首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pearl millet [Pennisetum glaucum (L.) R. Br.] has the seventh largest annual production in the world giving it significant economic importance. Although generally well adapted to the growing conditions in arid and semi-arid regions, major constraints to yields are susceptibility to downy mildew disease caused by the oomycete Sclerospora graminicola (Sacc.) Schroet. Induction of resistance against downy mildew disease of pearl millet has been well established using various biotic and abiotic inducers. The present study demonstrated the comparative analysis of the involvement of the important defence enzymes like β-1,3-Glucanase, chitinase, phenylalanine ammonia-lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO) and lipoxygenase (LOX) during induced systemic resistance (ISR) mediated by inducers like Benzo(1,2,3)-thiadiazole-7-carbothionic acid-S-methyl ester (BTH), Beta amino butyric acid (BABA), Chitosan and Cerebroside against pearl millet downy mildew disease. Native-PAGE showed six POX isozymes in all categories of uninoculated pearl millet seedlings and maximum intensity of bands was noticed in resistant seedlings. After inoculation in Cerebroside-treated seedlings, there were seven isoforms, POX-4 was not present in any other seedlings. Native-PAGE analysis showed the presence of five PPO isozymes in all categories of uninoculated pearl millet seedlings and after inoculation seven isoforms of PPO-7 were noticed, and the intensity of banding was more in resistant and Cerebroside-treated seedlings. The isoforms PPO-3 were present as an extra band after inoculation in all seedlings. Isoform PPO-7, though found in all seedlings, was very prominent in Chitosan- and Cerebroside-treated seedlings. β-1,3-Glucanase Native-PAGE analysis showed the presence of only one isozyme in all categories of uninoculated/inoculated pearl millet seedlings. Glu-1 isozyme was very prominent in all seedlings including resistant and susceptible seedlings. Among the induced resistant seedlings, highest intensity was observed in Cerebroside-treated seedlings. Native-PAGE analysis showed the presence of three LOX isozymes in all categories of uninoculated pearl millet seedlings, and the intensity of banding pattern was very low in BTH-treated seedlings. LOX-1 and LOX-2 were very prominent in resistant, Chitosan- and Cerebroside-treated seedlings. Upon inoculation, one extra band, LOX-3, was exclusively noticed in Cerebroside-treated seedlings. In inoculated seedlings, LOX-1, LOX-2 and LOX-4 were very prominent in Chitosan Cerebroside-treated seedlings compared to other seedlings.  相似文献   

2.
Hypersensitive response, cell death and release of hydrogen peroxide as measures of host and non‐host defense mechanisms upon inoculation with the downy mildew pathogen Sclerospora graminicola were studied histochemically at the light microscopy level. The materials consisted of coleoptile tissues of the highly susceptible (cv. HB3), highly resistant (cv. IP18293) and induced resistant pearl millet host seedlings and non‐host sorghum (cv. SGMN10/8) and cotyledon of french bean (cv. S9). Resistance up to 80% protection against the downy mildew pathogen was induced in the highly susceptible HB3 cultivar of pearl millet by treating the seeds with 2% aqueous leaf extract of Datura metel for 3 h. Time course study with the pathogen inoculated highly resistant pearl millet cultivar revealed the appearance of hypersensitive response in 20% of seedlings as necrotic spots as early as 2 h after inoculation. In contrast, a similar reaction was observed in the highly susceptible pearl millet cultivar only 8 h after inoculation with the pathogen. In induced resistant seedlings, appearance of hypersensitive response was recorded 4 h after inoculation. Delayed hypersensitive response was observed in both the non‐host species at 10 h after inoculation. Hypersensitive response in the seedlings of the highly resistant pearl millet cultivar 24 h after inoculation showed 100% hypersensitive response, which was not observed in susceptible and non‐host species, although the induced resistant seedlings showed 90% hypersensitive response after that period of time. Cell death in the tissues of the test seedlings was also observed to change with time. Statistical analysis revealed that the tissues of highly resistant pearl millet seedlings required 2.9 h to attain 50% cell death. Tissues of induced resistant and highly susceptible pearl millet seedlings required 4.65 and 6.50 h respectively. In non‐hosts, 50% cell death was not recorded. Quantification of hydrogen peroxide in the tissue periplasmic spaces of the test seedlings revealed 2.94 h as the time required for 50% hydrogen peroxide accumulation in the tissues of highly resistant pearl millet seedlings. Tissues of induced resistant and highly susceptible pearl millet seedlings needed 3.76 and 5.5 h respectively. Fifty percent hydrogen peroxide localisation in non‐hosts could not be recorded. These results suggested the involvement of hydrogen peroxide, cell death and hypersensitive response in pearl millet host defense against S. graminicola.  相似文献   

