首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The partition operon of P1 plasmid encodes two proteins, ParA and ParB, required for the faithful segregation of plasmid copies to daughter cells. The operon is followed by a centromere analog, parS, at which ParB binds. ParA, a weak ATPase, represses the par promoter most effectively in its ADP-bound form. ParB can recruit ParA to parS, stimulate its ATPase, and significantly stimulate the repression. We report here that parS also participates in the regulation of expression of the par genes. A single chromosomal parS was shown to augment repression of several copies of the par promoter by severalfold. The repression increase was sensitive to the levels of ParA and ParB and to their ratio. The increase may be attributable to a conformational change in ParA mediated by the parS-ParB complex, possibly acting catalytically. We also observed an in cis effect of parS which enhanced expression of parB, presumably due to a selective modulation of the mRNA level. Although ParB had been earlier found to spread into and silence genes flanking parS, silencing of the par operon by ParB spreading was not significant. Based upon analogies between partitioning and septum placement, we speculate that the regulatory switch controlled by the parS-ParB complex might be essential for partitioning itself.  相似文献   

2.
3.
Bouet JY  Funnell BE 《The EMBO journal》1999,18(5):1415-1424
The partition system of P1 plasmids is composed of two proteins, ParA and ParB, and a cis-acting site parS. parS is wrapped around ParB and Escherichia coli IHF protein in a higher order nucleoprotein complex called the partition complex. ParA is an ATPase that autoregulates the expression of the par operon and has an essential but unknown function in the partition process. In this study we demonstrate a direct interaction between ParA and the P1 partition complex. The interaction was strictly dependent on ParB and ATP. The consequence of this interaction depended on the ParB concentration. At high ParB levels, ParA was recruited to the partition complex via a ParA-ParB interaction, but at low ParB levels, ParA removed or disassembled ParB from the partition complex. ADP could not support these interactions, but could promote the site-specific DNA binding activity of ParA to parOP, the operator of the par operon. Conversely, ATP could not support a stable interaction of ParA with parOP in this assay. Our data suggest that ParA-ADP is the repressor of the par operon, and ParA-ATP, by interacting with the partition complex, plays a direct role in partition. Therefore, one role of adenine nucleotide binding and hydrolysis by ParA is that of a molecular switch controlling entry into two separate pathways in which ParA plays different roles.  相似文献   

4.
L Radnedge  B Youngren  M Davis    S Austin 《The EMBO journal》1998,17(20):6076-6085
The P1 plasmid partition locus, P1 par, actively distributes plasmid copies to Escherichia coli daughter cells. It encodes two DNA sites and two proteins, ParA and ParB. Plasmid P7 uses a similar system, but the key macromolecular interactions are species specific. Homolog specificity scanning (HSS) exploits such specificities to map critical contact points between component macromolecules. The ParA protein contacts the par operon operator for operon autoregulation, and the ParB contacts the parS partition site during partition. Here, we refine the mapping of these contacts and extend the use of HSS to map protein-protein contacts. We found that ParB participates in autoregulation at the operator site by making a specific contact with ParA. Similarly, ParA acts in partition by making a specific contact with ParB bound at parS. Both these interactions involve contacts between a C-terminal region of ParA and the extreme N-terminus of ParB. As a single type of ParA-ParB complex appears to be involved in recognizing both DNA sites, the operator and the parS sites may both be occupied by a single protein complex during partition. The general HSS strategy may aid in solving the three-dimensional structures of large complexes of macromolecules.  相似文献   

