首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Lee SH  Ooi SK  Mahadi NM  Tan MW  Nathan S 《PloS one》2011,6(3):e16707

Background

Burkholderia pseudomallei is the causative agent of melioidosis, a disease of significant morbidity and mortality in both human and animals in endemic areas. Much remains to be known about the contributions of genotypic variations within the bacteria and the host, and environmental factors that lead to the manifestation of the clinical symptoms of melioidosis.

Methodology/Principal Findings

In this study, we showed that different isolates of B. pseudomallei have divergent ability to kill the soil nematode Caenorhabditis elegans. The rate of nematode killing was also dependent on growth media: B. pseudomallei grown on peptone-glucose media killed C. elegans more rapidly than bacteria grown on the nematode growth media. Filter and bacteria cell-free culture filtrate assays demonstrated that the extent of killing observed is significantly less than that observed in the direct killing assay. Additionally, we showed that B. pseudomallei does not persistently accumulate within the C. elegans gut as brief exposure to B. pseudomallei is not sufficient for C. elegans infection.

Conclusions/Significance

A combination of genetic and environmental factors affects virulence. In addition, we have also demonstrated that a Burkholderia-specific mechanism mediating the pathogenic effect in C. elegans requires proliferating B. pseudomallei to continuously produce toxins to mediate complete killing.  相似文献   

2.

Background

Selenium (Se) is an important nutrient that carries out many biological processes including maintaining optimal immune function. Here, inorganic selenite (Se(IV)) was evaluated for its pathogen resistance and potential-associated factors in Caenorhabditis elegans. The immune effects of Se(IV) were investigated by examining the responses of C. elegans to Pseudomonas aerugonisa PA14 strain.

Principal Findings

Se(IV)-treated C. elegans showed increased survival under PA14 infection compared with untreated controls. The significant pathogen resistance of Se(IV) on C. elegans might not be attributed to the effects of Se(IV) on PA14 as Se(IV) showed no effect on bacterial quorum-sensing and virulence factors of PA14. This study showed that Se(IV) enhanced the expression of a gene pivotal for the innate immunity in C. elegans. The study found that the pathogen-resistant phenotypes contributed by Se(IV) was absent from the skn-1 mutant worms. Moreover, Se(IV) influenced the subcellular distribution of SKN-1/Nrf in C. elegans upon PA14 infection. Furthermore, Se(IV) increased mRNA levels of SKN-1 target genes (gst-4 and gcs-1).

Conclusions

This study found evidence of Se(IV) protecting C. elegans against P. aeruginosa PA14 infection by exerting effects on the innate immunity of C. elegans that is likely mediated via regulation of a SKN-1-dependent signaling pathway.  相似文献   

3.

Background

Symbioses between metazoans and microbes are widespread and vital to many ecosystems. Recent work with several nematode species has suggested that strong associations with microbial symbionts may also be common among members of this phylu. In this work we explore possible symbiosis between bacteria and the free living soil bacteriovorous nematode Acrobeloides maximus.

Methodology

We used a soil microcosm approach to expose A. maximus populations grown monoxenically on RFP labeled Escherichia coli in a soil slurry. Worms were recovered by density gradient separation and examined using both culture-independent and isolation methods. A 16S rRNA gene survey of the worm-associated bacteria was compared to the soil and to a similar analysis using Caenorhabditis elegans N2. Recovered A. maximus populations were maintained on cholesterol agar and sampled to examine the population dynamics of the microbiome.

Results

A consistent core microbiome was extracted from A. maximus that differed from those in the bulk soil or the C. elegans associated set. Three genera, Ochrobactrum, Pedobacter, and Chitinophaga, were identified at high levels only in the A. maximus populations, which were less diverse than the assemblage associated with C. elegans. Putative symbiont populations were maintained for at least 4 months post inoculation, although the levels decreased as the culture aged. Fluorescence in situ hybridization (FISH) using probes specific for Ochrobactrum and Pedobacter stained bacterial cells in formaldehyde fixed nematode guts.

Conclusions

Three microorganisms were repeatedly observed in association with Acrobeloides maximus when recovered from soil microcosms. We isolated several Ochrobactrum sp. and Pedobacter sp., and demonstrated that they inhabit the nematode gut by FISH. Although their role in A. maximus is not resolved, we propose possible mutualistic roles for these bacteria in protection of the host against pathogens and facilitating enzymatic digestion of other ingested bacteria.  相似文献   

4.

