations. In these media dye bioaccumulation was 76.1% and 35.1%, respectively. The highest nickel(II) removal was 6.1%, 20.3% and 16.0% in the medium with 23.8 mg l?1 nickel(II) + 37.8 mg l?1 dye, 38.1 mg l?1 nickel(II) + 33.4 mg l?1 dye and 59.0 mg l?1 nickel(II) + 39.2 mg l?1 dye, respectively. The maximum dye bioaccumulation yield in the media with nickel(II) was 94.1%, 78.0% and 58.7%, respectively.  相似文献   

11.
《Process Biochemistry》2007,42(2):275-278
Gray mold caused by Botrytis cinerea is an important disease of strawberry. Clonostachys rosea is a mycoparasite of B. cinerea that reduces fruit losses when used as a biocontrol agent. Since spore production by C. rosea has not been optimized, we investigated factors affecting sporulation under aseptic conditions on white rice grains. The greatest spore production in glass flasks, 3.4 × 109 spores/g-dry-matter (gDM), occurred with an initial moisture content of 46% (w/w wet basis), inoculated with 1 × 106 spores/gDM and hand shaken every 15 days. However, a lower inoculum density (9 × 103 spores/gDM) and no shaking also gave acceptable sporulation. In plastic bags 1.1 × 108 spores/gDM were produced in 15 days, suggesting that larger scale production may be feasible: with this spore content, 24 m2 of incubator space would produce sufficient spores for the continued treatment of 1 ha of strawberry plants.  相似文献   

12.
The aim of this study was to evaluate the vitality and viability of the probiotic yeast Saccharomyces boulardii after freezing/thawing and the physiological preconditioning effect on these properties. The results indicate that the specific growth rate (0.3/h?1) and biomass (2-3 × 108 cells/ml) of S. boulardii obtained in flasks shaken at 28 °C and at 37 °C were similar. Batch cultures of the yeast in bioreactors using glucose or sugar-cane molasses as carbon sources, reached yields of 0.28 g biomass/g sugar consumed, after 10 h incubation at 28 °C; the same results were obtained in fed batch fermentations. On the other hand, in batch cultures, the vitality of cells recovered during the exponential growth phase was greater than the vitality of cells from the stationary phase of growth. Vitality of cells from fed-batch fermentations was similar to that of stationary growing cells from batch fermentations. Survival to freezing at –20 °C and subsequent thawing of cells from batch cultures was 0.31% for cells in exponential phase of growth and 11.5% for cells in stationary phase. Pre-treatment of this yeast in media with water activity (aw) 0.98 increased the survival to freezing of S. boulardii cells stored at –20 °C for 2 months by 10 fold. Exposure of the yeast to media of reduced aw and/or freezing/thawing process negatively affected cell vitality. It was concluded that stress conditions studied herein decrease vitality of S. boulardii. Besides, the yeast strain studied presented good tolerance to bile salts even at low pH values.  相似文献   

13.
Yeast immobilization offers operational advantages such as high cell concentration, and some drawbacks related to cell leaking and restricted mass transfer inside particles. The influence of bead size, chitosan, bead charge, volume of liquid media, and the use of corncob hydrolyzates and vinasses as culture medium were analyzed on xylitol production by Debaryomyces hansenii immobilized in alginate beads. The results showed a profuse growth of free cells, accounting 75–95% of total biomass, but electron micrographs revealed the generation of a dense biofilm with hyphal morphology at the bead surface and a very low intraparticular growth. Xylitol production was not affected by the size of particle; however chitosan had a negative effect. The use of corn cob as carbon source and twofold diluted vinasses as economic nutrients incremented xylitol concentration to 13.7 g L?1 (YP/S = 0.56 g g?1; QP = 0.29 g L?1 h?1). The best conditions corresponded to high bead charges and intermediate liquid volumes (44 g Na-alginate and 110 mL liquid medium). These results showed the feasibility of employing these cheap substrates, reflected the importance of the microaerobical conditions, and pointed to the favorable effect of cell immobilization on the metabolism of xylitol production.  相似文献   

