首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The clinical impact of the 2009 pandemic influenza A(H1N1) virus (pdmH1N1) has been relatively low. However, amino acid substitution D222G in the hemagglutinin of pdmH1N1 has been associated with cases of severe disease and fatalities. D222G was introduced in a prototype pdmH1N1 by reverse genetics, and the effect on virus receptor binding, replication, antigenic properties, and pathogenesis and transmission in animal models was investigated. pdmH1N1 with D222G caused ocular disease in mice without further indications of enhanced virulence in mice and ferrets. pdmH1N1 with D222G retained transmissibility via aerosols or respiratory droplets in ferrets and guinea pigs. The virus displayed changes in attachment to human respiratory tissues in vitro, in particular increased binding to macrophages and type II pneumocytes in the alveoli and to tracheal and bronchial submucosal glands. Virus attachment studies further indicated that pdmH1N1 with D222G acquired dual receptor specificity for complex α2,3- and α2,6-linked sialic acids. Molecular dynamics modeling of the hemagglutinin structure provided an explanation for the retention of α2,6 binding. Altered receptor specificity of the virus with D222G thus affected interaction with cells of the human lower respiratory tract, possibly explaining the observed association with enhanced disease in humans.In April 2009, the H1N1 influenza A virus of swine origin was detected in humans in North America (9, 12, 42). Evidence for its origin came from analyses of the viral genome, with six gene segments displaying the closest resemblance to American “triple-reassortant” swine viruses and two to “Eurasian-lineage” swine viruses (13, 42). After this first detection in humans, the virus spread rapidly around the globe, starting the first influenza pandemic of the 21st century. The 2009 pandemic influenza A(H1N1) virus (pdmH1N1) has been relatively mild, with a spectrum of disease ranging from subclinical infections or mild upper respiratory tract illness to sporadic cases of severe pneumonia and acute respiratory distress syndrome (3, 11, 27, 29, 30, 37). Overall, the case-fatality rate during the start of the pandemic was not significantly higher than in seasonal epidemics in most countries. However, a marked difference was observed in the case-fatality rate in specific age groups, with seasonal influenza generally causing highest mortality in elderly and immunocompromised individuals, and the pdmH1N1 affecting a relatively large proportion of (previously healthy) young individuals (3, 11, 27, 29, 30, 37).Determinants of influenza A virus virulence have been mapped for a wide variety of zoonotic and pandemic influenza viruses to the polymerase genes, hemagglutinin (HA), neuraminidase (NA), and nonstructural protein 1 (NS1). Such virulence-associated substitutions generally facilitate more efficient replication in humans via improved interactions with host cell factors. Since most of these virulence-associated substitutions were absent in the earliest pdmH1N1s, it has been speculated that the virus could acquire some of these mutations, potentially resulting in the emergence of more pathogenic viruses. Such virulence markers could be acquired by gene reassortment with cocirculating influenza A viruses, or by mutation. The influenza virus polymerase genes, in particular PB2, have been shown to be important determinants of the virulence of the highly pathogenic avian influenza (HPAI) H5N1 and H7N7 viruses and the transmission of the 1918 H1N1 Spanish influenza virus (17, 26, 34, 51). One of the most commonly identified virulence markers to date is E627K in PB2. The glutamic acid (E) residue is generally found in avian influenza viruses, while human viruses have a lysine (K), and this mutation was described as a determinant of host range in vitro (48). Given that all human and many zoonotic influenza viruses of the last century contained 627K, it was surprising that the pdmH1N1 had 627E. In addition, an aspartate (D)-to-asparagine (N) substitution at position 701 (D701N) of PB2 has previously been shown to expand the host range of avian H5N1 virus to mice and humans and to increase virus transmission in guinea pigs (26, 46). Like E627K, D701N was absent in the genome of pdmH1N1. Thus, the pdmH1N1 was the first known human pandemic virus with 627E and 701D, and it has been speculated that pdmH1N1 could mutate into a more virulent form by acquiring one of these mutations or both. Recently, it was shown that neither E627K nor D701N in PB2 of pdmH1N1 increased its virulence in ferrets and mice (18). The PB1-F2 protein has previously also been associated with high pathogenicity of the 1918 H1N1 and HPAI H5N1 viruses (8). The PB1-F2 protein of the pdmH1N1 is truncated due to premature stop codons. However, restoration of the PB1-F2 reading frame did not result in viruses with increased virulence (15). The NS1 protein of pdmH1N1 is also truncated due to a stop codon and, as a result, does not contain a PDZ ligand domain that is involved in cell-signaling pathways and has been implicated in the pathogenicity of 1918 H1N1 and HPAI H5N1 viruses (5, 8, 21). Surprisingly, restoration of a full-length version of the NS1 gene did not result in increased virulence in animal models (16). Mutations affecting virulence and host range have further frequently been mapped to hemagglutinin (HA) and neuraminidase (NA) in relation to their interaction with α2,3- or α2,6-linked sialic acids (SAs), the virus receptors on host cells (17, 32, 35, 50). The HA gene of previous pandemic viruses incorporated substitutions that allow efficient attachment to α2,6-SAs—the virus receptor on human cells—compared to ancestral avian viruses that attach more efficiently to α2,3-SAs (35, 47, 50).To search for mutations of potential importance to public health, numerous laboratories performed genome sequencing of pdmH1N1s, resulting in the real-time accumulation of information on emergence of potential virulence markers. Of specific interest were reports on amino acid substitutions from aspartic acid (D) to glycine (G) at position 222 (position 225 in H3) in HA of pdmH1N1. This substitution was observed in a fatal case of pdmH1N1 infection in June 2009 in the Netherlands (M. Jonges et al., unpublished data). Between July and December 2009, viruses from 11 (18%) of 61 cases with severe disease outcome in Norway have also been reported to harbor the D222G substitution upon direct sequencing of HA in clinical specimens. Such mutant viruses were not observed in any of 205 mild cases investigated, and the frequency of detection of this mutation was significantly higher in severe cases than in mild cases (23). In Hong Kong, the D222G substitution was detected in 12.5% (6) and 4.1% (31) of patients with severe disease and in 0% of patients with mild disease, in two different studies without prior propagation in embryonated chicken eggs. In addition to Norway and Hong Kong, the mutation has been detected in Brazil, Japan, Mexico, Ukraine, and the United States (56). Thus, D222G in HA could be the first identified “virulence marker” of pdmH1N1. pdmH1N1 with D222G in HA have not become widespread in the population, although they were detected in several countries. However, D222G in HA is of special interest, since it has also been described as the single change in HA between two strains of the “Spanish” 1918 H1N1 virus that differed in receptor specificity (47). Furthermore, upon propagation in embryonated chicken eggs, pdmH1N1 can acquire the mutation rapidly, presumably because it results in virus adaptation to avian (α2,3-SAs) receptors (49). The presence of the substitution in pdmH1N1s in the human population and its potential association with more severe disease prompted us to test its effect on pdmH1N1 receptor binding, replication, antigenic properties, and pathogenesis and transmission in animal models.  相似文献   

2.
3.
