首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apolipoprotein (apo) E and apoC-III concentrations in VLDL and LDL are associated with coronary heart disease. We studied the relationship between apoE and apoC-III and the abnormal concentrations and distribution of apoB lipoproteins in 10 hypercholesterolemic and 13 hypertriglyceridemic patients compared with 12 normolipidemic subjects (mean age, 45 years). Sixteen distinct types of apoB lipoprotein particles were separated by first using anti-apoE and anti-apoC-III immunoaffinity chromatography in sequence and then ultracentrifugation [light VLDL, dense VLDL, IDL, and LDL, with apoE with or without apoC-III (E(+)C-III(+), E(+)C-III(-)) or without apoE with or without apoC-III (E(-)C-III(+), E(-)C-III(-))]. The concentrations of VLDL particles with apoC-III (E(+)C-III(+), E(-)C-III(+)) were increased in the hypertriglyceridemic group compared with the hypercholesterolemic and normolipidemic groups. These particles were the most triglyceride rich of the particle types, and their triglyceride content was twice as high in hypertriglyceridemics compared with the other two groups. Hypertriglyceridemics had a similar concentration of total E(-)C-III(-) particles compared with normolipidemics, but the E(-)C-III(-) particles were distributed more to VLDL and IDL than to LDL. Hypercholesterolemics, in contrast, were distinguished from the normolipidemic group by 2-fold higher concentrations of apoB lipoproteins without apoE or apoC-III (E(-)C-III(-)), mainly LDL, which had high cholesterol content. Nonetheless, both normolipidemics and hypercholesterolemics had apoC-III-containing VLDL, which comprised 68% and 43% of their total VLDL particles. E(+)C-III(-) particles were a minor type, comprising <10% of particles in all lipoproteins and patient groups. Therefore, VLDL particles with apoC-III may play a central role in identifying the high risk of coronary heart disease in hypertriglyceridemia, but their substantial prevalence in normolipidemics may be of clinical significance as well.  相似文献   

2.
Moderate chronic kidney disease (CKD) (defined by an estimated glomerular filtration rate of 30–60 ml/min) is associated with mild hypertriglyceridemia related to delayed catabolism of triglyceride-rich lipoprotein particles. Altered apolipoprotein C-III (apoC-III) metabolism may contribute to dyslipidemia in CKD. To further characterize the dyslipidemia of CKD, we investigated the kinetics of plasma apoC-III in 7 nonobese, nondiabetic, non-nephrotic CKD subjects and 7 age- and sex-matched healthy controls, using deuterated leucine ([5, 5, 5, 2H3]leucine), gas chromatography-mass spectrometry, and multicompartmental modeling. Compared with controls, CKD subjects had higher concentrations of plasma and VLDL triglycerides and plasma and VLDL apoC-III (P < 0.05). The increased plasma apoC-III concentration was associated with a decreased apoC-III fractional catabolic rate (FCR) (1.21 ± 0.15 vs. 0.74 ± 0.12 pools/day, P = 0.03). There were no differences between apoC-III production rates of controls and those of CKD subjects. In CKD subjects, plasma apoC-III concentration was significantly and negatively correlated with apoC-III FCR (r = −0.749, P = 0.05) but not with apoC-III production rate. Plasma apoC-III concentration was positively correlated with plasma and VLDL triglycerides and VLDL apoB concentrations and negatively correlated with VLDL apoB FCR (P < 0.05 for all). ApoC-III FCR was negatively correlated with plasma and VLDL triglycerides and VLDL apoB concentration and positively correlated with VLDL apoB FCR (P < 0.05 for all). Altered plasma apoC-III metabolism is a feature of dyslipidemia in moderate CKD. Modification of apoC-III catabolism may be an important therapeutic target for reducing cardiovascular disease risk in moderate CKD.  相似文献   