Background

Vibrio vulnificus is an important pathogen which can cause serious infections in humans. Yet, there is limited knowledge on its virulence factors and the question whether temperate phages might be involved in pathogenicity, as is the case with V. cholerae. Thus far, only two phages (SSP002 and VvAW1) infecting V. vulnificus have been genetically characterized. These phages were isolated from the environment and are not related to Vibrio cholerae phages. The lack of information on temperate V. vulnificus phages prompted us to isolate those phages from lysogenic strains and to compare them with phages of other Vibrio species.

Results

In this study the temperate phage PV94 was isolated from a V. vulnificus biotype 1 strain by mitomycin C induction. PV94 is a myovirus whose genome is a linear double-stranded DNA of 33,828 bp with 5′-protruding ends. Sequence analysis of PV94 revealed a modular organization of the genome. The left half of the genome comprising the immunity region and genes for the integrase, terminase and replication proteins shows similarites to V. cholerae kappa phages whereas the right half containing genes for structural proteins is closely related to a prophage residing in V. furnissii NCTC 11218.

Conclusion

We present the first genomic sequence of a temperate phage isolated from a human V. vulnificus isolate. The sequence analysis of the PV94 genome demonstrates the wide distribution of closely related prophages in various Vibrio species. Moreover, the mosaicism of the PV94 genome indicates a high degree of horizontal genetic exchange within the genus Vibrio, by which V. vulnificus might acquire virulence-associated genes from other species.  相似文献   

5.

Background

Despite recent progress in understanding the molecular basis of Vibrio cholerae pathogenesis, there is relatively little knowledge of the factors that determine the variability in human susceptibility to V. cholerae infection.

Methods and Findings

We performed an observational study of a cohort of household contacts of cholera patients in Bangladesh, and compared the baseline characteristics of household members who went on to develop culture-positive V. cholerae infection with individuals who did not develop infection. Although the vibriocidal antibody is the only previously described immunologic marker associated with protection from V. cholerae infection, we found that levels of serum IgA specific to three V. cholerae antigens—the B subunit of cholera toxin, lipopolysaccharide, and TcpA, the major component of the toxin–co-regulated pilus—also predicted protection in household contacts of patients infected with V. cholerae O1, the current predominant cause of cholera. Circulating IgA antibodies to TcpA were also associated with protection from V. cholerae O139 infection. In contrast, there was no association between serum IgG antibodies specific to these three antigens and protection from infection with either serogroup. We also found evidence that host genetic characteristics and serum retinol levels modify susceptibility to V. cholerae infection.

Conclusions

Our observation that levels of serum IgA (but not serum IgG) directed at certain V. cholerae antigens are associated with protection from infection underscores the need to better understand anti–V. cholerae immunity at the mucosal surface. Furthermore, our data suggest that susceptibility to V. cholerae infection is determined by a combination of immunologic, nutritional, and genetic characteristics; additional factors that influence susceptibility to cholera remain unidentified.  相似文献   

6.

Background

Outer membrane vesicles (OMVs) released from Gram-negative bacteria can serve as vehicles for the translocation of virulence factors. Vibrio cholerae produce OMVs but their putative role in translocation of effectors involved in pathogenesis has not been well elucidated. The V. cholerae cytolysin (VCC), is a pore-forming toxin that lyses target eukaryotic cells by forming transmembrane oligomeric β-barrel channels. It is considered a potent toxin that contributes to V. cholerae pathogenesis. The mechanisms involved in the secretion and delivery of the VCC have not been extensively studied.

Methodology/Principal Findings

OMVs from V. cholerae strains were isolated and purified using a differential centrifugation procedure and Optiprep centrifugation. The ultrastructure and the contents of OMVs were examined under the electron microscope and by immunoblot analyses respectively. We demonstrated that VCC from V. cholerae strain V:5/04 was secreted in association with OMVs and the release of VCC via OMVs is a common feature among V. cholerae strains. The biological activity of OMV-associated VCC was investigated using contact hemolytic assay and epithelial cell cytotoxicity test. It showed toxic activity on both red blood cells and epithelial cells. Our results indicate that the OMVs architecture might play a role in stability of VCC and thereby can enhance its biological activities in comparison with the free secreted VCC. Furthermore, we tested the role of OMV-associated VCC in host cell autophagy signalling using confocal microscopy and immunoblot analysis. We observed that OMV-associated VCC triggered an autophagy response in the target cell and our findings demonstrated for the first time that autophagy may operate as a cellular defence mechanism against an OMV-associated bacterial virulence factor.