The highly pathogenic H5N1 avian influenza virus emerged from China in 1996 and has spread across Eurasia and Africa, with a continuous stream of new cases of human infection appearing since the first large-scale outbreak among migratory birds at Qinghai Lake. The role of wild birds, which are the natural reservoirs for the virus, in the epidemiology of the H5N1 virus has raised great public health concern, but their role in the spread of the virus within the natural ecosystem of free-ranging terrestrial wild mammals remains unclear. In this study, we investigated H5N1 virus infection in wild pikas in an attempt to trace the circulation of the virus. Seroepidemiological surveys confirmed a natural H5N1 virus infection of wild pikas in their native environment. The hemagglutination gene of the H5N1 virus isolated from pikas reveals two distinct evolutionary clades, a mixed/Vietnam H5N1 virus sublineage (MV-like pika virus) and a wild bird Qinghai (QH)-like H5N1 virus sublineage (QH-like pika virus). The amino acid residue (glutamic acid) at position 627 encoded by the PB2 gene of the MV-like pika virus was different from that of the QH-like pika virus; the residue of the MV-like pika virus was the same as that of the goose H5N1 virus (A/GS/Guangdong [GD]/1/96). Further, we discovered that in contrast to the MV-like pika virus, which is nonpathogenic to mice, the QH-like pika virus is highly pathogenic. To mimic the virus infection of pikas, we intranasally inoculated rabbits, a species closely related to pikas, with the H5N1 virus of pika origin. Our findings first demonstrate that wild pikas are mammalian hosts exposed to H5N1 subtype avian influenza viruses in the natural ecosystem and also imply a potential transmission of highly pathogenic avian influenza virus from wild mammals into domestic mammalian hosts and humans.Highly pathogenic avian influenza (HPAI) is an extremely infectious, systemic viral disease that causes a high rate of mortality in birds. HPAI H5N1 viruses are now endemic in avian populations in Southeast Asia and have repeatedly been transmitted to humans (9, 14, 27). Since 2003, the H5N1 subtype has been reported in 391 human cases of influenza and has caused 247 human deaths in 15 countries, leading to greater than 60% mortality among infected individuals (38). Although currently incapable of sustained human-to-human transmission, H5N1 viruses undoubtedly pose a serious threat to public health, as well as to the global economy. Hence, preparedness for such a threat is a global priority (36).Wild birds are considered to be natural reservoirs for influenza A viruses (6, 18, 21, 35, 37). Of the 144 type A influenza virus hemagglutinin-neuraminidase (HA-NA) combinations, 103 have been found in wild birds (5, 7, 17, 37). Since the first HPAI outbreak among migratory wild birds appeared at Qinghai Lake in western China in May 2005 (3, 16, 25, 34, 41), HPAI viruses of the H5N1 subtype have been isolated from poultry throughout Eurasia and Africa. The continued occurrence of human cases has created a situation that could facilitate a pandemic emergence. There is heightened concern that wild birds are a reservoir for influenza A viruses that switch hosts and stably adapt to mammals, including horses, swine, and humans (11, 19, 22, 37).Despite the recent expansion of avian influenza virus (AIV) surveillance and genomic data (5, 17, 20, 21, 33, 40), fundamental questions remain concerning the ecology and evolution of these viruses. Little is known about how terrestrial wild mammals within their natural ecological systems affect HPAI H5N1 epidemiology or about the virus''s effects on public health, though there are many reports of natural and experimental H5N1 virus infection in animals belonging to the taxonomic orders Carnivora (12, 13, 15, 28, 29) and Artiodactyla (15). Herein, we provide the results of our investigation into H5N1 virus infection in wild pikas (Ochotona curzoniae of the order Lagomorpha) within their natural ecological setting. We describe our attempt to trace the circulation of H5N1 viruses and to characterize pika H5N1 influenza virus (PK virus).  相似文献   

4.
In less than 3 months after the first cases of swine origin 2009 influenza A (H1N1) virus infections were reported from Mexico, WHO declared a pandemic. The pandemic virus is antigenically distinct from seasonal influenza viruses, and the majority of human population lacks immunity against this virus. We have studied the activation of innate immune responses in pandemic virus-infected human monocyte-derived dendritic cells (DC) and macrophages. Pandemic A/Finland/553/2009 virus, representing a typical North American/European lineage virus, replicated very well in these cells. The pandemic virus, as well as the seasonal A/Brisbane/59/07 (H1N1) and A/New Caledonia/20/99 (H1N1) viruses, induced type I (alpha/beta interferon [IFN-α/β]) and type III (IFN-λ1 to -λ3) IFN, CXCL10, and tumor necrosis factor alpha (TNF-α) gene expression weakly in DCs. Mouse-adapted A/WSN/33 (H1N1) and human A/Udorn/72 (H3N2) viruses, instead, induced efficiently the expression of antiviral and proinflammatory genes. Both IFN-α and IFN-β inhibited the replication of the pandemic (H1N1) virus. The potential of IFN-λ3 to inhibit viral replication was lower than that of type I IFNs. However, the pandemic virus was more sensitive to the antiviral IFN-λ3 than the seasonal A/Brisbane/59/07 (H1N1) virus. The present study demonstrates that the novel pandemic (H1N1) influenza A virus can readily replicate in human primary DCs and macrophages and efficiently avoid the activation of innate antiviral responses. It is, however, highly sensitive to the antiviral actions of IFNs, which may provide us an additional means to treat severe cases of infection especially if significant drug resistance emerges.The novel swine origin 2009 influenza A (H1N1) virus was identified in April 2009, and it is currently causing the first influenza pandemic of the 21st century. The virus is a completely new reassortant virus (8, 38), and the majority of the human population does not have preexisting immunity against it. The case fatality rate of the current pandemic virus infection is still unclear, but it is estimated to be somewhat higher than that of seasonal influenza virus infections (8). In most cases, the pandemic 2009 A (H1N1) virus causes an uncomplicated respiratory tract illness with symptoms similar to those caused by seasonal influenza viruses. However, gastrointestinal symptoms atypical to seasonal influenza have been detected in a significant proportion of cases (4, 7, 35).The pandemic 2009 (H1N1) influenza A virus originates from a swine influenza A virus strain. It underwent multiple reassortment events in pigs and then transferred into the human population (8, 38). The new virus has gene segments from the North American triple-reassortant and Eurasian swine H1N1 viruses (8, 38). Sequence analysis of this new pandemic virus revealed that hemagglutinin (HA), NP, and NS gene segments are derived from the classical swine viruses, PB1 from human H3N2, and PB2 and PA from avian viruses within the triple-reassortant virus (8). In addition, the NA and M segments originate from the Eurasian swine virus lineage. The pandemic 2009 (H1N1) virus is genetically and antigenically distinct from previous seasonal human influenza A (H1N1) viruses. Thus, the current seasonal influenza vaccines are likely to give little, if any, protection against pandemic 2009 A (H1N1) virus infection (12, 14). However, some evidence indicates that people born early in the 20th century have cross-neutralizing antibodies against the pandemic 2009 A (H1N1) viruses (12, 14).At present, relatively little is known about the pathogenesis and transmission of the pandemic 2009 A (H1N1) virus in humans. Studies with ferrets revealed that the pandemic virus replicated better than seasonal H1N1 viruses in the respiratory tracts of the animals. This suggests that the virus is more pathogenic in ferrets than seasonal influenza viruses (19, 24). The respiratory tract is the primary infection site of all mammalian influenza viruses, and, indeed, the specific glycan receptors on the apical surface of the upper respiratory tract have been reported to bind HA of the 2009 A (H1N1) virus (19). In human lung tissue binding assays, 2009 A (H1N1) HA showed a glycan binding pattern similar to that of the HA from the pandemic 1918 A (H1N1) virus though its affinity to α2,6 glycans was much lower than that of the 1918 virus HA. The lower glycan binding properties of the pandemic 2009 A (H1N1) virus seemed to correlate with less-efficient transmission in ferrets compared to seasonal H1N1 viruses (19). According to another study with ferrets, the transmission of the pandemic 2009 A (H1N1) virus via respiratory droplets was as efficient as that of a seasonal A (H1N1) virus (24). It is clear that, besides experimental infections in animal models, analyses of the characters and pathogenesis of the pandemic 2009 A (H1N1) virus infection in humans are urgently needed.In the present study, we have focused on analyzing innate immune responses in primary human dendritic cells (DCs) and macrophages in response to an infection with one of the Finnish isolates of the pandemic 2009 A (H1N1) virus. DCs and macrophages reside beneath the epithelium of the respiratory organs, and these cells are thus potential targets for influenza viruses. From the epithelial cells influenza viruses spread in DCs and macrophages, which coordinate the development of an effective innate immune response against the virus (22, 34, 41). During influenza virus infection, DCs and macrophages secrete antiviral cytokines such as interferons (IFNs) and tumor necrosis factor alpha (TNF-α) (3, 13, 26). Moreover, DCs and macrophages activate virus-destroying NK cells and T cells with the cytokines they secrete and via direct cell-to-cell contacts (9, 29, 33, 37). Here we show that the pandemic (H1N1) virus infects and replicates very well in human monocyte-derived DCs and macrophages. The pandemic virus as well as two recent seasonal H1N1 viruses induced a relatively weak innate immune response in these cells, as evidenced by a poor expression of antiviral and proinflammatory cytokine genes. However, like seasonal influenza A viruses, the pandemic 2009 (H1N1) virus was extremely sensitive to the antiviral actions of type I IFNs (IFN-α/β). Interestingly, the pandemic 2009 (H1N1) virus was even more sensitive to antiviral IFN-λ3 than a seasonal A (H1N1) virus. Thus, IFNs may provide us with an additional means to combat severe pandemic influenza virus infections, especially if viral resistance against neuraminidase (NA) inhibitors begins to emerge.  相似文献   

5.