3.
In vitro lipolysis of very low density lipoprotein (VLDL) from normolipidemic and familial dysbetalipoproteinemic plasma by purified bovine milk lipoprotein lipase was studied using the combined single vertical spin and vertical autoprofile method of lipoprotein analysis. Lipolysis of normolipidemic plasma supplemented with autologous VLDL resulted in the progressive transformation of VLDL to low density lipoprotein (LDL) via intermediate density lipoprotein (IDL) with the transfer of the excess cholesterol to high density lipoprotein (HDL). At the end of 60 min lipolysis, 92-96% of VLDL triglyceride was hydrolyzed, and, with this process, greater than 95% of the VLDL cholesterol and 125-I-labeled VLDL protein was transferred from the VLDL to the LDL and HDL density region. When VLDL from the plasma of an individual with familial dysbetalipoproteinemia was substituted for VLDL from normolipidemic plasma, less than 50% of the VLDL cholesterol and 65% of 125I-labeled protein was removed from the VLDL density region, although 84-86% of VLDL triglyceride was lipolyzed. Analysis of familial dysbetalipoproteinemic VLDL fractions from pre- and post-lipolyzed plasma showed that the VLDL remaining in the postlipolyzed plasma (lipoprotein lipase-resistant VLDL) was richer in cholesteryl ester and tetramethylurea-insoluble proteins than that from prelipolysis plasma; the major apolipoproteins in the lipoprotein lipase-resistant VLDL were apoB and apoE. During lipolysis of normolipidemic VLDL containing trace amounts of 125I-labeled familial dysbetalipoproteinemic VLDL, removal of VLDL cholesterol was nearly complete from the VLDL density region, while removal of 125I-labeled protein was only partial. A competition study for lipoprotein lipase, comparing normolipidemic and familial dysbetalipoproteinemic VLDL to an artificial substrate ([3H]triolein), revealed that normolipidemic VLDL is clearly better than familial dysbetalipoproteinemic VLDL in competing for the release of 3H-labeled free fatty acids. The results of this study suggest that, in familial dysbetalipoproteinemic individuals, a subpopulation of VLDL rich in cholesteryl ester, apoB, and apoE is resistant to in vitro conversion by lipoprotein lipase to particles having LDL-like density. The presence of this lipoprotein lipase-resistant VLDL in familial dysbetalipoproteinemic subjects likely contributes to the increased level of cholesteryl ester-rich VLDL and IDL in the plasma of these subjects.  相似文献   

4.
The purpose of this study was to determine the relationship between insulin resistance and apoB100 metabolism in African American males. Fifteen subjects, 33 +/- 7.6 years old, were divided into two groups, insulin-resistant (IR) or insulin-sensitive (IS), based on the sum of the plasma insulin concentrations during an oral glucose tolerance test. The IR group (n = 8) differed significantly from the IS group (n = 7) with respect to body mass index (BMI) (30.1 vs 23.1 kg/m2; P = 0.0003), fasting triglycerides, (118 vs 54 mg/dl, P = 0. 013), and total plasma apolipoprotein B100 (80 vs 59 mg/dl, P = 0.014). Significantly elevated apoB100 levels in the IR group were seen in very low density lipoprotein (VLDL) (5.1 vs 3.4 mg/dl, P = 0.045) and intermediate density lipoprotein (IDL) (18 vs 12 mg/dl, P = 0.017) but not in low density lipoprotein (LDL) (57 vs 46 mg/dl, P = 0.19). Total cholesterol, high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), apolipoprotein A-I, and blood pressure were not significantly different between the two groups. There was a high correlation between the sum of insulins during the oral glucose tolerance test and the BMI (rho = 0.88, P = 0.0001). In five IR and five IS subjects, apoB100 kinetics were determined in the fasting state using a bolus dose of deuteroleucine and multicompartmental modeling. IR subjects had significantly lower fractional catabolic rates (FCR) in the larger VLDL1 (-70%), the smaller VLDL2 (-71%), and the IDL (-53%) fractions. No significant differences in production rates were observed for any lipoprotein class. There was a significant correlation between the sum of insulins and the FCR of the apoB100 of VLDL1 (rho = -0.65, P = 0.05) and of IDL (rho = -0.85, P = 0.004). The correlation coefficient of the sum of insulins and the FCR of VLDL2 was -0.61 with P = 0.067. We conclude that in this population of African American males, IR is correlated with a decreased FCR of apoB100 in VLDL and IDL and elevated plasma levels of apoB and triglycerides (TG). These changes might be explained by decreased clearance of the TG-rich lipoproteins. We postulate that this may reflect decreased lipoprotein and/or hepatic lipase activity related to insulin resistance and its association with obesity.  相似文献   