3.
4.
Phenylalanine ammonia lyase (PAL) activity was studied in differentgenotypes of pearl millet with varying degrees of susceptibilityto downy mildew disease, after inoculating with Pathotype 1of Sclerospora graminicola. In resistant genotypes, the enzymeactivity significantly increased 24 h after fungal inoculationwhile in the susceptible genotypes, the activity decreased.The increase or decrease in enzyme activity was well-correlatedwith the degree of host resistance to the pathogen. A time-courseof change in activity of PAL after inoculation showed a considerabledifference between resistant and susceptible genotypes. Studieson the activity of PAL in different parts of pearl millet seedlingsrevealed that in the resistant genotype, enzyme activity significantlyincreased at 24 h post-inoculation only in the shoot portion,whereas in mesocotyl and root the activity decreased. In susceptibleseedlings, enzyme activity decreased at 24 h post-inoculationin shoot, mesocotyl and root. The activity of PAL was also foundto be pathotype-specific. Histochemical tests for lignin werepositive in infected cells in the resistant genotypes. The roleof PAL in imparting resistance to pearl millet against downymildew disease is discussed. Key words: Sclerospora graminicola, resistance screening, enzyme activity  相似文献   

5.
6.
Arachidonic acid (AA) induces hypersensitive response (HR) on coleoptile/root regions of two-day-old pearl millet seedlings. The response is comparable to the HR induced by the downy mildew pathogen, Sclerospora graminicola. A time gap in the appearance of cell necrosis among genotypes of pearl millet was related to the degree of resistance to downy mildew. Based on the time required for the development of necrotic spots induced by AA, the pearl millet genotypes were categorised as highly resistant/resistant (HR in 3–6 h), susceptible (HR in 7–12 h) and highly susceptible (HR in 13 h and above). The percentage disease incidence in each genotype was compared with the time required for the development of AA-induced HR. The appearance of hypersensitive cell necrosis was rapid in genotypes having high resistance to downy mildew and was slow in genotypes with high susceptibility. This simple method of screening various pearl millet genotypes in the absence of the pathogen aids in identifying the downy mildew resistant/susceptible host cultivars without the risk of introducing the virulent race of the pathogen.  相似文献   

7.
Autofluorescence of downy mildew resistant and susceptible cells of pearl millet seedlings undergoing hypersensitive reaction (HR) upon Sclerospora graminicola-inoculation and arachidonic acid (AA)-treatment was studied. Two-day-old seedlings of a highly resistant (IP 18296) and a highly susceptible (23D2B) genotype of pearl millet were either inoculated with zoospore suspension of S. graminicola or treated with AA for 24 h. The coleoptiles with hypersensitive necrotic spots were processed by the standard procedure, and the tissues were subjected to fluorescence microscopy. A differential accumulation of autofluor-escent compounds in resistant and susceptible pearl millet genotypes was observed with most accumulation occurring in resistant cells treated with AA. The variation in the degree of fluorescence and the spatial accumulation of autofluorescent compounds among the two inoculated/treated genotypes is discussed.  相似文献   

8.
Abstract

Induction of resistance to downy mildew caused by Plasmopara halstedii in sunflower was studied after treatment with PGPR (plant growth promoting rhizobacteria) strain INR7 (Bacillus spp). Treatment of sunflower seeds with 1×108cfu/ml of PGPR strain INR7 resulted in decreased disease severity and offered 51 and 54% protection under green house and field conditions, respectively. The induction of resistance to P. halstedii by PGPR strain INR7 was accompanied by the accumulation of various host defense-related enzymes in susceptible sunflower seedlings. Enhanced activation of catalase (CAT), phenylalanine ammonia-lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO) and chitinase (CHI) was evident at 6, 9, 12, 12 and 12h post inoculation, respectively, in sunflower seedlings raised from seeds treated with PGPR strain INR7. This enhanced and early activation of defense-related responses in the susceptible cultivar after treatment with PGPR strain INR7 was comparable to that in the resistant cultivar. The results indicate that PGPR strain INR7 induced resistance against P. halstedii in sunflower is mediated through enhanced expression of defense mechanism.  相似文献   