14.
Conidiation and lytic enzyme production by Trichoderma viride at different solids concentration of pre-treated municipal wastewater sludge was examined in a 15-L fermenter. The maximum conidia concentration (5.94 × 107 CFU mL−1 at 96 h) was obtained at 30 g L−1 suspended solids. The maximum lytic enzyme activities were achieved around 12–30 h of fermentation. Bioassay against a fungal phytopathogen, Fusarium sp. showed maximum activity in the sample drawn around 96 h of fermentation at 30 g L−1 suspended solids concentration. Entomotoxicity against spruce budworm larvae showed maximum value ≈17290 SBU μL−1 at 30 g L−1 suspended solids concentration at the end of fermentation (96 h). Plant bioassay showed dual action of T. viride, i.e., disease prevention and growth promotion. The rheological analyses of fermentation sludges showed the pseudoplastic behaviour. In order to maintain required dissolved oxygen concentration ≥30%, the agitation and aeration requirements significantly increased at 35 g L−1 compared to 30 and 25 g L−1. The oxygen uptake rate and volumetric oxygen mass transfer coefficient, kLa at 35 g L−1 did not increase in comparison to 30 g L−1 due to rheological complexity of the broth during fermentation. Thus, the successful fermentation operation of the biocontrol fungus T. viride is a rational indication of its potential for mass-scale production for agriculture and forest sector as a biocontrol agent.  相似文献   

15.
This article describes the enrichment of the fresh-water green microalga Chlorella sorokiniana in selenomethionine (SeMet). The microalga was cultivated in a 2.2 L glass-vessel photobioreactor, in a culture medium supplemented with selenate (SeO42?) concentrations ranging from 5 to 50 mg L?1. Although selenate exposure lowered culture viability, C. sorokiniana grew well at all tested selenate concentrations, however cultures supplemented with 50 mg L?1 selenate did not remain stable at steady state. A suitable selenate concentration in fresh culture medium for continuous operation was determined, which allowed stable long-term cultivation at steady state and maximal SeMet productivity. In order to do that, the effect of dilution rate on biomass productivity, viability and SeMet content of C. sorokiniana at several selenate concentrations were determined in the photobioreactor. A maximal SeMet productivity of 21 μg L?1 day?1 was obtained with 40 mg L?1 selenate in the culture medium. Then a continuous cultivation process at several dilution rates was performed at 40 mg L?1 selenate obtaining a maximum of 246 μg L?1 day?1 SeMet at a low dilution rate of 0.49 day?1, calculated on total daily effluent volume. This paper describes for the first time an efficient long-term continuous cultivation of C. sorokiniana for the production of biomass enriched in the high value amino acid SeMet, at laboratory scale.  相似文献   

16.
Fusarium redolens Dzf2, an endophytic fungal species, is a high producer of the antibiotic compound beauvericin (BEA). However, the BEA produced by the F. redolens Dzf2 fungus was retained mainly as an intracellular product. This study was to evaluate an integrated fermentation-in situ product recovery process for enhancement of BEA production in F. redolens Dzf2 myelical culture. A macroporous polystyrene resin (X-5) was selected as the sorbent and added to the mycelial culture flasks (enclosed in a nylon bag). With 2 g resin added to 40 ml medium in each flask in the early stationary growth phase (day 5), the volumetric BEA yield (on day 7) was increased from 194 to 265 mg l?1, with 65% being adsorbed to the resin phase. With resin renewal plus glucose feeding (on day 7), the BEA production was increased even more dramatically to 400 mg l?1 (on day 9), double of the yield in the batch control culture. The results show that in situ adsorption was an effective strategy for enhancing the BEA production and also facilitating its recovery in the mycelial liquid culture.  相似文献   