6.
Highly pathogenic avian influenza A viruses of the H5N1 subtype continue to circulate in poultry, and zoonotic transmissions are reported frequently. Since a pandemic caused by these highly pathogenic viruses is still feared, there is interest in the development of influenza A/H5N1 virus vaccines that can protect humans against infection, preferably after a single vaccination with a low dose of antigen. Here we describe the induction of humoral and cellular immune responses in ferrets after vaccination with a cell culture-derived whole inactivated influenza A virus vaccine in combination with the novel adjuvant CoVaccine HT. The addition of CoVaccine HT to the influenza A virus vaccine increased antibody responses to homologous and heterologous influenza A/H5N1 viruses and increased virus-specific cell-mediated immune responses. Ferrets vaccinated once with a whole-virus equivalent of 3.8 μg hemagglutinin (HA) and CoVaccine HT were protected against homologous challenge infection with influenza virus A/VN/1194/04. Furthermore, ferrets vaccinated once with the same vaccine/adjuvant combination were partially protected against infection with a heterologous virus derived from clade 2.1 of H5N1 influenza viruses. Thus, the use of the novel adjuvant CoVaccine HT with cell culture-derived inactivated influenza A/H5N1 virus antigen is a promising and dose-sparing vaccine approach warranting further clinical evaluation.Since the first human case of infection with a highly pathogenic avian influenza A virus of the H5N1 subtype in 1997 (9, 10, 37), hundreds of zoonotic transmissions have been reported, with a high case-fatality rate (10, 44). Since these viruses continue to circulate among domestic birds and human cases are regularly reported, it is feared that they will adapt to their new host or exchange gene segments with other influenza A viruses, become transmissible from human to human, and cause a new pandemic. Recently, a novel influenza A virus of the H1N1 subtype emerged. This virus, which originated from pigs, was transmitted between humans efficiently, resulting in the first influenza pandemic of the 21st century (8, 45). Although millions of people have been inoculated with the (H1N1)2009 virus, the case-fatality rate was relatively low compared to that for infections with the H5N1 viruses (11, 31). However, the unexpected pandemic caused by influenza A/H1N1(2009) viruses has further highlighted the importance of rapid availability of safe and effective pandemic influenza virus vaccines. Other key issues for the development of pandemic influenza A virus vaccines include optimal use of the existing (limited) capacity for production of viral antigen and effectiveness against viruses that are antigenically distinct. Ideally, a single administration of a low dose of antigen would be sufficient to induce protective immunity against the homologous strain and heterologous antigenic variant strains. However, since the population at large will be immunologically naïve to a newly introduced virus, high doses of antigen are required to induce protective immunity in unprimed subjects (23, 36). The use of safe and effective adjuvants in pandemic influenza virus vaccines is considered a dose-sparing strategy. Clinical trials evaluating candidate inactivated influenza A/H5N1 virus vaccines showed that the use of adjuvants can increase their immunogenicity and broaden the specificity of the induced antibody responses (2, 7, 19, 23, 27, 36, 41). These research efforts have resulted in the licensing of adjuvanted vaccines against seasonal and pandemic influenza viruses (17). The protective efficacy of immune responses induced with candidate influenza A/H5N1 virus vaccines was demonstrated in ferrets after two immunizations (1, 22, 24, 25) or after a single immunization. The latter was achieved with a low dose of antigen in combination with the adjuvant Iscomatrix (26).Recently, a novel adjuvant that consists of a sucrose fatty acid sulfate ester (SFASE) immobilized on the oil droplets of a submicrometer emulsion of squalane in water has been developed (4). It has been demonstrated that the addition of this novel adjuvant, called CoVaccine HT, to multiple antigens increased the immune response to these antigens in pigs and horses and was well tolerated in both species (4, 16, 40). Furthermore, it was shown that the use of CoVaccine HT increased the virus-specific antibody responses in mice and ferrets after vaccination with a cell culture-derived whole inactivated influenza A/H5N1 virus vaccine (5, 13). One of the mode of actions of CoVaccine HT is the activation of antigen-presenting cells such as dendritic cells, most likely through Toll-like receptor 4 (TLR4) signaling (5).In the present study, we evaluated the protective potential of CoVaccine HT-adjuvanted cell culture-derived whole inactivated influenza A/H5N1 virus (WIV) vaccine in the ferret model, which is considered the most suitable animal model for the evaluation of candidate influenza virus vaccines (6, 14, 15). To this end, ferrets were vaccinated once or twice with various antigen doses with or without the adjuvant to test whether dose sparing could be achieved. The use of CoVaccine HT increased virus-specific antibody responses and T cell responses. A single administration of 3.8 μg hemagglutinin (HA) of WIV NIBRG-14 vaccine preparation in combination with CoVaccine HT conferred protection against challenge infection with the homologous highly pathogenic A/H5N1 virus strain A/VN/1194/04 and partial protection against infection with a heterologous, antigenically distinct strain, A/IND/5/05. Therefore, it was concluded that the use of CoVaccine HT in inactivated influenza virus vaccines induced protective virus-specific humoral and cell-mediated immune responses and that it could be suitable as adjuvant in (pre)pandemic A/H5N1 virus vaccines. Further clinical testing of these candidate vaccines seems to be warranted.  相似文献   

7.