9.
10.
以黄瓜品种‘长春密刺’幼苗为材料,研究了亚精氨(Spd)诱导黄瓜幼苗对白粉病的抗性,并测定Spd处理和白粉菌接种对黄瓜叶片4种防御酶活性及3种防卫基因表达的影响。结果显示:(1)0.2~1.0mmol.L-1 Spd对黄瓜幼苗白粉病抗性均有不同程度的诱抗效果,并以0.8mmol.L-1 Spd处理效果最明显,诱导效率可达55.3%。(2)喷施Spd或接种白粉菌均可提高黄瓜叶片过氧化物酶(POD)、苯丙氨酸解氨酶(PAL)、几丁质酶和β-1,3-葡聚糖酶的活性,且诱导并接种处理的植株叶片上述酶活性均比只诱导不接种处理的上升速度更快;同时,Spd处理和接种白粉菌可以提高植株叶片中POX、PAL、PR-1a基因的表达量。研究表明,Spd处理可以诱导防卫基因表达的增强,提高防御酶活性,显著降低病情指数,增强黄瓜幼苗对白粉病的抗性。  相似文献   

11.
The inheritance of resistance to downy mildew disease and the defense-related enzymes β-1,3-glucanase and peroxidase was studied in crosses of pearl millet using a generation-mean analysis. The study material comprised six generations (susceptible and resistant parents, F1, F2, BC1 and BC2) in three crosses. Seedlings from these generations were inoculated with the downy mildew pathogen Sclerospora graminicola and disease incidence was recorded. Analysis of constitutive levels of β-1,3-glucanase and peroxidase in the seedlings of different generations indicated that the resistant populations showed higher enzyme activities, while lower activities of the enzymes were recorded in the susceptible populations. In the generation-mean analysis, the significance of scaling tests revealed the existence of non-allelic interactions in the inheritance of resistance to downy mildew as well as with the enzymes. Among the gene effects, both additive and dominant effects were significant. All the non-allelic interaction effects were significant in the crosses. Studies on the isozyme patterns of the enzymes substantiated the results of the disease-incidence experiments in most of the generations. The results indicated that the inheritance of downy mildew disease resistance and the expression of β-1,3-glucanase and peroxidase in pearl millet is not only under the control of additive and dominant genes but are also governed by complex non-allelic interactions. Received: 30 April 2000 / Accepted: 17 October 2000  相似文献   

12.
Bacterial stalk rot (BSR) of maize caused by Dickeya zeae is an important disease in northwest region of India. In the current study, eighty maize lines were evaluated for resistance against this disease. Of these, 20 were moderately resistant, 25 were moderately susceptible and the rest were highly susceptible to BSR. Six lines from each set were randomly selected. Activities of three antioxidant enzymes, viz. phenylalanine ammonia lyase (PAL), peroxidase (POX) and polyphenol oxidase (PPO) were analysed from these three sets of maize lines representing different levels of resistance. A trend of elevated activity of PAL, POX and PPO was observed in all the three sets of maize lines. The results showed significantly more activity of these three enzymes in moderately resistant than highly susceptible maize lines. The activity of PAL and PPO peaked after 48 hr and of POX after 72 hr of challenge inoculation by D. zeae in all the maize lines. The activity of these enzymes further correlated negatively with disease development. Our results show that PAL, POX and PPO play an important role in contributing towards resistance in maize against BSR.  相似文献   