5.
LDL receptor-deficient (LDLR(-/-)) mice fed a Western diet exhibit severe hyperlipidemia and develop significant atherosclerosis. Apolipoprotein E (apoE) is a multifunctional protein synthesized by hepatocytes and macrophages. We sought to determine effect of macrophage apoE deficiency on severe hyperlipidemia and atherosclerosis. Female LDLR(-/-) mice were lethally irradiated and reconstituted with bone marrow from either apoE(-/-) or apoE(+/+) mice. Four weeks after transplantation, recipient mice were fed a Western diet for 8 weeks. Reconstitution of LDLR(-/-) mice with apoE(-/-) bone marrow resulted in a slight reduction in plasma apoE levels and a dramatic reduction in accumulation of apoE and apoB in the aortic wall. Plasma lipid levels were unaffected when mice had mild hyperlipidemia on a chow diet, whereas IDL/LDL cholesterol levels were significantly reduced when mice developed severe hyperlipidemia on the Western diet. The hepatic VLDL production rate of mice on the Western diet was decreased by 46% as determined by injection of Triton WR1339 to block VLDL clearance. Atherosclerotic lesions in the proximal aorta were significantly reduced, partially due to reduction in plasma total cholesterol levels (r=0.56; P<0.0001). Thus, macrophage apoE-deficiency alleviates severe hyperlipidemia by slowing hepatic VLDL production and consequently reduces atherosclerosis in LDLR(-/-) mice.  相似文献   

6.
We investigated the metabolism of very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL), and low density lipoprotein (LDL) apolipoprotein B (apoB) in seven patients with combined hyperlipidemia (CHL), using 125I-labeled VLDL and 131I-labeled LDL and compartmental modeling, before and during lovastatin treatment. Lovastatin therapy significantly reduced plasma levels of LDL cholesterol (142 vs 93 mg/dl, P less than 0.0005) and apoB (1328 vs 797 micrograms/ml, P less than 0.001). Before treatment, CHL patients had high production rates (PR) of LDL apoB. Three-fourths of this LDL apoB flux was derived from sources other than circulating VLDL and was, therefore, defined as "cold" LDL apoB flux. Compared to baseline, treatment with lovastatin was associated with a significant reduction in the total rate of entry of apoB-containing lipoproteins into plasma in all seven CHL subjects (40.7 vs. 25.7 mg/kg.day, P less than 0.003). This reduction was associated with a fall in total LDL apoB PR and in "cold" LDL apoB PR in six out of seven CHL subjects. VLDL apoB PR fell in five out of seven CHL subjects. Treatment with lovastatin did not significantly alter VLDL apoB conversion to LDL apoB or LDL apoB fractional catabolic rate (FCR) in CHL patients. In three patients with familial hypercholesterolemia who were studied for comparison, lovastatin treatment increased LDL apoB FCR but did not consistently alter LDL apoB PR. We conclude that lovastatin lowers LDL cholesterol and apoB concentrations in CHL patients by reducing the rate of entry of apoB-containing lipoproteins into plasma, either as VLDL or as directly secreted LDL.  相似文献   

7.
8.
The St. Thomas' mixed hyperlipidemic (SMHL) rabbit (previously St. Thomas' Hospital rabbit) is a putative model of familial combined hyperlipidemia (FCH). When fed a low (0.08%) cholesterol diet, it exhibits elevations in both plasma cholesterol and triglyceride compared to New Zealand White (NZW) controls. To determine the mechanism for this hyperlipidemia we studied the secretion of apolipoprotein B (apoB)-containing lipoproteins from perfused livers of both young and mature rabbits. During a 3-h perfusion we measured the total cholesterol and triglyceride content of the medium and the cholesterol, triglyceride, and apoB content of very low density lipoprotein (VLDL)(1) (S(f) 60;-400), VLDL(2) (S(f) 20;-60), intermediate (S(f) 12;-20), and low (S(f) 0;-12) density lipoproteins (IDL, LDL). Lipoprotein concentrations increased linearly throughout the perfusion period. The rate of cholesterol output was 3-fold higher (459 vs. 137 ng/g liver/min, P = 0.003) in SMHL versus NZW rabbits whilst that of triglyceride was similar (841 vs. 662 ng/g liver/min, NS). VLDL(1) cholesterol output was elevated 2-fold (232 vs. 123 ng/g liver/min, P < 0.05) and VLDL(2) + IDL + LDL cholesterol output, 4.5-fold (106 vs. 23 ng/g liver/min, P < 0. 005) in SMHL versus NZW rabbits. ApoB output in VLDL1 was 38 ng/g liver per min in SMHL and 14 ng/g liver per min in NZW (NS). In SMHL VLDL(2) + IDL + LDL apoB was increased 9-fold at 53 versus 6 ng/g liver per min in NZW (P < 0.001). We conclude that the SMHL rabbit overproduces apoB-containing lipoproteins particularly in the VLDL(2) + IDL + LDL fraction, a characteristic consistent with its use as a model of FCH.  相似文献   