H2 influenza viruses have not circulated in humans since 1968, and therefore a large segment of the population would likely be susceptible to infection should H2 influenza viruses reemerge. The development of an H2 pandemic influenza virus vaccine candidate should therefore be considered a priority in pandemic influenza preparedness planning. We selected a group of geographically and temporally diverse wild-type H2 influenza viruses and evaluated the kinetics of replication and compared the ability of these viruses to induce a broadly cross-reactive antibody response in mice and ferrets. In both mice and ferrets, A/Japan/305/1957 (H2N2), A/mallard/NY/1978 (H2N2), and A/swine/MO/2006 (H2N3) elicited the broadest cross-reactive antibody responses against heterologous H2 influenza viruses as measured by hemagglutination inhibition and microneutralization assays. These data suggested that these three viruses may be suitable candidates for development as live attenuated H2 pandemic influenza virus vaccines.Influenza pandemics occur when a novel influenza virus enters a population with little preexisting immunity (36). During the pandemics of the last century, novel influenza viruses were introduced either directly from an avian reservoir (34) or were the result of reassortment between contemporaneously circulating human, avian, and swine influenza viruses (5, 29, 36). Due to the lack of preexisting immunity to the novel virus, morbidity and mortality rates are typically higher than in epidemics caused by seasonal influenza viruses (4).Although pandemic preparedness planning has largely focused on the highly pathogenic H5 and H7 avian influenza virus subtypes, the recent emergence of the 2009 pandemic H1N1 viruses underscores the need to consider other influenza virus subtypes as well. Of the 16 hemagglutinin (HA) influenza A virus subtypes that have been identified to date, H1, H2, and H3 have been known to cause influenza pandemics (7, 27), suggesting that these viruses are capable of sustained transmission and can cause disease in humans. While the H1 and H3 subtypes have cocirculated in humans since 1977, H2 influenza viruses have not circulated in humans since 1968 (36) and therefore a large segment of the population would likely be susceptible to infection should H2 influenza viruses reemerge. The 1957 H2 pandemic virus was a reassortant that derived the HA, neuraminidase (NA), and PB1 genes from an avian virus and the remaining gene segments from the circulating H1N1 virus (15, 30). As H2 subtype viruses continue to circulate in avian reservoirs worldwide (12, 17, 18, 22, 33), they remain a potential pandemic threat. The development of an H2 influenza virus vaccine candidate should therefore be considered a priority in future pandemic influenza preparedness planning.Given the low likelihood that a previously selected vaccine virus will exactly match the pandemic virus, the ability to elicit a broadly cross-reactive antibody response to antigenically distinct viruses within a subtype is an important consideration in the selection of a pandemic influenza vaccine candidate. Previous studies have examined the ability of inactivated H2 influenza viruses to provide cross-protection against mouse-adapted variants of reassortant human viruses and an avian H2 influenza virus from 1978 (9, 14). Given the potential for live attenuated influenza virus vaccines to confer a great breadth of heterologous cross-protection (1, 2, 6, 35), we recently conducted a study evaluating cold-adapted A/Ann Arbor/6/1960 (AA CA), an H2 influenza virus used as the backbone of the seasonal live attenuated influenza A virus vaccine currently licensed in the United States (3). However, as H2 influenza virus continues to circulate widely and appear in migratory birds (10, 24, 26), in poultry markets (20), and in swine (21), with evidence of interregional gene transmission (19, 22), a more extensive evaluation of recent isolates may be warranted in the selection of a potential H2 pandemic vaccine candidate.H2 influenza viruses fall into three main lineages: a human lineage, a North American avian lineage, and a Eurasian avian lineage (29). In addition to viruses whose replicative ability in mammals has previously been established (11, 21, 23, 25), we selected a group of geographically and temporally diverse H2 influenza viruses from each lineage. We evaluated the kinetics of replication of each of these viruses in mice and ferrets and compared the abilities of these viruses to induce a broadly cross-reactive antibody response to determine which of these viruses would be suitable for further development as an H2 pandemic influenza vaccine candidate.  相似文献   

8.
Novel swine-origin influenza viruses of the H1N1 subtype were first detected in humans in April 2009. As of 12 August 2009, 180,000 cases had been reported globally. Despite the fact that they are of the same antigenic subtype as seasonal influenza viruses circulating in humans since 1977, these viruses continue to spread and have caused the first influenza pandemic since 1968. Here we show that a pandemic H1N1 strain replicates in and transmits among guinea pigs with similar efficiency to that of a seasonal H3N2 influenza virus. This transmission was, however, partially disrupted when guinea pigs had preexisting immunity to recent human isolates of either the H1N1 or H3N2 subtype and was fully blocked through daily intranasal administration of interferon to either inoculated or exposed animals. Our results suggest that partial immunity resulting from prior exposure to conventional human strains may blunt the impact of pandemic H1N1 viruses in the human population. In addition, the use of interferon as an antiviral prophylaxis may be an effective way to limit spread in at-risk populations.A pandemic of novel swine-origin influenza virus (H1N1) is developing rapidly. As of 12 August 2009, nearly 180,000 cases had been reported to the WHO from around the globe (36). Sustained human-to-human transmission has furthermore been observed in multiple countries, prompting the WHO to declare a public health emergency of international concern and to raise the pandemic alert level to phase 6 (7).Swine are a natural host of influenza viruses, and although sporadic incidences of human infection with swine influenza viruses occur (8, 9, 14, 29, 35), human-to-human transmission is rare. H1N1 influenza viruses have likely circulated in swine since shortly after the 1918 human influenza pandemic (38). From the 1930s, when a swine influenza virus was first isolated, to the late 1990s, this classical swine lineage has remained relatively stable antigenically (34). In the late 1990s, however, genetic reassortment between a human H3N2 virus, a North American avian virus, and a classical swine influenza virus produced a triple reassortant virus, which subsequently spread among North American swine (34). Further reassortment events involving human influenza viruses led to the emergence in pigs of triple reassortants of the H1N1 and H1N2 subtypes (34). None of these swine viruses have demonstrated the potential for sustained human-to-human transmission.The swine-origin influenza viruses now emerging in the human population possess a previously uncharacterized constellation of eight genes (28). The NA and M segments derive from a Eurasian swine influenza virus lineage, having entered pigs from the avian reservoir around 1979, while the HA, NP, and NS segments are of the classical swine lineage and the PA, PB1, and PB2 segments derive from the North American triple reassortant swine lineage (13). This unique combination of genetic elements (segments from multiple swine influenza virus lineages, some of them derived from avian and human influenza viruses) may account for the improved fitness of pandemic H1N1 viruses, relative to that of previous swine isolates, in humans.Several uncertainties remain about how this outbreak will develop over time. Although the novel H1N1 virus has spread over a broad geographical area, the number of people known to be infected remains low in many countries, which could be due, at least in part, to the lack of optimal transmission of influenza viruses outside the winter season; thus, it is unclear at this point whether the new virus will become established in the long term. Two major factors will shape the epidemiology of pandemic H1N1 viruses in the coming months and years: the intrinsic transmissibility of the virus and the degree of protection offered by previous exposure to seasonal human strains. Initial estimates of the reproductive number (R0) have been made based on the epidemiology of the virus to date and suggest that its rate of spread is intermediate between that of seasonal flu and that of previous pandemic strains (3, 11). However, more precise estimates of R0 will depend on better surveillance data in the future. The transmission phenotype of pandemic H1N1 viruses in a ferret model was also recently reported and was found to be similar to (16, 27) or less efficient (25) than that of seasonal H1N1 strains. The reason for this discrepancy in the ferret model is unclear.Importantly, in considering the human population, the impact of immunity against seasonal strains on the transmission potential of pandemic H1N1 viruses is not clear. According to conventional wisdom, an influenza virus must be of a hemagglutinin (HA) subtype which is novel to the human population in order to cause a pandemic (18, 38). Analysis of human sera collected from individuals with diverse influenza virus exposure histories has indicated that in those born in the early part of the 20th century, neutralizing activity against A/California/04/09 (Cal/04/09) virus is often present (16). Conversely, serological analyses of ferret postinfection sera (13) and human pre- and postvaccination sera (4a) revealed that neutralizing antibodies against recently circulating human H1N1 viruses do not react with pandemic H1N1 isolates. These serological findings may explain the relatively small number of cases seen to date in individuals greater than 65 years of age (6). Even in the absence of neutralizing antibodies, however, a measure of immune protection sufficient to dampen transmission may be present in a host who has recently experienced seasonal influenza (10). If, on the other hand, transmission is high and immunity is low, then pandemic H1N1 strains will likely continue to spread rapidly through the population. In this situation, a range of pharmaceutical interventions will be needed to dampen the public health impact of the pandemic.Herein we used the guinea pig model (4, 21-24, 26, 30) to assess the transmissibility of the pandemic H1N1 strains Cal/04/09 and A/Netherlands/602/09 (NL/602/09) relative to that of previous human and swine influenza viruses. To better mimic the human situation, we then tested whether the efficiency of transmission is decreased by preexisting immunity to recent human H1N1 or H3N2 influenza viruses. Finally, we assessed the efficacy of intranasal treatment with type I interferon (IFN) in limiting the replication and transmission of pandemic H1N1 viruses.  相似文献   

9.