17.
《Biological Control》2010,55(3):172-180
The efficacy of Aureobasidium pullulans PL5 against different postharvest pathogens of fruits (Monilinia laxa on plums and peaches, Botrytis cinerea and Penicillium expansum on apples) were evaluated under storage conditions when applied at 108 cells ml−1 and their interactions were studied in vitro and in vivo to discover the possible modes of action. Under 1.2 °C and 95% relative humidity (RH) for 28 days, the efficacy of PL5 against M. laxa on plums was 45%, reducing disease incidence from 78% to 43%. Under 1 °C and 95% RH for 21 days, the efficacy against M. laxa on peaches was 63%, reducing disease incidence from 79% to 29%. Under 4 °C and 95% RH for 45 days, the efficacy against B. cinerea and P. expansum on apples was 56% and 46%, respectively. In Lilly–Barnett minimal salt medium with the fungal cell walls of pathogens as sole carbon source, PL5 produced β-1,3-glucanase, exo-chitinase and endo-chitinase. Nutrient concentrations had significant effect on pathogen growth reduction by PL5. No attachment was observed in antagonist–pathogen interactions in vitro or in vivo. PL5 completely inhibited pathogen spore germination in PDB at 108 cells ml−1, whereas at 106 cells ml−1 the efficacy was significantly decreased. However, inactivated cells and culture filtrate of PL5 had no effect on pathogen spore germination and germ tube elongation. Our results showed that A. pullulans PL5 could be introduced in commercial formulations to control postharvest pathogens on fruits and its activity was based on secretion of lytic enzymes and competition for nutrients.  相似文献   

18.
Optimization of the growth conditions for maximum β-mannanase production in shake flasks by using recombinant Aspergillus sojae ATCC11906 (AsT1) was carried out by Box–Behnken design of response surface methodology. The highest β-mannanase activity on the fourth day of cultivation at 30 °C was obtained as 363 U/ml in the optimized medium consisting of 7% sugar beet molasses, 0.43% NH4NO3, 0.1% K2HPO4 and 0.05% MgSO4 (by weight per volume) at 207 rpm. On the sixth day of cultivation under the optimized conditions, the highest β-mannanase activity was achieved as 482 U/ml which is 1.4-fold of 352 U/ml activity found on glucose medium previously.  相似文献   

19.
Effects of medium components on intracellular glucose isomerase (GI) production were investigated by Bacillus thermoantarcticus. The highest GI activity was obtained as 1630 U dm?3 in the medium containing (g dm?3): 10.6, birchwood-xylan; 5.6, yeast extract; 5.9 (NH4)2SO4 at T = 55 °C in 33 cm?3 shake-flasks. When birchwood-xylan was replaced with oat spelt- or beechwood-xylan, GI activity decreased to 1372 and 1308 U dm?3, respectively. Effects of pH at uncontrolled-pH (pHUC = 6.0) and controlled-pH (pHC = 6.0) operations, and oxygen transfer at the air inlet rate of 0.5 vvm and agitation rates of 300, 500 and 700 min?1, were investigated in 3.0 dm3 bioreactor system with 1.65 dm3 working volume in the designed medium. The highest GI activity was attained at 500 min?1, 0.5 vvm, pHUC = 6 as 1840 U dm?3 where cell concentration was 2.3 g dm?3. The use of agricultural waste xylan, as the carbon source resulted in concomitant production of xylanase and GI. The highest xylanase activity was attained as 9300 U dm?3 at 500 min?1 and 0.5 vvm. KLa varied between 0.008–0.033 s?1 whereas the highest oxygen uptake rate was 0.002 mmol dm?3 s?1. Initially biochemical reaction limitations were effective; thereafter, mass transfer resistances became more effective.  相似文献   

20.
Mesorhizobium sp. F28 contains cobalt-NHase, which effectively converts acrylonitrile into acrylamide. When urea was added to the culture medium, the NHase activity was 62.3 U ml?1 (R2A–R2A/urea) after 22.5 h of cultivation, which was similar to that in the medium without addition (R2A–R2A, 70.0 U ml?1). The relative activity of the purified NHase was 100%, 92%, 94%, and 92% in the medium containing, respectively, 0 mM, 2 mM, 5 mM, and 10 mM of urea. Urea had no significant effect on the purified NHase activity of Mesorhizobium sp. F28. This research did not observe the NHase production by Mesorhizobium sp. F28 when acrylonitrile was supplemented in the culture medium except that cobalt ions existed. The highest enzyme activity was 328.5 U ml?1 as cobalt ions were added in the pre-culture and culture medium after 22.5 h of cultivation (R2A/Co-R2A/Co); compared to media without cobalt ions (R2A–R2A, 22.5 h, 70.5 U ml?1) this is an almost five-fold enhancement. It can be concluded that culture media containing cobalt ions was beneficial for the formation of active NHase of Mesorhizobium sp. F28.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号