9.
We have used adenovirus-mediated gene transfer in apolipoprotein (apo)E−/− mice to elucidate the molecular etiology of a dominant form of type III hyperlipoproteinemia (HLP) caused by the R142C substitution in apoE4. It was found that low doses of adenovirus expressing apoE4 cleared cholesterol, whereas comparable doses of apoE4[R142C] greatly increased plasma cholesterol, triglyceride, and apoE levels, caused accumulation of apoE in VLDL/IDL/LDL region, and promoted the formation of discoidal HDL. Co-expression of apoE4[R142C] with lecithin cholesterol acyltransferase (LCAT) or lipoprotein lipase (LPL) in apoE−/− mice partially corrected the apoE4[R142C]-induced dyslipidemia. High doses of C-terminally truncated apoE4[R142C]-202 partially cleared cholesterol in apoE−/− mice and promoted formation of discoidal HDL. The findings establish that apoE4[R142C] causes accumulation of apoE in VLDL/IDL/LDL region and affects in vivo the activity of LCAT and LPL, the maturation of HDL, and the clearance of triglyceride-rich lipoproteins. The prevention of apoE4[R142C]-induced dyslipidemia by deletion of the 203-299 residues suggests that, in the full-length protein, the R142C substitution may have altered the conformation of apoE bound to VLDL/IDL/LDL in ways that prevent triglyceride hydrolysis, cholesterol esterification, and receptor-mediated clearance in vivo.  相似文献   

10.
The measurement of apolipoprotein B (apoB) in purified lipoproteins by immunological assays is subject to criticism because of denatured epitopes or immunoreactivity differences between purified lipoproteins and standard. Chemical methods have therefore been developed, such as the selective precipitation of apoB followed by quantification of the precipitate. In this study, we present the measurement of apoB concentration in lipoproteins purified by ultracentrifugation by combining isopropanol precipitation and gas chromatography/mass spectrometry. Very low density lipoprotein (VLDL; d < 1.006 g/mL); VLDL plus intermediate density lipoprotein (VLDL + IDL; d < 1.019 g/mL); and VLDL, IDL, and low density lipoprotein (VLDL + IDL + LDL; d < 1.063 g/mL) were purified by ultracentrifugation. Apolipoprotein B-100 was selectively precipitated by isopropanol. The leucine content of the pellet was then determined by gas chromatography/mass spectrometry, using norleucine as internal standard. Knowledge of the number of leucine molecules in one apoB-100 molecule makes it possible to calculate the plasma concentration of apoB in the various lipoprotein fractions. ApoB in IDL (d 1.006-1.019 g/mL) and LDL (d 1.019-1.063 g/mL) were then determined by subtracting VLDL-apoB from apoB in lipoproteins d < 1.019 and apoB in lipoproteins d < 1.019 g/mL from apoB in lipoproteins d < 1.063 g/mL, respectively. The isopropanol precipitate was verified as pure apoB (>97%) in lipoprotein fractions isolated from normo- and hyperlipidemic plasma and the method appeared reproducible.The combination of isopropanol precipitation and the GC/MS method appears therefore to be a precise and reliable method for kinetic and epidemiological studies.  相似文献   