Many novel reassortant influenza viruses of the H9N2 genotype have emerged in aquatic birds in southern China since their initial isolation in this region in 1994. However, the genesis and evolution of H9N2 viruses in poultry in eastern China have not been investigated systematically. In the current study, H9N2 influenza viruses isolated from poultry in eastern China during the past 10 years were characterized genetically and antigenically. Phylogenetic analysis revealed that these H9N2 viruses have undergone extensive reassortment to generate multiple novel genotypes, including four genotypes (J, F, K, and L) that have never been recognized before. The major H9N2 influenza viruses represented by A/Chicken/Beijing/1/1994 (Ck/BJ/1/94)-like viruses circulating in poultry in eastern China before 1998 have been gradually replaced by A/Chicken/Shanghai/F/1998 (Ck/SH/F/98)-like viruses, which have a genotype different from that of viruses isolated in southern China. The similarity of the internal genes of these H9N2 viruses to those of the H5N1 influenza viruses isolated from 2001 onwards suggests that the Ck/SH/F/98-like virus may have been the donor of internal genes of human and poultry H5N1 influenza viruses circulating in Eurasia. Experimental studies showed that some of these H9N2 viruses could be efficiently transmitted by the respiratory tract in chicken flocks. Our study provides new insight into the genesis and evolution of H9N2 influenza viruses and supports the notion that some of these viruses may have been the donors of internal genes found in H5N1 viruses.Wild birds, including wild waterfowls, gulls, and shorebirds, are the natural reservoirs for influenza A viruses, in which they are thought to be in evolutionary stasis (2, 33). However, when avian influenza viruses are transmitted to new hosts such as terrestrial poultry or mammals, they evolve rapidly and may cause occasional severe systemic infection with high morbidity (20, 29). Despite the fact that avian influenza virus infection occurs commonly in chickens, it is unable to persist for a long period of time due to control efforts and/or a failure of the virus to adapt to new hosts (29). In the past 20 years, greater numbers of outbreaks in poultry have occurred, suggesting that the avian influenza virus can infect and spread in aberrant hosts for an extended period of time (5, 14-16, 18, 32).During the past 10 years, H9N2 influenza viruses have become panzootic in Eurasia and have been isolated from outbreaks in poultry worldwide (3, 5, 11, 14-16, 18, 24). A great deal of previous studies demonstrated that H9N2 influenza viruses have become established in terrestrial poultry in different Asian countries (5, 11, 13, 14, 18, 21, 24, 35). In 1994, H9N2 viruses were isolated from diseased chickens in Guangdong province, China, for the first time (4), and later in domestic poultry in other provinces in China (11, 16, 18, 35). Two distinct H9N2 virus lineages represented by A/Chicken/Beijing/1/94 (H9N2) and A/Quail/Hong Kong/G1/98 (H9N2), respectively, have been circulating in terrestrial poultry of southern China (9). Occasionally these viruses expand their host range to other mammals, including pigs and humans (6, 17, 22, 34). Increasing epidemiological and laboratory findings suggest that chickens may play an important role in expanding the host range for avian influenza virus. Our systematic surveillance of influenza viruses in chickens in China showed that H9N2 subtype influenza viruses continued to be prevalent in chickens in mainland China from 1994 to 2008 (18, 19, 36).Eastern China contains one metropolitan city (Shanghai) and five provinces (Jiangsu, Zhejiang, Anhui, Shandong, and Jiangxi), where domestic poultry account for approximately 50% of the total poultry population in China. Since 1996, H9N2 influenza viruses have been isolated regularly from both chickens and other minor poultry species in our surveillance program in the eastern China region, but their genetic diversity and the interrelationships between H9N2 influenza viruses and different types of poultry have not been determined. Therefore, it is imperative to explore the evolution and properties of these viruses. The current report provides insight into the genesis and evolution of H9N2 influenza viruses in eastern China and presents new evidence for the potential crossover between H9N2 and H5N1 influenza viruses in this region.  相似文献   

10.
11.
12.
Sphingosine 1-phosphate (S1P)-metabolizing enzymes regulate the level of sphingolipids and have important biological functions. However, the effects of S1P-metabolizing enzymes on host defense against invading viruses remain unknown. In this study, we investigated the role of S1P-metabolizing enzymes in modulating cellular responses to influenza virus infection. Overexpression of S1P lyase (SPL), which induces the degradation of S1P, interfered with the amplification of infectious influenza virus. Accordingly, SPL-overexpressing cells were much more resistant than control cells to the cytopathic effects caused by influenza virus infection. SPL-mediated inhibition of virus-induced cell death was supported by impairment of the upregulation of the proapoptotic protein Bax, a critical factor for influenza virus cytopathogenicity. Importantly, influenza virus infection of SPL-overexpressing cells induced rapid activation of extracellular signal-regulated kinase (ERK) and STAT1 but not of p38 mitogen-activated protein kinase (MAPK), Akt, or c-Jun N-terminal kinase (JNK). Blockade of STAT1 expression or inhibition of Janus kinase (JAK) activity elevated the level of influenza virus replication in the cells, indicating that SPL protects cells from influenza virus via the activation of JAK/STAT signaling. In contrast to that of SPL, the overexpression of S1P-producing sphingosine kinase 1 heightened the cells'' susceptibility to influenza virus infection, an effect that was reversed by the inhibition of its kinase activity, representing opposed enzymatic activity. These findings indicate that the modulation of S1P-metabolizing enzymes is crucial for controlling the host defense against infection with influenza virus. Thus, S1P-metabolizing enzymes are novel potential targets for the treatment of diseases caused by influenza virus infection.Influenza virus continues to threaten humans and remains a major worldwide health concern. Influenza virus causes an average of 36,000 deaths and 200,000 hospitalizations annually in the United States (50), imposing a significant economic burden (33). Further, there is fear of the recurrence of a devastating influenza pandemic similar to the Spanish influenza pandemic in 1918/1919, which killed as estimated 40 to 50 million people worldwide (34). Indeed, on 11 June 2009, the World Health Organization (WHO) declared the spread of the 2009 influenza A (H1N1) virus (initially known as swine flu virus) a global influenza pandemic (14, 45, 51). In addition, outbreaks of avian H5N1 influenza elevated vigilance against the occurrence of an influenza pandemic (4). A substantial number of circulating seasonal influenza viruses, as well as the avian H5N1 influenza virus with pandemic potential, were found to be resistant to antiviral drugs (10). Thus, identifying new therapeutic targets and understanding the mechanisms of host-virus interactions are important biomedical goals.Sphingolipids are bioactive lipid mediators characterized by the presence of a serine head group with one or two fatty acid tails (7, 44). One of the sphingolipids, sphingosine, and its downstream product sphingosine 1-phosphate (S1P), have emerged as the modulators of multiple cellular processes, such as cell growth, survival, differentiation, and migration, and have therapeutic potential. For instance, a sphingosine analog, FTY720, is a promising biomedical drug candidate that is currently being tested in phase III clinical trials for the treatment of multiple sclerosis (20). S1P, which is generated inside cells, can trigger intracellular signaling or is secreted to act as an exogenous lipid mediator stimulating S1P receptor-mediated signaling (44, 47).The level of S1P is tightly regulated by the S1P-metabolizing enzymes sphingosine kinase (SK) and S1P lyase (SPL). Its synthesis from sphingosine is catalyzed by SK, while SPL catalyzes the degradation of S1P to phosphoethanolamine and hexadecanal (46). These S1P-metabolizing enzymes were revealed to modulate diverse cellular stresses induced by anticancer drugs (30, 31), DNA damage (39), or serum deprivation (38, 43). Cells overexpressing SK1 displayed increased resistance to anticancer drugs such as cisplatin, carboplatin, and doxorubicin (30), whereas cells overexpressing SPL were more sensitive to drug-mediated cell death (31).Recently, the sphingosine analog AAL-R was shown to display immunomodulatory activity to alleviate influenza virus-induced immune pathology (27, 28). The phosphorylated analog acted directly on S1P receptors to regulate the expression of inflammatory cytokines, although it did not significantly alter influenza virus propagation (28). However, the role of intracellular S1P-metabolizing enzymes in host defensive mechanisms against influenza virus infection has not been studied.Here, we now show the contribution of the S1P-metabolizing enzymes SPL and SK1 to cellular responses to influenza virus infection. Overexpression of SPL interfered with influenza virus amplification and virus-induced cell death, with the early activation of STAT1 and extracellular signal-regulated kinase (ERK) molecules. Treatment with inhibitors blocking STAT1 expression or Janus kinase 1 (JAK1) activation increased influenza virus replication preferentially in SPL-overexpressing cells, demonstrating the importance of JAK/STAT signaling for SPL-mediated host defense. The suppression of influenza virus-induced cellular apoptosis by SPL was supported by the diminished expression of both the proapoptotic protein Bax and the cleaved product of poly(ADP-ribose) polymerase (PARP). In contrast, the overexpression of SK1 made cells more permissive to influenza virus infection, which was reversed by the inhibition of its kinase activity. Collectively, our results demonstrate that S1P-metabolizing enzymes regulate influenza virus propagation and represent novel therapeutic targets.  相似文献   

13.