5.
Plasmid-partition functions of the P7 prophage   总被引:12,自引:0,他引:12  
  相似文献   

6.
7.
Fine-structure analysis of the P7 plasmid partition site.   总被引:4,自引:1,他引:3       下载免费PDF全文
F Hayes  M A Davis    S J Austin 《Journal of bacteriology》1993,175(11):3443-3451
The par region of bacteriophage P7 is responsible for active partition of the P7 plasmid prophage into daughter cells. The cis-acting partition site was defined precisely as a 75-bp sequence that was necessary and sufficient to promote correct segregation of an unstable vector plasmid when the two P7 partition proteins, ParA and ParB, were supplied in trans. Roughly the same region was necessary to exert partition-mediated incompatibility. The minimal site contains an integration host factor (IHF) protein binding site bracketed by regions containing heptamer repeat sequences that individually bind ParB. An additional sequence forms the left boundary of the site. Site-directed mutations in the latter sequence, as well as the IHF motif and the rightmost ParB box, blocked site function. Although the P7 site shares 55% sequence identity with its counterpart in bacteriophage P1, functional interactions between the partition sites and the Par proteins of the two plasmids were entirely species specific in vivo. The P1 sequence has similar IHF and ParB binding motifs, but the left boundary sequence differs radically and may define a point of species-specific contact with the Par proteins. No evidence was found for the existence of a functional P7 analog of the P1 parS core, a small subregion of the P1 site that, in isolation, acts as an enfeebled partition site with modified incompatibility properties.  相似文献   

8.
The P1 ParA protein is an ATPase that recognizes the parA promoter region where it acts to autoregulate the P1 parA–parB operon. The ParB protein is essential for plasmid partition and recognizes the cis -acting partition site parS . The regulatory role of ParA is also essential because a controlled level of ParB protein is critical for partition. However, we show that this regulatory activity is not the only role for ParA in partition. Efficient partition can be achieved without autoregulation as long as Par protein levels are kept within a range of low values. The properties of ParA mutants in these conditions showed that ParA is essential for some critical step in the partition process that is independent of par operon regulation. The putative nucleotide-binding site for the ParA ATPase was identified and disrupted by mutation. The resulting mutant was substantially defective for autoregulation and completely inactive for partition in a system in which the need for autoregulation is abolished. Thus, the ParA nucleotide-binding site appears to be necessary both for the repressor activity of ParA and for some essential step in the partition process itself. We propose that the nucleotide-bound form of the enzyme adopts a configuration that favours binding to the operator, but that the ATPase activity of ParA is required for some energetic step in partition of the plasmid copies to daughter cells.  相似文献   

9.
10.
11.
12.
The parCBA operon of the 3.2-kb stabilization region of plasmid RK2 encodes three cotranslated proteins. ParA mediates site-specific recombination to resolve plasmid multimers, ParB has been shown to be a nuclease, and the function of ParC is unknown. In this study ParB was overexpressed by cotranslation with ParC in Escherichia coli by using a plasmid construct that contained the parC and parB genes under the control of the T7 promoter. Purification was achieved by treatment of extracts with Polymin P, followed by ammonium sulfate precipitation and heparin and ion-exchange chromatography. Sizing-column analysis indicated that ParB exists as a monomer in solution. Analysis of the enzymatic properties of purified ParB indicated that the protein preferentially cleaves single-stranded DNA. ParB also nicks supercoiled plasmid DNA preferably at sites with potential single-stranded character, like AT-rich regions and sequences that can form cruciform structures. ParB also exhibits 5'-->3' exonuclease activity. This ParB activity on a 5'-end-labeled, double-stranded DNA substrate produces a 3', 5'-phosphorylated dinucleotide which is further cleaved to a 3', 5'-phosphorylated mononucleotide. The role of the ParB endonuclease and exonuclease activities in plasmid RK2 stabilization remains to be determined.  相似文献   

13.
L Radnedge  M A Davis    S J Austin 《The EMBO journal》1996,15(5):1155-1162
The cis-acting P1 and P7 parS sites are responsible for active partition of P1 and P7 plasmids to daughter cells. The two sites are similar but function only with ParB proteins from the correct species. Using hybrid ParB proteins and hybrid parS sites, we show that specificity is determined by contacts between bases that lie within two parS hexamer boxes and a region in the ParB C-terminus. We refer to these contacts as discriminator contacts. The P7 discriminator contacts were mapped to 3 and 2 bp respectively within the two parS hexamer boxes, and a 10 amino acid region of P7 ParB. Similarly placed residues of different sequence are responsible for the P1 discriminator contact. The discriminator contacts are distinct from previously identified DNA binding contacts which involve different ParB and parS regions. Deletion of the ParB C-terminus that makes the discriminator contact does not diminish in vitro binding but renders it species independent. The discriminator contact is therefore a negative function, interfering with binding of the wrong ParB, but not providing energy for the binding of the correct one. Similar discriminator contacts might be responsible for specificities seen among families of eukaryotic DNA binding proteins that share common binding motifs.  相似文献   