11.
Atorvastatin, a synthetic HMG-CoA reductase inhibitor used for the treatment of hyperlipidemia and the prevention of coronary artery disease, significantly lowers plasma cholesterol and low-density lipoprotein cholesterol (LDL-C) levels. It also reduces total plasma triglyceride and apoE concentrations. In view of the direct involvement of apoE in the pathogenesis of atherosclerosis, we have investigated the effect of atorvastatin treatment (40 mg/day) on in vivo rates of plasma apoE production and catabolism in six patients with combined hyperlipidemia using a primed constant infusion of deuterated leucine. Atorvastatin treatment resulted in a significant decrease (i.e., 30-37%) in levels of total triglyceride, cholesterol, LDL-C, and apoB in all six patients. Total plasma apoE concentration was reduced from 7.4 +/- 0.9 to 4.3 +/- 0.2 mg/dl (-38 +/- 8%, P < 0.05), predominantly due to a decrease in VLDL apoE (3.4 +/- 0.8 vs. 1.7 +/- 0.2 mg/dl; -42 +/- 11%) and IDL/LDL apoE (1.9 +/- 0.3 vs. 0.8 +/- 0.1 mg/dl; -57 +/- 6%). Total plasma lipoprotein apoE transport (i.e., production) was significantly reduced from 4.67 +/- 0.39 to 3.04 +/- 0.51 mg/kg/day (-34 +/- 10%, P < 0.05) and VLDL apoE transport was reduced from 3.82 +/- 0.67 to 2.26 +/- 0.42 mg/kg/day (-36 +/- 10%, P = 0.057). Plasma and VLDL apoE residence times and HDL apoE kinetic parameters were not significantly affected by drug treatment. Percentage decreases in VLDL apoE concentration and VLDL apoE production were significantly correlated with drug-induced reductions in VLDL triglyceride concentration (r = 0.99, P < 0.001; r = 0.88, P < 0.05, respectively, n = 6). Our results demonstrate that atorvastatin causes a pronounced decrease in total plasma and VLDL apoE concentrations and a significant decrease in plasma and VLDL apoE rates of production in patients with combined hyperlipidemia.  相似文献   

12.
Apolipoprotein B (apoB) metabolism was investigated in 20 men with plasma triglyceride 0.66-2.40 mmol/l and plasma cholesterol 3.95-6. 95 mmol/l. Kinetics of VLDL(1) (S(f) 60-400), VLDL(2) (S(f) 20-60), IDL (S(f) 12-20), and LDL (S(f) 0;-12) apoB were analyzed using a trideuterated leucine tracer and a multicompartmental model which allowed input into each fraction. VLDL(1) apoB production varied widely (from 5.4 to 26.6 mg/kg/d) as did VLDL(2) apoB production (from 0.18 to 8.4 mg/kg/d) but the two were not correlated. IDL plus LDL apoB direct production accounted for up to half of total apoB production and was inversely related to plasma triglyceride (r = -0.54, P = 0.009). Percent of direct apoB production into the IDL/LDL density range (r = 0.50, P < 0.02) was positively related to the LDL apoB fractional catabolic rate (FCR). Plasma triglyceride in these subjects was determined principally by VLDL(1) and VLDL(2) apoB fractional transfer rates (FTR), i.e., lipolysis. IDL apoB concentration was regulated mainly by the IDL to LDL FTR (r = -0.71, P < 0.0001). LDL apoB concentration correlated with VLDL(2) apoB production (r = 0.48, P = 0.018) and the LDL FCR (r = -0.77, P < 0. 001) but not with VLDL(1), IDL, or LDL apoB production. Subjects with predominantly small, dense LDL (pattern B) had lower VLDL(1) and VLDL(2) apoB FTRs, higher VLDL(2) apoB production, and a lower LDL apoB FCR than those with large LDL (pattern A). Thus, the metabolic conditions that favored appearance of small, dense LDL were diminished lipolysis of VLDL, resulting in a raised plasma triglyceride above the putative threshold of 1.5 mmol/l, and a prolonged residence time for LDL. This latter condition presumably permitted sufficient time for the processes of lipid exchange and lipolysis to generate small LDL particles.  相似文献   