A key question in pandemic influenza is the relative roles of innate immunity and target cell depletion in limiting primary infection and modulating pathology. Here, we model these interactions using detailed data from equine influenza virus infection, combining viral and immune (type I interferon) kinetics with estimates of cell depletion. The resulting dynamics indicate a powerful role for innate immunity in controlling the rapid peak in virus shedding. As a corollary, cells are much less depleted than suggested by a model of human influenza based only on virus-shedding data. We then explore how differences in the influence of viral proteins on interferon kinetics can account for the observed spectrum of virus shedding, immune response, and influenza pathology. In particular, induction of high levels of interferon (“cytokine storms”), coupled with evasion of its effects, could lead to severe pathology, as hypothesized for some fatal cases of influenza.Influenza A virus causes an acute respiratory disease in humans and other mammals; in humans, it is particularly important because of the rapidity with which epidemics develop, its widespread morbidity, and the seriousness of complications. Every year, an estimated 500,000 deaths worldwide, primarily of young children and the elderly, are attributed to seasonal influenza virus infections (49). Influenza pandemics may occur when an influenza virus with new surface proteins emerges, against which the majority of the population has no preexisting immunity. Both the emergence of H5N1 virus (34) and the current H1N1 virus pandemic (43) underline the importance of understanding the dynamics of infection and disease. A key question is, what regulates virus abundance in an individual host, causing the characteristic rapid decline in virus shedding following its initial peak? The main contenders in primary influenza virus infection are depletion of susceptible target cells and the impact of the host''s innate immune response (2, 20).On infection, the influenza virus elicits an immune response, including a rapid innate response that is correlated with the observed decline in the virus load after the first 2 days of infection (1). The slower adaptive response, including both humoral and cell-mediated components, takes several days to consolidate but is important for complete virus clearance and establishment of protective immunity. During infection of an immunologically naïve host, the innate immune response is particularly important as the first line of defense against infection. The innate immune response is regulated by chemokines and cytokines, chemical messengers produced by virus-infected epithelial cells and leukocytes (23), and natural interferon-producing cells, such as plasmacytoid dendritic cells (13). Among the key cytokines induced by epithelial cells infected with influenza A virus are type I interferons (IFNs) (IFN-α/β) (23), which directly contribute to the antiviral effect on infected and neighboring cells (38).Like other viruses, influenza A viruses have evolved strategies to limit the induction of innate immune responses (38). The NS1 protein plays a dominant role, and without it, the virus is unable to grow well or to cause pathology in an immunocompetent host (14). NS1 is multifunctional and counteracts both the induction of IFN expression and the function of IFN-activated antiviral effectors via multiple mechanisms (12, 17). Individual strains of influenza A virus possess these activities to various degrees (15, 21, 22, 26), and accordingly, NS1 has been implicated as a virulence factor (3, 17). A striking effect of the failure to control the innate response to virus infection is seen as a “cytokine storm,” which causes severe pathology (8).While there is an extensive literature on modeling influenza virus spread at the population level, the individual-host scale has received much less attention (2, 4, 5, 18, 19, 20, 27, 28). In a recent important paper, Baccam et al. modeled the kinetics of influenza A virus (2). The innate dynamics were included in the form of an IFN response that delayed and reduced virus production but did not prevent it; thus, the infection was resolved primarily through near-total depletion of epithelial cells. Their model was fitted to virus titers from human volunteers exposed to H1N1 influenza virus, but no data were available on the innate immune response or epithelial cell pathology. This has been a general difficulty in developing and validating more refined within-host models; there is a lack of detailed biological data from natural host systems, in particular, measures of immune kinetics and patterns of cellular depletion.The model presented here explicitly includes the ability of IFN to induce a fully antiviral state in order to explore the relative regulatory role of innate immunity and target cell depletion. Data from experimental infections of immunologically naïve horses with an equine influenza virus (36) allowed us to calibrate our model, not only to viral kinetics, but also to IFN dynamics and cell depletion in the context of infection of a naïve natural mammalian host. With our fitted model, we then investigate modulation of the immune response.  相似文献   

14.
15.
Very limited evidence has been reported to show human adaptive immune responses to the 2009 pandemic H1N1 swine-origin influenza A virus (S-OIV). We studied 17 S-OIV peptides homologous to immunodominant CD4 T epitopes from hemagglutinin (HA), neuraminidase (NA), nuclear protein (NP), M1 matrix protein (MP), and PB1 of a seasonal H1N1 strain. We concluded that 15 of these 17 S-OIV peptides would induce responses of seasonal influenza virus-specific T cells. Of these, seven S-OIV sequences were identical to seasonal influenza virus sequences, while eight had at least one amino acid that was not conserved. T cells recognizing epitopes derived from these S-OIV antigens could be detected ex vivo. Most of these T cells expressed memory markers, although none of the donors had been exposed to S-OIV. Functional analysis revealed that specific amino acid differences in the sequences of these S-OIV peptides would not affect or partially affect memory T-cell responses. These findings suggest that without protective antibody responses, individuals vaccinated against seasonal influenza A may still benefit from preexisting cross-reactive memory CD4 T cells reducing their susceptibility to S-OIV infection.The outbreak of H1N1 swine-origin influenza A virus (S-OIV) in April 2009 has raised a new threat to public health (5, 6). This novel virus (with A/California/04/09 H1N1 as a prototypic strain) not only replicated more efficiently but also caused more severe pathological lesions in the lungs of infected mice, ferrets, and nonhuman primates than a currently circulating human H1N1 virus (9). Similarly, human patients with influenza-like illness who tested negative for S-OIV had a milder clinical course than those who tested positive (13). Another major concern is the lack of immune protection against S-OIV in the human population. Initial serum analysis indicated that cross-reactive antibodies to this novel viral strain were detected in only one-third of people over 60 years of age, while humoral immune responses in the population under 60 years of age were rarely detected (3, 8). In addition, vaccination with recent seasonal influenza vaccines induced little or no cross-reactive antibody responses to S-OIV in any age group (3, 8).Only a few studies address whether preexisting seasonal influenza A virus-specific memory T cells cross-react with antigenic peptides derived from S-OIV (7). In the absence of preexisting cross-reactive neutralizing antibodies, it is likely that T-cell-mediated cellular immunity contributes to viral clearance and reduces the severity of symptoms, although virus-specific T cells cannot directly prevent the establishment of infection (10). Greenbaum and colleagues recently compared published T-cell epitopes for seasonal influenza viruses with S-OIV antigens (Ags) using a computational approach (7). Several seasonal H1N1 epitopes were found to be identical to S-OIV sequences. This implies that seasonal flu-specific memory T cells circulating in the peripheral blood of vaccinated and/or previously infected individuals are able to recognize their S-OIV homologues.The first objective of this study was to determine the extent of cross-reactivity of seasonal H1N1 influenza A virus-specific CD4 T cells with S-OIV epitopes, especially those less conserved peptide sequences. We chose 17 immunodominant DR4-restricted T-cell epitopes derived from a seasonal H1N1 strain, compared the binding of these epitopes and their S-OIV homologous peptides to DR4, tested the ability of S-OIV peptides to drive seasonal influenza virus-specific T-cell proliferation in vitro, and estimated the frequency of S-OIV cross-reactive T cells in the periphery of noninfected donors. We found that most homologous S-OIV peptides were able to activate seasonal H1N1 virus-specific CD4 T cells. The second objective was to compare the antigen dosage requirement to activate those T cells. By assessing the alternations in the functional avidities (of T cells to the cognate peptide and S-OIV homologue) due to amino acid differences in S-OIV peptides, we showed how those cross-reactive CD4 T cells differentially responded to the antigenic peptides derived from seasonal H1N1 virus or S-OIV. This study leads to the conclusion that previous exposure to seasonal H1N1 viral antigens will generate considerable levels of memory CD4 T cells cross-reactive with S-OIV.  相似文献   

16.
