首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Structural information about epitopes, particularly the three-dimensional (3D) structures of antigens in complex with immune receptors, presents a valuable source of data for immunology. This information is available in the Protein Data Bank (PDB) and provided in curated form by the Immune Epitope Database and Analysis Resource (IEDB). With continued growth in these data and the importance in understanding molecular level interactions of immunological interest there is a need for new specialized molecular visualization and analysis tools.

Results

The EpitopeViewer is a platform-independent Java application for the visualization of the three-dimensional structure and sequence of epitopes and analyses of their interactions with antigen-specific receptors of the immune system (antibodies, T cell receptors and MHC molecules). The viewer renders both 3D views and two-dimensional plots of intermolecular interactions between the antigen and receptor(s) by reading curated data from the IEDB and/or calculated on-the-fly from atom coordinates from the PDB. The 3D views and associated interactions can be saved for future use and publication. The EpitopeViewer can be accessed from the IEDB Web site http://www.immuneepitope.org through the quick link 'Browse Records by 3D Structure.'

Conclusion

The EpitopeViewer is designed and been tested for use by immunologists with little or no training in molecular graphics. The EpitopeViewer can be launched from most popular Web browsers without user intervention. A Java Runtime Environment (RJE) 1.4.2 or higher is required.  相似文献   

2.
jSquid is a graph visualization tool for exploring graphs from protein-protein interaction or functional coupling networks. The tool was designed for the FunCoup web site, but can be used for any similar network exploring purpose. The program offers various visualization and graph manipulation techniques to increase the utility for the user. AVAILABILITY: jSquid is available for direct usage and download at http://jSquid.sbc.su.se including source code under the GPLv3 license, and input examples. It requires Java version 5 or higher to run properly. CONTACT: erik.sonnhammer@sbc.su.se SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

3.
Nucleic acid visualization with UCSF Chimera   总被引:2,自引:1,他引:1  
With the increase in the number of large, 3D, high-resolution nucleic acid structures, particularly of the 30S and 50S ribosomal subunits and the intact bacterial ribosome, advancements in the visualization of nucleic acid structural features are essential. Large molecular structures are complicated and detailed, and one goal of visualization software is to allow the user to simplify the display of some features and accent others. We describe an extension to the UCSF Chimera molecular visualization system for the purpose of displaying and highlighting nucleic acid characteristics, including a new representation of sugar pucker, several options for abstraction of base geometries that emphasize stacking and base pairing, and an adaptation of the ribbon backbone to accommodate the nucleic acid backbone. Molecules are displayed and manipulated interactively, allowing the user to change the representations as desired for small molecules, proteins and nucleic acids. This software is available as part of the UCSF Chimera molecular visualization system and thus is integrated with a suite of existing tools for molecular graphics.  相似文献   

4.
The Ontologizer is a Java application that can be used to perform statistical analysis for overrepresentation of Gene Ontology (GO) terms in sets of genes or proteins derived from an experiment. The Ontologizer implements the standard approach to statistical analysis based on the one-sided Fisher's exact test, the novel parent-child method, as well as topology-based algorithms. A number of multiple-testing correction procedures are provided. The Ontologizer allows users to visualize data as a graph including all significantly overrepresented GO terms and to explore the data by linking GO terms to all genes/proteins annotated to the term and by linking individual terms to child terms. AVAILABILITY: The Ontologizer application is available under the terms of the GNU GPL. It can be started as a WebStart application from the project homepage, where source code is also provided: http://compbio.charite.de/ontologizer. REQUIREMENTS: Ontologizer requires a Java SE 5.0 compliant Java runtime engine and GraphViz for the optional graph visualization tool.  相似文献   

5.

Background

Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of databases and tools that support analysts in exploring protein-protein interactions on an integrated level for knowledge discovery. They provide predictions and correlations, indicate possibilities for future experimental research and fill the gaps to complete the picture of biochemical processes. There are numerous and huge databases of protein-protein interactions used to gain insights into answering some of the many questions of systems biology. Many computational resources integrate interaction data with additional information on molecular background. However, the vast number of diverse Bioinformatics resources poses an obstacle to the goal of understanding. We present a survey of databases that enable the visual analysis of protein networks.

Results

We selected M =10 out of N =53 resources supporting visualization, and we tested against the following set of criteria: interoperability, data integration, quantity of possible interactions, data visualization quality and data coverage. The study reveals differences in usability, visualization features and quality as well as the quantity of interactions. StringDB is the recommended first choice. CPDB presents a comprehensive dataset and IntAct lets the user change the network layout. A comprehensive comparison table is available via web. The supplementary table can be accessed on http://tinyurl.com/PPI-DB-Comparison-2015.