13.
Familial combined hyperlipidemia (FCHL) is a common inherited hyperlipidemia and a major risk factor for atherothrombotic cardiovascular disease. The cause(s) leading to FCHL are largely unknown, but the existence of unidentified "major" genes that would increase VLDL production and of "modifier" genes that would influence the phenotype of the disease has been proposed. Expression of apolipoprotein A-II (apoA-II), a high density lipoprotein (HDL) of unknown function, in transgenic mice produced increased concentration of apoB-containing lipoproteins and decreased HDL. Here we show that expression of human apoA-II in apoE-deficient mice induces a dose-dependent increase in VLDL, resulting in plasma triglyceride elevations of up to 24-fold in a mouse line that has 2-fold the concentration of human apoA-II of normolipidemic humans, as well as other well-known characteristics of FCHL: increased concentrations of cholesterol, triglyceride, and apoB in very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL) and low density lipoprotein (LDL), reduced HDL cholesterol, normal lipoprotein lipase and hepatic lipase activities, increased production of VLDL triglycerides, and increased susceptibility to atherosclerosis. However, FCHL patients do not have plasma concentrations of human apoA-II as high as those of apoE-deficient mice overexpressing human apoA-II, and the apoA-II gene has not been linked to FCHL in genome-wide scans. Therefore, the apoA-II gene could be a "modifier" FCHL gene influencing the phenotype of the disease in some individuals through unkown mechanisms including an action on a "major" FCHL gene. We conclude that apoE-deficient mice overexpressing human apoA-II constitute useful animal models with which to study the mechanisms leading to overproduction of VLDL, and that apoA-II may function to regulate VLDL production.  相似文献   

14.
The kinetics of apolipoproteins B and C were studied in 14 normal and hyperlipoproteinemic subjects after injection of exogenously (125)I-labeled very low density lipoprotein (VLDL) particles. Plasma radioactivities of apoB and apoC were determined over a period of 4 days in VLDL (d < 1.006) and total radioactivity in intermediate (IDL) (1.006 < d < 1.019), low (LDL) (1.019 < d < 1.063), and high (HDL) (1.063 < d < 1.21) density lipoproteins. The data were analyzed by the use of a model, developed mostly from these data, with the following results. The VLDL particle undergoes a series of incremental density changes, most likely due to a number of delipidation steps, during which apoB stays with the particle until the density reaches the IDL range. There is, however, a loss of apoC associated with these delipidation steps. In our normal subjects, all IDL apoB eventually becomes LDL. In our hyperlipemic subjects some of the apoB on IDL is also degraded directly. The apoC lost by VLDL and IDL recycles to HDL, and most of it is picked up again by newly synthesized VLDL. There is a slowdown of the stepwise delipidation process in all hyperlipemic individuals studied. Three additional features became apparent in the type III subjects. First, there is a significant increase (a factor of 2 compared to normal) in the apoB synthesis rate by way of VLDL; second, there is an induced direct apoB synthesis pathway by way of IDL (and/or LDL); third, a bypass of the regular stepwise VLDL delipidation pathway is induced by which VLDL particles lose apoC but none of their apoB, thereby forming a new particle with metabolic properties similar to LDL, but with a density still in the VLDL density range. Two type III patients treated with nicotinic acid and clofibrate showed a sharp decrease in their VLDL apoB synthesis rates. This was somewhat compensated by an increased IDL apoB synthesis rate. A type I patient on a medium chain triglyceride diet also showed a number of metabolic changes, including reduced VLDL apoB synthesis and the induction of considerable IDL and/or LDL apoB synthesis.  相似文献   

15.
The composition, apolipoprotein structure and lipoprotein binding to the LDL receptor were studied for very-low-density (VLDL) and low-density lipoprotein (LDL) particles isolated from subjects with apoE phenotype E3/3 (E3), E2/2 or E2/3 (E2+) and E3/4 or E4/4 (E4+) and a wide range of plasma triglyceride (TG) contents. The data combined for all three phenotype groups can be summarized as follows. (i) A decrease in accessibility of VLDL tryptophan residues to I- anions with a decrease in tryptophan surface density, concomitant with an increase in VLDL dimensions, reflects the increased efficiency of protein-protein interactions. (ii) A gradual increase in the quenching constant for LDL apoB fluorescence with an increase in TG/cholesterol (Chol) ratio reflects the 'freezing' effect of Chol molecules on apoB dynamics. (iii) Different mechanisms specific for a particular lipoprotein from E3/3 or E2/3 subjects are responsible for apoE-mediated VLDL binding and apoB-mediated LDL binding to the LDL receptor in a solid-phase binding assay. (iv) The 'spacing' effect of apoC-III molecules on apoE-mediated VLDL binding results in a decrease in the number of binding sites. (v) The maximum of the dependence of the LDL binding affinity constant on relative tryptophan density corresponds to LDL intermediate size. VLDL particles from hypertriglyceridemic E2/3 heterozygotic individuals had remnant-like properties (increased cholesterol, apoE and decreased apoC-III content) while their binding efficiency was unchanged. Based on the affinity constant value and LDL-Chol content, increased competition between VLDL and LDL for the binding to the LDL receptor upon increase in plasma TG is suggested, and LDL from hypertriglyceridemic E3/3 homozygotic individuals is the most efficient competitor.  相似文献   