Since dendritic cells may play a key role in defense against influenza virus infection, we examined the effects of recombinant hemagglutinin (HA) proteins derived from mouse-adapted H1N1 (A/WSN/1933), swine-origin 2009 pandemic H1N1 (A/Texas/05/2009), and highly pathogenic avian influenza H5N1 (A/Thailand/KAN-1/2004) viruses on mouse myeloid dendritic cells (mDCs). The results reveal that tumor necrosis factor alpha (TNF-α), interleukin-12 (IL-12) p70, and major histocompatibility complex class II (MHC-II) expression was increased in mDCs after treatment with recombinant HA proteins of H1N1 and H5N1. The specificity of recombinant HA treatments for mDC activation was diminished after proteinase K digestion. HA apparently promotes mDC maturation by enhancing CD40 and CD86 expression and suppressing endocytosis. No significant differences in mDC activation were observed among recombinant proteins of H1N1 and H5N1. The stimulation of mDCs by HA proteins of H1N1 and H5N1 was completely MyD88 dependent. These findings may provide useful information for the development of more-effective influenza vaccines.Influenza viruses trigger seasonal epidemics or pandemics of contagious diseases with mild to severe consequences in human and poultry populations worldwide (28). Members of the Orthomyxoviridae family, influenza viruses consist of single-stranded, eight-segment, negative-sense genomic RNAs, helical viral ribonucleoprotein (RNP) complexes (RNA segments, NP, PB2, PB1, and PA) and four viral envelope proteins (hemagglutinin [HA], neuraminidase [NA], and M1 and M2 matrix proteins). Type A influenza viruses are further classified into various serotypes based on the antigenic characteristics of HA and NA glycoproteins (14).In 2009, a swine-origin H1N1 strain emerged from the genetic reassortants of existing human, avian, and swine influenza viruses, resulting in a global pandemic marked by symptoms more severe than those associated with seasonal influenza virus (3, 24). According to comparative pathology in macaque monkeys, H5N1 induces greater cytokinemia, tissue damage, and interference with immune regulatory mechanisms than H1N1 infection (2). The HA spike protein of influenza virus is believed to play important roles in viral receptor binding, fusion, transmission, host range restriction, virulence, and pathogenesis (13, 27-30).Dendritic cells (DCs), considered the most potent professional antigen-presenting cells, serve as links between innate and adaptive immunity (31). Upon encountering microbial pathogens, endogenous danger signals, or inflammatory mediators, DCs mature and elicit rapid and short-lived innate immune responses before migrating to secondary lymphoid organs and enhancing adaptive immunity (17). Two major subsets of DCs are recognized in mice and humans: (i) myeloid DCs (mDCs, also called conventional DCs), which participate most directly in antigen presentation and activation of naïve T cells, and (ii) plasmacytoid DCs (pDCs), which produce type I interferons in response to viral infection (16, 42) and are also capable of inducing immunotolerance under some conditions (9). mDCs and pDCs also comprise different heterologous subsets, with unique localizations, phenotypes, and functions (36). Due to their key role in immune regulation, DCs have been developed for immunotherapeutic agents or prophylactic or therapeutic vaccines for cancer, infectious diseases, and immune system-related diseases (32, 34).DCs are essential in controlling the innate and adaptive immune responses against influenza virus infection (21). Viral RNA is recognized by various pattern recognition receptors (PRRs), including RIG-I-like receptors (RLRs), Toll-like receptors (TLRs), and nucleotide oligomerization domain (NOD)-like receptors (NLRs). TLRs play an especially important role in detecting virus invasion and activating DCs (18, 35). However, the mechanisms causing DC activation and maturation in response to influenza viruses are not clear. HA has been described as playing an important role in modulating influenza virus virulence and host immune responses (29). In this study, we examined the effects of several recombinant HA proteins (rHAs) derived from rHA of H1N1 (rH1HA) (A/WSN/1933) and (A/Texas/05/2009) and rHA of H5N1 (rH5HA) (A/Thailand/KAN-1/2004) viruses on the activation and maturation of the mDC subset derived from mouse bone marrow.  相似文献   

17.
18.
PB1-F2 is a viral protein that is encoded by the PB1 gene of influenza A virus by alternative translation. It varies in length and sequence context among different strains. The present study examines the functions of PB1-F2 proteins derived from various human and avian viruses. While H1N1 PB1-F2 was found to target mitochondria and enhance apoptosis, H5N1 PB1-F2, surprisingly, did not localize specifically to mitochondria and displayed no ability to enhance apoptosis. Introducing Leu into positions 69 (Q69L) and 75 (H75L) in the C terminus of H5N1 PB1-F2 drove 40.7% of the protein to localize to mitochondria compared with the level of mitochondrial localization of wild-type H5N1 PB1-F2, suggesting that a Leu-rich sequence in the C terminus is important for targeting of mitochondria. However, H5N1 PB1-F2 contributes to viral RNP activity, which is responsible for viral RNA replication. Lastly, although the swine-origin influenza virus (S-OIV) contained a truncated form of PB1-F2 (12 amino acids [aa]), potential mutation in the future may enable it to contain a full-length product. Therefore, the functions of this putative S-OIV PB1-F2 (87 aa) were also investigated. Although this PB1-F2 from the mutated S-OIV shares only 54% amino acid sequence identity with that of seasonal H1N1 virus, it also increased viral RNP activity. The plaque size and growth curve of the viruses with and without S-OIV PB1-F2 differed greatly. The PB1-F2 protein has various lengths, amino acid sequences, cellular localizations, and functions in different strains, which result in strain-specific pathogenicity. Such genetic and functional diversities make it flexible and adaptable in maintaining the optimal replication efficiency and virulence for various strains of influenza A virus.Influenza A viruses contain eight negative-stranded RNA segments that encode 11 known viral proteins. The 11th viral protein was originally found in a search for unknown peptides during influenza A virus infection recognized by CD8+ T cells. It was termed PB1-F2 and is the second protein that is alternatively translated by the same PB1 gene (8). PB1-F2 can be encoded in a large number of influenza A viruses that are isolated from various hosts, including human and avian hosts. The size of PB1-F2 ranges from 57 to 101 amino acids (aa) (41). While strain PR8 (H1N1) contains a PB1-F2 with a length of 87 aa, PB1-F2 is terminated at amino acid position 57 in most human H1N1 viruses and is thus a truncated form compared with the length in PR8. Human H3N2 and most avian influenza A viruses encode a full-length PB1-F2 protein, which is at least 87 aa (7). Many cellular functions of the PB1-F2 protein, and especially the protein of the PR8 strain, have been reported (11, 25). For example, PR8 PB1-F2 localizes to mitochondria in infected and transfected cells (8, 15, 38, 39), suggesting that PB1-F2 enhances influenza A virus-mediated apoptosis in human monocytes (8). The phosphorylation of the PR8 PB1-F2 protein has been suggested to be one of the crucial causes of the promotion of apoptosis (30).The rates of synonymous and nonsynonymous substitutions in the PB1-F2 gene are higher than those in the PB1 gene (7, 20, 21, 37, 42). Recent work has shown that both PR8 PB1-F2 and H5N1 PB1-F2 are important regulators of influenza A virus virulence (1). Additionally, the expression of the 1918 influenza A virus (H1N1) PB1-F2 increases the incidence of secondary bacterial pneumonia (10, 28). However, PB1-F2 is not essential for viral replication because the knockout of PB1-F2 in strain PR8 has no effect on the viral titer (40), suggesting that PB1-F2 may have cellular functions other than those that were originally thought (29).PB1-F2 was translated from the same RNA segment as the PB1 protein, whose function is strongly related to virus RNP activity, which is responsible for RNA chain elongation and which exhibits RNA-dependent RNA polymerase activity (2, 5) and endonuclease activity (9, 16, 26). Previous research has already proved that the knockout of PR8 PB1-F2 reduced virus RNP activity, revealing that PR8 PB1-F2 contributes to virus RNP activity (27), even though PB1-F2 has no effect on the virus growth rate (40). In the present study, not only PR8 PB1-F2 but also H5N1 PB1-F2 and putative full-length swine-origin influenza A virus (S-OIV) PB1-F2 contributed to virus RNP activity. However, PR8 PB1-F2 and H5N1 PB1-F2 exhibit different biological behaviors, including different levels of expression, cellular localizations, and apoptosis enhancements. The molecular determinants of the different localizations were also addressed. The function of the putative PB1-F2 derived from S-OIV was also studied. The investigation described here reveals that PB1-F2 proteins derived from various viral strains exhibited distinct functions, possibly contributing to the variation in the virulence of influenza A viruses.  相似文献   

19.