Conclusion/Significance

Biological assays of OMVs from the V. cholerae strain V:5/04 demonstrated that OMV-associated VCC is indeed biologically active and induces toxicity on mammalian cells and furthermore can induce autophagy.  相似文献   

7.
8.

Background

Vibrio cholerae is the causal intestinal pathogen of the diarrheal disease cholera. It secretes the protease PrtV, which protects the bacterium from invertebrate predators but reduces the ability of Vibrio-secreted factor(s) to induce interleukin-8 (IL-8) production by human intestinal epithelial cells. The aim was to identify the secreted component(s) of V. cholerae that induces an epithelial inflammatory response and to define whether it is a substrate for PrtV.

Methodology/Principal Findings

Culture supernatants of wild type V. cholerae O1 strain C6706, its derivatives and pure V. cholerae cytolysin (VCC) were analyzed for the capacity to induce changes in cytokine mRNA expression levels, IL-8 and tumor necrosis factor-α (TNF-α) secretion, permeability and cell viability when added to the apical side of polarized tight monolayer T84 cells used as an in vitro model for human intestinal epithelium. Culture supernatants were also analyzed for hemolytic activity and for the presence of PrtV and VCC by immunoblot analysis.

Conclusions/Significance

We suggest that VCC is capable of causing an inflammatory response characterized by increased permeability and production of IL-8 and TNF-α in tight monolayers. Pure VCC at a concentration of 160 ng/ml caused an inflammatory response that reached the magnitude of that caused by Vibrio-secreted factors, while higher concentrations caused epithelial cell death. The inflammatory response was totally abolished by treatment with PrtV. The findings suggest that low doses of VCC initiate a local immune defense reaction while high doses lead to intestinal epithelial lesions. Furthermore, VCC is indeed a substrate for PrtV and PrtV seems to execute an environment-dependent modulation of the activity of VCC that may be the cause of V. cholerae reactogenicity.  相似文献   

9.

Background

Since the RpoN-RpoS regulatory network was revealed in the Lyme disease spirochete Borrelia burgdorferi a decade ago, both upstream and downstream of the pathway have been intensively investigated. While significant progress has been made into understanding of how the network is regulated, most notably, discovering a relationship of the network with Rrp2 and BosR, only three crucial virulence factors, including outer surface protein C (OspC) and decorin-binding proteins (Dbps) A and B, are associated with the pathway. Moreover, for more than 10 years no single RpoS-controlled gene has been found to be critical for infection, raising a question about whether additional RpoS-dependent virulence factors remain to be identified.

Methodology/Principal Findings

The rpoS gene was deleted in B. burgdorferi; resulting mutants were modified to constitutively express all the known virulence factors, OspC, DbpA and DbpB. This genetic modification was unable to restore the rpoS mutant with infectivity.

Conclusions/Significance

The inability to restore the rpoS mutant with infectivity by simultaneously over-expressing all the three virulence factors allows us to conclude RpoS also regulates essential genes that remain to be identified in B. burgdorferi.  相似文献   

10.

Background

Selenium is an essential micronutrient that has a narrow exposure window between its beneficial and toxic effects. This study investigated the protective potential of selenite (IV) against lead (Pb(II))-induced neurotoxicity in Caenorhabditis elegans.

Principal Findings

The results showed that Se(IV) (0.01 µM) pretreatment ameliorated the decline of locomotion behaviors (frequencies of body bends, head thrashes, and reversal ) of C. elegans that are damaged by Pb(II) (100 µM) exposure. The intracellular ROS level of C. elegans induced by Pb(II) exposure was significantly lowered by Se(IV) supplementation prior to Pb(II) exposure. Finally, Se(IV) protects AFD sensory neurons from Pb(II)-induced toxicity.

Conclusions

Our study suggests that Se(IV) has protective activities against Pb(II)-induced neurotoxicity through its antioxidant property.  相似文献   

11.