16.
Objective: The metabolic syndrome is characterized by defective hepatic apolipoprotein B‐100 (apoB) metabolism. Hepato‐intestinal cholesterol metabolism may contribute to this abnormality. Research Methods and Procedures: We examined the association of cholesterol absorption and synthesis with the kinetics of apoB in 35 obese subjects with the metabolic syndrome. Plasma ratios of campesterol and lathosterol to cholesterol were used to estimate cholesterol absorption and synthesis, respectively. Very‐low‐density lipoprotein (VLDL), intermediate‐density lipoprotein (IDL), and low‐density lipoprotein apoB kinetics were studied using stable isotopy and mass spectrometry. Kinetic parameters were derived using multicompartmental modeling. Results: Compared with controls, the obese subjects had significantly lower plasma ratios of campesterol, but higher plasma ratios of lathosterol (p < 0.05 in both). This was associated with elevated VLDL‐apoB secretion rate (p < 0.05) and delayed fractional catabolism of IDL and low‐density lipoprotein‐apoB (p < 0.01). In the obese group, plasma ratios of campesterol correlated inversely with VLDL‐apoB secretion (r = ?0.359, p < 0.05), VLDL‐apoB (r = ?0.513, p < 0.01) and IDL‐apoB (r = ?0.511, p < 0.01) pool size, and plasma lathosterol ratio (r = ?0.366, p < 0.05). Subjects with low cholesterol absorption had significantly higher VLDL‐apoB secretion, VLDL‐apoB and IDL‐apoB pool size, and plasma lathosterol ratio (p < 0.05 in both) than those with high cholesterol absorption. Discussion: Subjects with the metabolic syndrome have oversecretion of VLDL‐apoB and decreased catabolism of apoB‐containing particles and low absorption and high synthesis rates of cholesterol. These changes in cholesterol homeostasis may contribute to the kinetic defects in apoB metabolism in the metabolic syndrome.  相似文献   

17.
Previous studies have investigated the potential atherogenicity and thrombogenicity of triglyceride-rich lipoprotein (TRL) remnants by isolating them from plasma within a remnant-like particle (RLP) fraction, using an immunoaffinity gel containing specific anti-apoB-100 and anti-apoA-I antibodies. In order to characterize lipoproteins in this RLP fraction and to determine to what extent their composition varies from one individual to another, we have used automated gel filtration chromatography to determine the size heterogeneity of RLP isolated from normolipidemic control subjects (n = 8), and from type III (n = 6) and type IV (n = 9) hyperlipoproteinemic patients, who by selection had similarly elevated levels of plasma triglyceride (406 +/- 43 and 397 +/- 35 mg/dl, respectively). Plasma RLP triglyceride, cholesterol, apoB, apoC-III, and apoE concentrations were elevated 2- to 6-fold (P < 0. 05) in hyperlipoproteinemic patients compared to controls. RLP fractions of type III patients were enriched in cholesterol and apoE compared to those of type IV patients, and RLP of type IV patients were enriched in triglyceride and apoC-III relative to those of normolipidemic subjects. In normolipidemic subjects, the majority of RLP had a size similar to LDL or HDL. The RLP of hyperlipoproteinemic patients were, however, larger and were similar in size to TRL, or were intermediate in size (i.e., ISL) between that of TRL and LDL. Compared to controls, ISL in the RLP fraction of type III patients were enriched in apoE relative to apoC-III, whereas in type IV patients they were enriched in apoC-III relative to apoE. These results demonstrate that: 1) RLP are heterogeneous in size and composition in both normolipidemic and hypertriglyceridemic subjects, and 2) the apoE and apoC-III composition of RLP is different in type III compared to type IV hyperlipoproteinemic patients.  相似文献   