Conclusions

Only some web resources featuring graph visualization can be successfully applied to interactive visual analysis of protein-protein interaction. Study results underline the necessity for further enhancements of visualization integration in biochemical analysis tools. Identified challenges are data comprehensiveness, confidence, interactive feature and visualization maturing.  相似文献   

6.
7.
Graphical techniques have become powerful tools for the visualization and analysis of complicated biological systems. However, we cannot give such a graphical representation in a 2D/3D space when the dimensions of the represented data are more than three dimensions. The proposed method, a combination dimensionality reduction approach (CDR), consists of two parts: (i) principal component analysis (PCA) with a newly defined parameter ρ and (ii) locally linear embedding (LLE) with a proposed graphical selection for its optional parameter k. The CDR approach with ρ and k not only avoids loss of principal information, but also sufficiently well preserves the global high-dimensional structures in low-dimensional space such as 2D or 3D. The applications of the CDR on characteristic analysis at different codon positions in genome show that the method is a useful tool by which biologists could find useful biological knowledge.  相似文献   

8.

Background  

Many three-dimensional (3D) images are routinely collected in biomedical research and a number of digital atlases with associated anatomical and other information have been published. A number of tools are available for viewing this data ranging from commercial visualization packages to freely available, typically system architecture dependent, solutions. Here we discuss an atlas viewer implemented to run on any workstation using the architecture neutral Java programming language.  相似文献   

9.
The ability to sense and respond to the environment is a hallmark of living systems. These processes occur at the levels of the organism, cells and individual molecules. Sensing of extracellular changes could result in a structural or chemical alteration in a molecule, which could in turn trigger a cascade of intracellular signals or regulated trafficking of molecules at the cell surface. These and other such processes allow cells to sense and respond to environmental changes. Often, these changes and the responses to them are spatially and/or temporally localized, and visualization of such events necessitates the use of high-resolution imaging approaches. Here we discuss optical imaging approaches and tools for imaging individual events at the cell surface with improved speed and resolution.  相似文献   

10.
11.
The recent advances in chromosome configuration capture (3C)-based series molecular methods and optical super-resolution (SR) techniques offer powerful tools to investigate three dimensional (3D) genomic structure in prokaryotic and eukaryotic cell nucleus. In this review, we focus on the progress during the last decade in this exciting field. Here we at first introduce briefly genome organization at chromosome, domain and sub-domain level, respectively; then we provide a short introduction to various super-resolution microscopy techniques which can be employed to detect genome 3D structure. We also reviewed the progress of quantitative and visualization tools to evaluate and visualize chromatin interactions in 3D genome derived from Hi-C data. We end up with the discussion that imaging methods and 3C-based molecular methods are not mutually exclusive - - - - actually they are complemental to each other and can be combined together to study 3D genome organization.  相似文献   

12.
MOTIVATION: DNA sequence clustering has become a valuable method in support of gene discovery and gene expression analysis. Our interest lies in leveraging the sequence diversity within clusters of expressed sequence tags (ESTs) to model gene structure for the study of gene variants that arise from, among other things, alternative mRNA splicing, polymorphism, and divergence after gene duplication, fusion, and translocation events. In previous work, CRAW was developed to discover gene variants from assembled clusters of ESTs. Most importantly, novel gene features (the differing units between gene variants, for example alternative exons, polymorphisms, transposable elements, etc.) that are specialized to tissue, disease, population, or developmental states can be identified when these tools collate DNA source information with gene variant discrimination. While the goal is complete automation of novel feature and gene variant detection, current methods are far from perfect and hence the development of effective tools for visualization and exploratory data analysis are of paramount importance in the process of sifting through candidate genes and validating targets. RESULTS: We present CRAWview, a Java based visualization extension to CRAW. Features that vary between gene forms are displayed using an automatically generated color coded index. The reporting format of CRAWview gives a brief, high level summary report to display overlap and divergence within clusters of sequences as well as the ability to 'drill down' and see detailed information concerning regions of interest. Additionally, the alignment viewing and editing capabilities of CRAWview make it possible to interactively correct frame-shifts and otherwise edit cluster assemblies. We have implemented CRAWview as a Java application across windows NT/95 and UNIX platforms. AVAILABILITY: A beta version of CRAWview will be freely available to academic users from Pangea Systems (http://www.pangeasystems.com). Contact :  相似文献   