Background

The nematode Caenorhabditis elegans has emerged as an important model for studies of the regulation of fat storage. C. elegans feed on bacteria, and various strains of E. coli are commonly used in research settings. However, it is not known whether particular bacterial diets affect fat storage and metabolism.

Methodology/Principal Findings

Fat staining of fixed nematodes, as well as biochemical analysis of lipid classes, revealed considerable differences in fat stores in C. elegans growing on four different E. coli strains. Fatty acid composition and carbohydrate levels differ in the E. coli strains examined in these studies, however these nutrient differences did not appear to have a causative effect on fat storage levels in worms. Analysis of C. elegans strains carrying mutations disrupting neuroendocrine and other fat-regulatory pathways demonstrated that the intensity of Nile Red staining of live worms does not correlate well with biochemical methods of fat quantification. Several neuroendocrine pathway mutants and eating defective mutants show higher or lower fat storage levels than wild type, however, these mutants still show differences in fat stores when grown on different bacterial strains. Of all the mutants tested, only pept-1 mutants, which lack a functional intestinal peptide transporter, fail to show differential fat stores. Furthermore, fatty acid analysis of triacylglycerol stores reveals an inverse correlation between total fat stores and the levels of 15-methylpalmitic acid, derived from leucine catabolism.

Conclusions

These studies demonstrate that nutritional cues perceived in the intestine regulate fat storage levels independently of neuroendocrine cues. The involvement of peptide transport and the accumulation of a fatty acid product derived from an amino acid suggest that specific peptides or amino acids may provide nutritional signals regulating fat metabolism and fat storage levels.  相似文献   

12.

Background

Chronic helminth infections induce a Th2 immune shift and establish an immunoregulatory milieu. As both of these responses can suppress Th1 immunity, which is necessary for control of Mycobacterium tuberculosis (MTB) infection, we hypothesized that chronic helminth infections may exacerbate the course of MTB.

Methodology/Principal Findings

Co-infection studies were conducted in cotton rats as they are the natural host for the filarial nematode Litomosoides sigmodontis and are an excellent model for human MTB. Immunogical responses, histological studies, and quantitative mycobacterial cultures were assessed two months after MTB challenge in cotton rats with and without chronic L. sigmodontis infection. Spleen cell proliferation and interferon gamma production in response to purified protein derivative were similar between co-infected and MTB-only infected animals. In contrast to our hypothesis, MTB loads and occurrence and size of lung granulomas were not increased in co-infected animals.

Conclusions/Significance

These findings suggest that chronic filaria infections do not exacerbate MTB infection in the cotton rat model. While these results suggest that filaria eradication programs may not facilitate MTB control, they indicate that it may be possible to develop worm-derived therapies for autoimmune diseases that do not substantially increase the risk for infections.  相似文献   

13.

Background

Human genetic factors such as blood group antigens may affect the severity of infectious diseases. Presence of specific ABO and Lewis blood group antigens has been shown previously to be associated with the risk of different enteric infections. The aim of this study was to determine the relationship of the Lewis blood group antigens with susceptibility to cholera, as well as severity of disease and immune responses to infection.

Methodology

We determined Lewis and ABO blood groups of a cohort of patients infected by Vibrio cholerae O1, their household contacts, and healthy controls, and analyzed the risk of symptomatic infection, severity of disease if infected and immune response following infection.

Principal Findings

We found that more individuals with cholera expressed the Le(a+b−) phenotype than the asymptomatic household contacts (OR 1.91, 95% CI 1.03–3.56) or healthy controls (OR 1.90, 95% CI 1.13–3.21), as has been seen previously for the risk of symptomatic ETEC infection. Le(a–b+) individuals were less susceptible to cholera and if infected, required less intravenous fluid replacement in hospital, suggesting that this blood group may be associated with protection against V. cholerae O1. Individuals with Le(a–b−) blood group phenotype who had symptomatic cholera had a longer duration of diarrhea and required higher volumes of intravenous fluid replacement. In addition, individuals with Le(a–b−) phenotype also had lessened plasma IgA responses to V. cholerae O1 lipopolysaccharide on day 7 after infection compared to individuals in the other two Lewis blood group phenotypes.