The specificity of the CD4 T-cell immune response to influenza virus is influenced by the genetic complexity of the virus and periodic encounters with variant subtypes and strains. In order to understand what controls CD4 T-cell reactivity to influenza virus proteins and how the influenza virus-specific memory compartment is shaped over time, it is first necessary to understand the diversity of the primary CD4 T-cell response. In the study reported here, we have used an unbiased approach to evaluate the peptide specificity of CD4 T cells elicited after live influenza virus infection. We have focused on four viral proteins that have distinct intracellular distributions in infected cells, hemagglutinin (HA), neuraminidase (NA), nucleoprotein, and the NS1 protein, which is expressed in infected cells but excluded from virion particles. Our studies revealed an extensive diversity of influenza virus-specific CD4 T cells that includes T cells for each viral protein and for the unexpected immunogenicity of the NS1 protein. Due to the recent concern about pandemic avian influenza virus and because CD4 T cells specific for HA and NA may be particularly useful for promoting the production of neutralizing antibody to influenza virus, we have also evaluated the ability of HA- and NA-specific CD4 T cells elicited by a circulating H1N1 strain to cross-react with related sequences found in an avian H5N1 virus and find substantial cross-reactivity, suggesting that seasonal vaccines may help promote protection against avian influenza virus.In recent decades, investigators studying both murine and human T-cell responses to influenza virus have succeeded in identifying peptide epitopes from immunized or vaccinated individuals that are the targets of CD4 T cells. These studies suggest a considerable diversity in CD4 responses. Epitopes derived from hemagglutinin (HA), neuraminidase (NA), nuclear protein (NP), polymerase (PB1 and PB2), matrix (M1), and nonstructural protein (NS1) have all been identified (9, 19, 25-28, 32, 61, 64, 85, 86). Our own laboratory previously analyzed the peptide specificity of CD4 T cells in the primary response of HLA-DR1 transgenic mice toward a human isolate of influenza virus and found that the CD4 T-cell repertoire specific for HA alone was diverse and encompassed at least 30 different peptide epitopes (63). In general, studies with humans have been much less systematic than those with the mouse because of the difficulty in obtaining lymphocyte samples from recently infected individuals and because of the complexity of major histocompatibility complex (MHC) molecules expressed in humans. However, recent studies with MHC class II tetramer reagents (19, 61, 64, 72, 86) have permitted the visualization of CD4 T cells specific for influenza virus directly ex vivo or after a brief (10- to 14-day) in vitro expansion. Those studies have led to the conclusion that the repertoire of CD4 T cells is more diverse than that of CD8 T cells and that CD4 T cells that are specific for most influenza virus proteins can be detected.We have focused on the identification of the peptide specificity of CD4 T cells during the primary response to influenza virus infection using HLA-DR1 transgenic mice with several goals in mind. First, we seek to understand the intracellular events within influenza virus-infected antigen-presenting cells (APC) that shape the repertoire of the peptide:class II complexes expressed, because these events will play a pivotal role in determining the specificity of the anti-influenza virus CD4 T-cell response. Second, we expect these studies to provide significant new insight into the CD4 T-cell antigen repertoire that becomes established upon natural infection of humans with influenza virus. Finally, because HLA-DR1 is widely expressed in human populations, the results of our experiments and the corresponding peptide epitopes identified can immediately be utilized for analyses of human immune responses to influenza viruses and vaccines.Our work (45, 57, 60, 68, 69) and the works of others (1, 18, 51, 58, 65, 71, 73, 75) regarding CD4 T-cell immunodominance in response to exogenous antigens indicate that CD4 T cells tend to focus on a limited number of peptides. Typical protein antigens that are taken up as a “pulse” by peripheral APC lead to CD4 T-cell priming that is very narrow in specificity, limited to usually only a few (less than five) epitopes. Our mechanistic studies (44, 68, 69) further indicate that immunodominant peptides characteristically display high-stability interactions with the MHC class II molecule. This selectivity in CD4 T-cell responses is at least in part due to DM editing within APC, where DM apparently removes the peptides that have low-stability interactions with class II molecules (44). Therefore, only a limited subset of antigenic peptides arrives at the cell surface at a sufficient density to recruit CD4 T cells.The characteristics of influenza virus infection suggest that the immunodominance hierarchy might not follow the “rules” established for exogenous protein antigens. Because influenza virus is typically not a systemic infection, virus replication is normally restricted to the lung (3, 29, 33, 59). Therefore, the primary source of viral antigens available for CD4 T-cell priming may not be free virus particles but, rather, may be dendritic cells that become infected with influenza virus while in the lung and then migrate to the draining lymph node (4, 5, 33, 35, 48, 52). If so, then one might predict that the specificity of CD4 T cells could more closely resemble the repertoire that is elicited by “endogenous” antigens synthesized within the APC (21). Endogenous antigens that have ready access to the endosomally localized MHC class II molecules, because they are either membrane associated or secreted, are most efficiently presented by class II molecules (46, 53, 67, 84). For the influenza virus-infected dendritic cell, these preferences in antigen access would favor the presentation of peptides derived from HA and NA, leading to the selective priming of CD4 T cells that are reactive to these viral proteins.Several critical questions remain with regard to the specificity of CD4 T cells that are elicited in response to influenza virus infection. The first question is how diverse the repertoire is, with regard to both peptide and protein specificities. The second issue is how the CD4 T-cell repertoire changes over time with repeated encounters with different strains of influenza virus, a common occurrence in humans. A final, very important question is whether CD4 T cells elicited during the primary response have equivalent potentials to promote protection against subsequent infection or if this potential is dependent on their antigen specificities. It is thought that the primary contribution of CD4 T cells to protective immunity is their role in facilitating the production of high-affinity neutralizing antibodies to HA and NA (38, 79). Recent studies by Sette and coworkers (74) suggest that for complex viral pathogens, the delivery of CD4 T-cell help for the production of high-affinity antibodies by B cells may require that the CD4 T cells share viral antigen specificity with the B cells. For influenza virus, the most useful CD4 T cells may therefore be those that are specific for the membrane glycoproteins HA and NA.In the study reported here, we use an unbiased and comprehensive approach to evaluate the peptide specificity of CD4 T cells elicited after live influenza virus infection. We have focused on four viral proteins that have distinct intracellular distributions in infected cells: HA and NA, expressed at the plasma membrane of infected cells and on the exterior of the virion membrane; NP, expressed in the cytoplasm and nucleus of infected cells; and, finally, the NS1 protein, with a distribution similar to that of NP in infected cells but which is excluded from the virion particles. Our studies lead to the conclusion that influenza virus-specific CD4 T cells elicited during the primary response are distributed across all proteins studied and that the NS1 protein is particularly immunogenic. Because of the recent concern about pandemic avian influenza virus and because CD4 T cells specific for HA and NA may be particularly useful for promoting the production of neutralizing antibody, we have also evaluated the ability of HA- and NA-specific CD4 T cells elicited against a circulating H1N1 strain of influenza virus to cross-react with related sequences found in an H5N1 avian virus. We find that priming with an H1N1 virus elicits CD4 T cells that display a significant degree of cross-reactivity with influenza virus epitopes derived from avian viruses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号