13.
Many structures of large molecular assemblies such as virus capsids and ribosomes have been experimentally determined to atomic resolution. We consider four software problems that arise in interactive visualization and analysis of large assemblies: how to represent multimers efficiently, how to make cartoon representations, how to calculate contacts efficiently, and how to select subassemblies. We describe techniques and algorithms we have developed and give examples of their use. Existing molecular visualization programs work well for single protein and nucleic acid molecules and for small complexes. The methods presented here are proposed as features to add to existing programs or include in next-generation visualization software to allow easy exploration of assemblies containing tens to thousands of macromolecules. Our approach is pragmatic, emphasizing simplicity of code, reliability, and speed. The methods described have been distributed as the Multiscale extension of the UCSF Chimera (www.cgl.ucsf.edu/chimera) molecular graphics program.  相似文献   

14.
15.
基于信息管理的一种虚拟森林景观构建及应用探讨   总被引:20,自引:0,他引:20  
在分析不同尺度的森林可视化建模内容和技术特点的基础上,提出了一个基于信息管理的虚拟森林景观构造原理和技术体系.把过程建模技术与树木形态结构描述结合,提出了一种交互式、参数化的树木动态建模方法,给出了相应的绘制方法和几何体简化算法以实现加速实时绘制,并以福建省漳浦县为例,建立了典型树种的几何模型库.利用森林调查和遥感动态空间数据,借助地理信息系统ArcObiect组件、图形环境OpenGL和Visual C++语言,开发了虚拟森林管理原型系统,实现森林二维/三维交互漫游、查询分析、森林生长仿真模拟,其真实感与模拟精度满足实际森林资源管理需求.最后给出了系统的典型用户界面以及在考虑竞争条件下马尾松自然生长模拟和人工间伐前后的虚拟景观对比的应用例子.  相似文献   

16.
SUMMARY: We have developed several new navigation features for a Java graph applet previously released for visualizing protein-protein interactions. This graph viewer can be used to navigate any molecular interactome dataset. We have successfully implemented this tool for exploring protein networks stored in the Bioverse interaction database. AVAILABILITY: http://bioverse.compbio.washington.edu/viewer CONTACT: ram@compbio.washington.edu.  相似文献   

17.
Quon GT  Gordon P  Sensen CW 《IUBMB life》2003,55(4-5):279-283
We have adapted the Java Molecular Viewer (JMV) to virtual reality display environments, through a number of extensions to the Java 3D code. Phylogenetic information derived from multiple alignments (temporal information) can be overlaid onto molecule structures (spatial information). The number of sequences included in the underlying multiple alignment can be changed instantaneously, resulting in dynamical updates of the displayed information. JMV was also extended to handle an infinite number of objects (molecules) in the same display. The objects can be manipulated in six degrees of freedom simultaneously or independently. We have used the small subunit ribosomal RNA to demonstrate the system (http:// cave.ucalgary.ca), which can be used for any molecule with a resolved structure.  相似文献   

18.
MMDB: Entrez's 3D structure database.   总被引:5,自引:1,他引:4       下载免费PDF全文
The three dimensional structures for representatives of nearly half of all protein families are now available in public databases. Thus, no matter which protein one investigates, it is increasingly likely that the 3D structure of a homolog will be known and may reveal unsuspected structure-function relationships. The goal of Entrez's 3D-structure database is to make this information accessible and usable by molecular biologists (http://www.ncbi.nlm.nih.gov/Entrez). To this end Entrez provides two major analysis tools, a search engine based on sequence and structure 'neighboring' and an integrated visualization system for sequence and structure alignments. From a protein's sequence 'neighbors' one may rapidly identify other members of a protein family, including those where 3D structure is known. By comparing aligned sequences and/or structures in detail, using the visualization system, one may identify conserved features and perhaps infer functional properties. Here we describe how these analysis tools may be used to investigate the structure and function of newly discovered proteins, using the PTEN gene product as an example.  相似文献   

19.
Neurons are highly polarized cells that have structurally and functionally distinct processes called axons and dendrites. How neurons establish polarity is one of the fundamental questions of neuroscience. In the last decade, significant progress has been made in identifying and understanding the molecular mechanisms responsible for neuronal polarization, primarily through researches conducted on cultured neurons. Advances in phosphoproteomics technologies and molecular tools have enabled comprehensive signal analysis and visualization and manipulation of signaling molecules for analyzing neuronal polarity. Furthermore, advances in gene transfer techniques have revealed the role of extracellular and intracellular signaling molecules in neuronal polarization in vivo. This review discusses the latest insights and techniques for the elucidation of the molecular mechanisms that control neuronal polarity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号