Conclusion

Individuals with Lewis blood type Le(a+b−) are more susceptible and Le(a–b+) are less susceptible to V. cholerae O1 associated symptomatic disease. Presence of this histo-blood group antigen may be included in evaluating the risk for cholera in a population, as well as in vaccine efficacy studies, as is currently being done for the ABO blood group antigens.  相似文献   

14.

Background

Cholera infection continues to be a threat to global public health. The current cholera pandemic associated with Vibrio cholerae El Tor has now been ongoing for over half a century.

Methodology/Principal Findings

Thirty-eight V. cholerae El Tor isolates associated with a cholera outbreak in 2009 from the Chandigarh region of India were characterised by a combination of microbiology, molecular typing and whole-genome sequencing. The genomic analysis indicated that two clones of V. cholera circulated in the region and caused disease during this time. These clones fell into two distinct sub-clades that map independently onto wave 3 of the phylogenetic tree of seventh pandemic V. cholerae El Tor. Sequence analyses of the cholera toxin gene, the Vibrio seventh Pandemic Island II (VSPII) and SXT element correlated with this phylogenetic position of the two clades on the El Tor tree. The clade 2 isolates, characterized by a drug-resistant profile and the expression of a distinct cholera toxin, are closely related to the recent V. cholerae isolated elsewhere, including Haiti, but fell on a distinct branch of the tree, showing they were independent outbreaks. Multi-Locus Sequence Typing (MLST) distinguishes two sequence types among the 38 isolates, that did not correspond to the clades defined by whole-genome sequencing. Multi-Locus Variable-length tandem-nucleotide repeat Analysis (MLVA) identified 16 distinct clusters.

Conclusions/Significance

The use of whole-genome sequencing enabled the identification of two clones of V. cholerae that circulated during the 2009 Chandigarh outbreak. These clones harboured a similar structure of ICEVchHai1 but differed mainly in the structure of CTX phage and VSPII. The limited capacity of MLST and MLVA to discriminate between the clones that circulated in the 2009 Chandigarh outbreak highlights the value of whole-genome sequencing as a route to the identification of further genetic markers to subtype V. cholerae isolates.  相似文献   

15.
16.

Background

The pharyngeal microcircuit of the nematode Caenorhabditis elegans serves as a model for analysing neural network activity and is amenable to electrophysiological recording techniques. One such technique is the electropharyngeogram (EPG) which has provided insight into the genetic basis of feeding behaviour, neurotransmission and muscle excitability. However, the detailed manual analysis of the digital recordings necessary to identify subtle differences in activity that reflect modulatory changes within the underlying network is time consuming and low throughput. To address this we have developed an automated system for the high-throughput and discrete analysis of EPG recordings (AutoEPG).

Methodology/Principal Findings

AutoEPG employs a tailor made signal processing algorithm that automatically detects different features of the EPG signal including those that report on the relaxation and contraction of the muscle and neuronal activity. Manual verification of the detection algorithm has demonstrated AutoEPG is capable of very high levels of accuracy. We have further validated the software by analysing existing mutant strains with known pharyngeal phenotypes detectable by the EPG. In doing so, we have more precisely defined an evolutionarily conserved role for the calcium-dependent potassium channel, SLO-1, in modulating the rhythmic activity of neural networks.

Conclusions/Significance

AutoEPG enables the consistent analysis of EPG recordings, significantly increases analysis throughput and allows the robust identification of subtle changes in the electrical activity of the pharyngeal nervous system. It is anticipated that AutoEPG will further add to the experimental tractability of the C. elegans pharynx as a model neural circuit.  相似文献   

17.

Background

LIN-12/Notch signaling is important for cell-cell interactions during development, and mutations resulting in constitutive LIN-12/Notch signaling can cause cancer. Loss of negative regulators of lin-12/Notch activity has the potential for influencing cell fate decisions during development and the genesis or aggressiveness of cancer.

Methodology/Principal Findings

We describe two negative modulators of lin-12 activity in C. elegans. One gene, sel-11, was initially defined as a suppressor of a lin-12 hypomorphic allele; the other gene, cdc-42, is a well-studied Rho GTPase. Here, we show that SEL-11 corresponds to yeast Hrd1p and mammalian Synoviolin. We also show that cdc-42 has the genetic properties consistent with negative regulation of lin-12 activity during vulval precursor cell fate specification.