13.
14.
Leaf curl disease caused by Cotton Leaf Curl Burewala virus (CLCuBuV) has been recognized as serious threat to cotton in Indian subcontinent. However, information about cotton–CLCuBuV interaction is still limited. In this study, the level of phenolic compounds, total soluble proteins, and malondialdehyde (MDA) and the activities of phenylalanine ammonia-lyase (PAL), peroxidase (POX), catalase (CAT), proteases, superoxide dismutase (SOD), and polyphenol oxidase (PPO) were studied in leaves of two susceptible (CIM-496 & NIAB-111) and two resistant (Ravi and Co Tiep Khac) cotton genotypes. Disease symptoms were mild in the resistant genotypes but were severe in highly susceptible genotypes. The results showed that phenolic compounds, proteins, PAL, POX, CAT, proteases, SOD, PPO, and MDA play an active role in disease resistance against CLCuBuV. The amount of total phenols, proteases, MDA, and PPO was significantly higher in leaves of CLCuBuV-inoculated plants of both resistant genotypes as in non-inoculated plants, and decreased in CLCuBuV-inoculated plants of both susceptible genotypes over their healthy plants. POX, protein content, SOD, and PAL activities showed lower values in resistant genotypes, while they decreased significantly in susceptible genotypes as compared to the noninoculated plants except PAL, which showed non-significant decrease. CAT was found to be increased in both susceptible and resistant genotypes with maximum percent increase in resistant genotype Ravi, as compared to non-inoculated plants. The results showed significantly higher concentrations of total phenols and higher activity of protease, MDA, SOD, and PPO in resistant genotype Ravi after infection with CLCuBuV, suggesting that there is a correlation between constitutive induced levels of these enzymes and plant resistance that could be considered as biochemical markers for studying plant-virus compatible and incompatible interactions.  相似文献   

15.
Priming can improve plant innate capability to deal with the stresses caused by both biotic and abiotic factors. In this study, the effect of DL-β-amino-n-butyric acid (BABA) against Aphis glycines Matsumura, the soybean aphid (SA) was evaluated. We found that 25 mM BABA as a root drench had minimal adverse impact on plant growth and also efficiently protected soybean from SA infestation. In both choice and non-choice tests, SA number was significantly decreased to a low level in soybean seedlings drenched with 25 mM BABA compared to the control counterparts. BABA treatment resulted in a significant increase in the activities of several defense enzymes, such as phenylalanine ammonia-lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO), chitinase (CHI), and β-1, 3-glucanase (GLU) in soybean seedlings attacked by aphid. Meanwhile, the induction of 15 defense-related genes by aphid, such as AOS, CHS, MMP2, NPR1-1, NPR1-2, and PR genes, were significantly augmented in BABA-treated soybean seedlings. Our study suggest that BABA application is a promising way to enhance soybean resistance against SA.  相似文献   

16.
Biochemical characterisation of pearl millet genotypes was carried at pre- (45 DAS) and post-infection (57 DAS i.e. 7 days after infection) stages. Total phenol content at pre-infection stage did not show inherent resistance or susceptibility. While the total phenol content was found to be higher in susceptible genotypes at post-infection stage, qualitative analysis of phenol through high-performance thin layer chromatography showed absence of ferulic acid in resistant genotypes at pre-infection stage. Peroxidase (POX) activity was higher in susceptible genotypes at both the stages of analysis. Constitutive activity of phenylalanine ammonia lyase was higher in resistant genotype whereas induced activity was recorded higher in susceptible genotypes. Native poly-acrylamide gel electrophoresis isozyme banding pattern of POX showed some inducible band(s) due to disease infection in resistant and susceptible genotypes.  相似文献   

17.
18.
Oligochitosan (OC) can regulate plant defense responses in many aspects, but the basic signal transduction pathway is still unclear. In this study, we used transgenic (TG) tobacco (Nicotiana Tabacum var. Samsun NN) as plant material whose oligochitosan induced protein kinase (OIPK) gene was inhibited by antisense transformation, to study the role of OIPK in tobacco defense reactions. The results showed that OIPK could increase tobacco resistance against tobacco mosaic virus (TMV), in that wild-type (WT) tobacco showed longer lesion appearance time, higher lesion inhibition ratio, smaller average final lesion diameter and lower average final lesion area percent to whole leaf area. It led us to analyze some pathogenesis related (PR) enzymes' activities and mRNA level, which played roles in tobacco resistance against TMV. We found that phenylalanine ammonia-lyase (PAL) and peroxidase (POD) activities were positively related to OIPK, but not polyphenol oxidase (PPO). It was also demonstrated that OIPK mRNA could be induced by OC, wound and TMV infection. In addition, OIPK could up-regulated three PR genes, PAL, chitinase (CHI) and β-1, 3-glucanase (GLU) mRNA level to different extent. Taken together, these results implied that OIPK could function in tobacco resistance against both biotic and abiotic stress, possibly via various PR proteins.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号