18.
Sixteen patients differing widely in plasma triglyceride content were divided into three groups by their apolipoprotein E (apoE) phenotype—E33 homozygotes, E23, and E34 heterozygotes. The plasma lipid and apoE distribution between individual lipoproteins was followed by capillary isotachophoresis (CITP) of plasma samples pre-stained with lipid fluorescent probe NBD-C6-ceramide and by fluorescein-labeled apoE, respectively. Among 12 peaks visualized by ceramide staining, an individual peak with very low density lipoproteins (VLDL) was identified. The VLDL cholesterol and apoE content determined by CITP directly in whole plasma were significantly related to their content as determined by conventional analysis with isolated VLDL. The ceramide distribution among lipoprotein pools was insensitive to apoE phenotype (49–53 : 7–11 : 39–43% for HDL, VLDL, and IDL/LDL, respectively) while the preferential binding of apoE to VLDL was observed in E34 patients compared to E33 (62 : 19 : 20 vs. 70 : 9 : 22%). In a study of apoE/F displacement from lipoproteins at plasma titration by apoC-III in vitro, apoE was found to bind more tightly to VLDL from E34 compared to E33 patients as evidenced by both the increased non-displaceable apoE pool, the increased VLDL sorbtion capacity for apoE, and the decreased displacement parameter in a “container” model of lipoprotein binding. Two different types of apoE package in a whole lipoprotein profile were observed. ApoE structure in a particular lipoprotein may underlie the phenotype-sensitive apoE distribution and apoC-III interference in hypertriglyceridemia.  相似文献   

19.
Cholesteryl ester transfer protein (CETP) inhibition leads to changes in lipoprotein metabolism. We studied the effect of the CETP inhibitor torcetrapib on VLDL apolipoprotein E (apoE) metabolism. Subjects, pretreated with atorvastatin (n = 9) or untreated (n = 10), received placebo followed by torcetrapib (4 weeks each). After each treatment, subjects underwent a primed-constant infusion of D(3)-leucine to determine the VLDL apoE production rate (PR) and fractional catabolic rate (FCR). Torcetrapib alone reduced the VLDL apoE pool size (PS) (-28%) by increasing the VLDL apoE FCR (77%) and leaving the VLDL apoE PR unchanged. In subjects pretreated with atorvastatin, torcetrapib increased the VLDL apoE FCR (25%) and PR (21%). This left the VLDL apoE PS unchanged but increased the VLDL apoE content, likely enhancing VLDL clearance and reducing LDL production in this group. Used alone, torcetrapib reduces the VLDL apoE PS by increasing the apoE FCR while leaving the VLDL apoE content unchanged. In contrast, torcetrapib added to atorvastatin treatment increases both the VLDL apoE FCR and PR, leaving the VLDL apoE PS unchanged. Adding torcetrapib to atorvastatin treatment increases the VLDL apoE content, likely leading to decreased conversion of VLDL to LDL, reduced LDL production, and lower levels of circulating VLDL and LDL.  相似文献   

20.
The present study was designed to evaluate the metabolism of chylomicron and chylomicron remnants by measuring serum apolipoprotein B-48 (apoB-48) levels in 335 normolipidemic and 253 hyperlipidemic subjects using a novel ELISA system. The distribution of fasting serum apoB-48 levels in normolipidemic subjects varied widely, ranging from <1 to >24 microgram/ml (mean, 5.2 +/- 3.8 microgram/ml; median, 3.9 microgram/ml). Serum apoB-48 levels correlated with serum triglyceride (TG) concentrations (r = 0.45, P < 0.001), but not with total cholesterol levels. Serum apoB-48 levels were 7 to 18 times higher in patients with Type I, Type V, and Type III hyperlipidemia, and only slightly higher in patients with Type IIa, Type IIb, and Type IV hyperlipidemia, compared with normolipidemic subjects. The calculated apoB-48/TG ratio was elevated only in patients with dysbetalipoproteinemia (apoE2/2 phenotype). In normolipidemic subjects, oral fat loading resulted in about 2-fold increase in serum apoB-48 levels, with a peak level recorded at 3-4 h postloading, and then returned to the baseline level within 6 h. On the other hand, in patients with dysbetalipoproteinemia, serum apoB-48 levels did not change considerably. Our results indicate that serum apoB-48 is a very useful parameter for evaluating lipoprotein metabolism in exogenous pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号