Conclusions/Significance

Our results underscore the multiplicity of negative regulatory mechanisms that impact on lin-12/Notch activity and suggest novel mechanisms by which constitutive lin-12/Notch activity might be exacerbated in cancer.  相似文献   

18.

Background

Mammalian ATAD3 is a mitochondrial protein, which is thought to play an important role in nucleoid organization. However, its exact function is still unresolved.

Results

Here, we characterize the Caenorhabditis elegans (C. elegans) ATAD3 homologue (ATAD-3) and investigate its importance for mitochondrial function and development. We show that ATAD-3 is highly conserved among different species and RNA mediated interference against atad-3 causes severe defects, characterized by early larval arrest, gonadal dysfunction and embryonic lethality. Investigation of mitochondrial physiology revealed a disturbance in organellar structure while biogenesis and function, as indicated by complex I and citrate synthase activities, appeared to be unaltered according to the developmental stage. Nevertheless, we observed very low complex I and citrate synthase activities in L1 larvae populations in comparison to higher larval and adult stages. Our findings indicate that atad-3(RNAi) animals arrest at developmental stages with low mitochondrial activity. In addition, a reduced intestinal fat storage and low lysosomal content after depletion of ATAD-3 suggests a central role of this protein for metabolic activity.

Conclusions

In summary, our data clearly indicate that ATAD-3 is essential for C. elegans development in vivo. Moreover, our results suggest that the protein is important for the upregulation of mitochondrial activity during the transition to higher larval stages.  相似文献   

19.

Background

Colonization with bacterial species from the Burkholderia cepacia complex (Bcc) is associated with fast health decline among individuals with cystic fibrosis. In order to investigate the virulence of the Bcc, several alternative infection models have been developed. To this end, the fruit fly is increasingly used as surrogate host, and its validity to enhance our understanding of host-pathogen relationships has been demonstrated with a variety of microorganisms. Moreover, its relevance as a suitable alternative to mammalian hosts has been confirmed with vertebrate organisms.

Methodology/Principal Findings

The aim of this study was to establish Drosophila melanogaster as a surrogate host for species from the Bcc. While the feeding method proved unsuccessful at killing the flies, the pricking technique did generate mortality within the populations. Results obtained with the fruit fly model are comparable with results obtained using mammalian infection models. Furthermore, validity of the Drosophila infection model was confirmed with B. cenocepacia K56-2 mutants known to be less virulent in murine hosts or in other alternative models. Competitive index (CI) analyses were also performed using the fruit fly as host. Results of CI experiments agree with those obtained with mammalian models.

Conclusions/Significance

We conclude that Drosophila is a useful alternative infection model for Bcc and that fly pricking assays and competition indices are two complementary methods for virulence testing. Moreover, CI results indicate that this method is more sensitive than mortality tests.  相似文献   

20.

Background

In Bangladesh, increases in cholera epidemics are being documented with a greater incidence and severity. The aim of this prospective study was to identify the prevalence and importance of V. cholerae O1 and enterotoxigenic Escherichia coli (ETEC) as causal agents of severe diarrhea in a high diarrhea prone urban area in Dhaka city.

Methodology

Systematic surveillance was carried out on all diarrheal patients admitted from Mirpur between March 2008 to February 2010 at the ICDDR, B hospital. Stool or rectal swabs were collected from every third diarrheal patient for microbiological evaluation.

Principal Findings

Of diarrheal patients attending the hospital from Mirpur, 41% suffered from severe dehydration with 39% requiring intravenous rehydration therapy. More diarrheal patients were above five years of age (64%) than those below five years of age (36%). About 60% of the patients above five years of age had severe dehydration compared with only 9% of patients under five years of age. The most prevalent pathogen isolated was Vibrio cholerae O1 (23%) followed by ETEC (11%). About 8% of cholera infection was seen in infants with the youngest children being one month of age while in the case of ETEC the rate was 11%. Of the isolated ETEC strains, the enterotoxin type were almost equally distributed; ST accounted for 31% of strains; LT/ST for 38% and LT for 31%.

Conclusion

V. cholerae O1 is the major bacterial pathogen and a cause of severe cholera disease in 23% of patients from Mirpur. This represents a socioeconomic group that best reflects the major areas of high cholera burden in the country. Vaccines that can target such high risk groups in the country and the region will hopefully be able to reduce the disease morbidity and the transmission of pathogens that impact the life and health of people.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号