14.
15.
The P1 plasmid partition system is responsible for segregation of daughter plasmids during division of the Escherichia coli host cell. The P1-encoded elements consist of two essential proteins, ParA and ParB, and the cis-acting incB region. The incB region determines partition-mediated incompatibility and contains the centromere-like site parS. We have isolated and purified the two proteins. ParB binds specifically to the incB region in vitro. DNase I footprinting assays place a strong binding site over the 35-bp parS sequence previously shown to be sufficient for partition when the Par proteins are supplied in trans. A weaker site lies within the incB region in sequences that are important for specifying incompatibility, but are not essential for partition. Gel band retardation assays show that a host factor binds specifically to the incB sequence. The factor strongly stimulates binding of ParB. Cutting the region at a site between the two ParB binding sites yields two fragments that can bind ParB but not host factor. Thus, information for host-factor binding lies in the region determining the specificity of plasmid incompatibility. The roles of parB and the host factor in partition and the specificity of plasmid incompatibility are discussed.  相似文献   

16.
Localization of the P1 plasmid requires two proteins, ParA and ParB, which act on the plasmid partition site, parS. ParB is a site-specific DNA-binding protein and ParA is a Walker-type ATPase with non-specific DNA-binding activity. In vivo ParA binds the bacterial nucleoid and forms dynamic patterns that are governed by the ParB-parS partition complex on the plasmid. How these interactions drive plasmid movement and localization is not well understood. Here we have identified a large protein-DNA complex in vitro that requires ParA, ParB and ATP, and have characterized its assembly by sucrose gradient sedimentation and light scattering assays. ATP binding and hydrolysis mediated the assembly and disassembly of this complex, while ADP antagonized complex formation. The complex was not dependent on, but was stabilized by, parS. The properties indicate that ParA and ParB are binding and bridging multiple DNA molecules to create a large meshwork of protein-DNA molecules that involves both specific and non-specific DNA. We propose that this complex represents a dynamic adaptor complex between the plasmid and nucleoid, and further, that this interaction drives the redistribution of partition proteins and the plasmid over the nucleoid during partition.  相似文献   

17.
18.
Biochemical activities of the ParA partition protein of the P1 plasmid   总被引:17,自引:0,他引:17  
The unit-copy P1 plasmid depends for stability on a plasmid-encoded partition region called par, consisting of the parA and parB genes and the parS site. ParA is absolutely required for partition, but its partition-critical role is not known. Purified ParA protein is shown to possess an ATPase activity in vitro which is specifically stimulated by purified ParB protein and by DNA. ParA is responsible for regulation of expression of parA and parB, and purified ParA has an ATP-dependent, site-specific DNA binding activity which recognizes a sequence that overlaps the parA promoter. The role of the ATP-dependence of the binding activity, as well as other possible functions of the ATPase activity in partition, is discussed.  相似文献   

19.
The complete sequence of the virulence plasmid pMT1 of Yersinia pestis KIM5 revealed a region homologous to the plasmid partition (par) region of the P7 plasmid prophage of Escherichia coli. The essential genes parA and parB and the downstream partition site gene, parS, are highly conserved in sequence and organization. The pMT1parS site and the parA-parB operon were separately inserted into vectors that could be maintained in E. coli. A mini-P1 vector containing pMT1parS was stably maintained when the pMT1 ParA and ParB proteins were supplied in trans, showing that the pMT1par system is fully functional for plasmid partition in E. coli. The pMT1par system exerted a plasmid silencing activity similar to, but weaker than those of P7par and P1par. In spite of the high degree of similarity, especially to P7par, it showed unique specificities with respect to the interactions of key components. Neither the P7 nor P1 Par proteins could support partition via the pMT1parS site, and the pMT1 Par proteins failed to support partition with P1parS or P7parS. Typical of other partition sites, supernumerary copies of pMT1parS exerted incompatibility toward plasmids supported by pMT1par. However, no interspecies incompatibility effect was observed between pMT1par, P7par, and P1par.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号